Brian Silverman | 26e4e52 | 2015-12-17 01:56:40 -0500 | [diff] [blame^] | 1 | /*----------------------------------------------------------------------------*/ |
| 2 | /* Copyright (c) FIRST 2008. All Rights Reserved. */ |
| 3 | /* Open Source Software - may be modified and shared by FRC teams. The code */ |
| 4 | /* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */ |
| 5 | /*----------------------------------------------------------------------------*/ |
| 6 | |
| 7 | #include "RobotDrive.h" |
| 8 | |
| 9 | //#include "CANJaguar.h" |
| 10 | #include "GenericHID.h" |
| 11 | #include "Joystick.h" |
| 12 | #include "Jaguar.h" |
| 13 | #include "Utility.h" |
| 14 | #include "WPIErrors.h" |
| 15 | #include <math.h> |
| 16 | |
| 17 | #undef max |
| 18 | #include <algorithm> |
| 19 | |
| 20 | const int32_t RobotDrive::kMaxNumberOfMotors; |
| 21 | |
| 22 | /* |
| 23 | * Driving functions |
| 24 | * These functions provide an interface to multiple motors that is used for C programming |
| 25 | * The Drive(speed, direction) function is the main part of the set that makes it easy |
| 26 | * to set speeds and direction independently in one call. |
| 27 | */ |
| 28 | |
| 29 | /** |
| 30 | * Common function to initialize all the robot drive constructors. |
| 31 | * Create a motor safety object (the real reason for the common code) and |
| 32 | * initialize all the motor assignments. The default timeout is set for the robot drive. |
| 33 | */ |
| 34 | void RobotDrive::InitRobotDrive() { |
| 35 | // FIXME: m_safetyHelper = new MotorSafetyHelper(this); |
| 36 | // FIXME: m_safetyHelper->SetSafetyEnabled(true); |
| 37 | } |
| 38 | |
| 39 | /** Constructor for RobotDrive with 2 motors specified with channel numbers. |
| 40 | * Set up parameters for a two wheel drive system where the |
| 41 | * left and right motor pwm channels are specified in the call. |
| 42 | * This call assumes Jaguars for controlling the motors. |
| 43 | * @param leftMotorChannel The PWM channel number that drives the left motor. |
| 44 | * @param rightMotorChannel The PWM channel number that drives the right motor. |
| 45 | */ |
| 46 | RobotDrive::RobotDrive(uint32_t leftMotorChannel, uint32_t rightMotorChannel) |
| 47 | { |
| 48 | InitRobotDrive(); |
| 49 | m_rearLeftMotor = new Jaguar(leftMotorChannel); |
| 50 | m_rearRightMotor = new Jaguar(rightMotorChannel); |
| 51 | for (int32_t i=0; i < kMaxNumberOfMotors; i++) |
| 52 | { |
| 53 | m_invertedMotors[i] = 1; |
| 54 | } |
| 55 | SetLeftRightMotorOutputs(0.0, 0.0); |
| 56 | m_deleteSpeedControllers = true; |
| 57 | } |
| 58 | |
| 59 | /** |
| 60 | * Constructor for RobotDrive with 4 motors specified with channel numbers. |
| 61 | * Set up parameters for a four wheel drive system where all four motor |
| 62 | * pwm channels are specified in the call. |
| 63 | * This call assumes Jaguars for controlling the motors. |
| 64 | * @param frontLeftMotor Front left motor channel number |
| 65 | * @param rearLeftMotor Rear Left motor channel number |
| 66 | * @param frontRightMotor Front right motor channel number |
| 67 | * @param rearRightMotor Rear Right motor channel number |
| 68 | */ |
| 69 | RobotDrive::RobotDrive(uint32_t frontLeftMotor, uint32_t rearLeftMotor, |
| 70 | uint32_t frontRightMotor, uint32_t rearRightMotor) |
| 71 | { |
| 72 | InitRobotDrive(); |
| 73 | m_rearLeftMotor = new Jaguar(rearLeftMotor); |
| 74 | m_rearRightMotor = new Jaguar(rearRightMotor); |
| 75 | m_frontLeftMotor = new Jaguar(frontLeftMotor); |
| 76 | m_frontRightMotor = new Jaguar(frontRightMotor); |
| 77 | for (int32_t i=0; i < kMaxNumberOfMotors; i++) |
| 78 | { |
| 79 | m_invertedMotors[i] = 1; |
| 80 | } |
| 81 | SetLeftRightMotorOutputs(0.0, 0.0); |
| 82 | m_deleteSpeedControllers = true; |
| 83 | } |
| 84 | |
| 85 | /** |
| 86 | * Constructor for RobotDrive with 2 motors specified as SpeedController objects. |
| 87 | * The SpeedController version of the constructor enables programs to use the RobotDrive classes with |
| 88 | * subclasses of the SpeedController objects, for example, versions with ramping or reshaping of |
| 89 | * the curve to suit motor bias or deadband elimination. |
| 90 | * @param leftMotor The left SpeedController object used to drive the robot. |
| 91 | * @param rightMotor the right SpeedController object used to drive the robot. |
| 92 | */ |
| 93 | RobotDrive::RobotDrive(SpeedController *leftMotor, SpeedController *rightMotor) |
| 94 | { |
| 95 | InitRobotDrive(); |
| 96 | if (leftMotor == nullptr || rightMotor == nullptr) |
| 97 | { |
| 98 | wpi_setWPIError(NullParameter); |
| 99 | m_rearLeftMotor = m_rearRightMotor = nullptr; |
| 100 | return; |
| 101 | } |
| 102 | m_rearLeftMotor = leftMotor; |
| 103 | m_rearRightMotor = rightMotor; |
| 104 | for (int32_t i=0; i < kMaxNumberOfMotors; i++) |
| 105 | { |
| 106 | m_invertedMotors[i] = 1; |
| 107 | } |
| 108 | m_deleteSpeedControllers = false; |
| 109 | } |
| 110 | |
| 111 | RobotDrive::RobotDrive(SpeedController &leftMotor, SpeedController &rightMotor) |
| 112 | { |
| 113 | InitRobotDrive(); |
| 114 | m_rearLeftMotor = &leftMotor; |
| 115 | m_rearRightMotor = &rightMotor; |
| 116 | for (int32_t i=0; i < kMaxNumberOfMotors; i++) |
| 117 | { |
| 118 | m_invertedMotors[i] = 1; |
| 119 | } |
| 120 | m_deleteSpeedControllers = false; |
| 121 | } |
| 122 | |
| 123 | /** |
| 124 | * Constructor for RobotDrive with 4 motors specified as SpeedController objects. |
| 125 | * Speed controller input version of RobotDrive (see previous comments). |
| 126 | * @param rearLeftMotor The back left SpeedController object used to drive the robot. |
| 127 | * @param frontLeftMotor The front left SpeedController object used to drive the robot |
| 128 | * @param rearRightMotor The back right SpeedController object used to drive the robot. |
| 129 | * @param frontRightMotor The front right SpeedController object used to drive the robot. |
| 130 | */ |
| 131 | RobotDrive::RobotDrive(SpeedController *frontLeftMotor, SpeedController *rearLeftMotor, |
| 132 | SpeedController *frontRightMotor, SpeedController *rearRightMotor) |
| 133 | { |
| 134 | InitRobotDrive(); |
| 135 | if (frontLeftMotor == nullptr || rearLeftMotor == nullptr || frontRightMotor == nullptr || rearRightMotor == nullptr) |
| 136 | { |
| 137 | wpi_setWPIError(NullParameter); |
| 138 | return; |
| 139 | } |
| 140 | m_frontLeftMotor = frontLeftMotor; |
| 141 | m_rearLeftMotor = rearLeftMotor; |
| 142 | m_frontRightMotor = frontRightMotor; |
| 143 | m_rearRightMotor = rearRightMotor; |
| 144 | for (int32_t i=0; i < kMaxNumberOfMotors; i++) |
| 145 | { |
| 146 | m_invertedMotors[i] = 1; |
| 147 | } |
| 148 | m_deleteSpeedControllers = false; |
| 149 | } |
| 150 | |
| 151 | RobotDrive::RobotDrive(SpeedController &frontLeftMotor, SpeedController &rearLeftMotor, |
| 152 | SpeedController &frontRightMotor, SpeedController &rearRightMotor) |
| 153 | { |
| 154 | InitRobotDrive(); |
| 155 | m_frontLeftMotor = &frontLeftMotor; |
| 156 | m_rearLeftMotor = &rearLeftMotor; |
| 157 | m_frontRightMotor = &frontRightMotor; |
| 158 | m_rearRightMotor = &rearRightMotor; |
| 159 | for (int32_t i=0; i < kMaxNumberOfMotors; i++) |
| 160 | { |
| 161 | m_invertedMotors[i] = 1; |
| 162 | } |
| 163 | m_deleteSpeedControllers = false; |
| 164 | } |
| 165 | |
| 166 | /** |
| 167 | * RobotDrive destructor. |
| 168 | * Deletes motor objects that were not passed in and created internally only. |
| 169 | **/ |
| 170 | RobotDrive::~RobotDrive() |
| 171 | { |
| 172 | if (m_deleteSpeedControllers) |
| 173 | { |
| 174 | delete m_frontLeftMotor; |
| 175 | delete m_rearLeftMotor; |
| 176 | delete m_frontRightMotor; |
| 177 | delete m_rearRightMotor; |
| 178 | } |
| 179 | // FIXME: delete m_safetyHelper; |
| 180 | } |
| 181 | |
| 182 | /** |
| 183 | * Drive the motors at "outputMagnitude" and "curve". |
| 184 | * Both outputMagnitude and curve are -1.0 to +1.0 values, where 0.0 represents |
| 185 | * stopped and not turning. curve < 0 will turn left and curve > 0 will turn |
| 186 | * right. |
| 187 | * |
| 188 | * The algorithm for steering provides a constant turn radius for any normal |
| 189 | * speed range, both forward and backward. Increasing m_sensitivity causes |
| 190 | * sharper turns for fixed values of curve. |
| 191 | * |
| 192 | * This function will most likely be used in an autonomous routine. |
| 193 | * |
| 194 | * @param outputMagnitude The speed setting for the outside wheel in a turn, |
| 195 | * forward or backwards, +1 to -1. |
| 196 | * @param curve The rate of turn, constant for different forward speeds. Set |
| 197 | * curve < 0 for left turn or curve > 0 for right turn. |
| 198 | * Set curve = e^(-r/w) to get a turn radius r for wheelbase w of your robot. |
| 199 | * Conversely, turn radius r = -ln(curve)*w for a given value of curve and |
| 200 | * wheelbase w. |
| 201 | */ |
| 202 | void RobotDrive::Drive(float outputMagnitude, float curve) |
| 203 | { |
| 204 | float leftOutput, rightOutput; |
| 205 | static bool reported = false; |
| 206 | if (!reported) |
| 207 | { |
| 208 | reported = true; |
| 209 | } |
| 210 | |
| 211 | if (curve < 0) |
| 212 | { |
| 213 | float value = log(-curve); |
| 214 | float ratio = (value - m_sensitivity)/(value + m_sensitivity); |
| 215 | if (ratio == 0) ratio =.0000000001; |
| 216 | leftOutput = outputMagnitude / ratio; |
| 217 | rightOutput = outputMagnitude; |
| 218 | } |
| 219 | else if (curve > 0) |
| 220 | { |
| 221 | float value = log(curve); |
| 222 | float ratio = (value - m_sensitivity)/(value + m_sensitivity); |
| 223 | if (ratio == 0) ratio =.0000000001; |
| 224 | leftOutput = outputMagnitude; |
| 225 | rightOutput = outputMagnitude / ratio; |
| 226 | } |
| 227 | else |
| 228 | { |
| 229 | leftOutput = outputMagnitude; |
| 230 | rightOutput = outputMagnitude; |
| 231 | } |
| 232 | SetLeftRightMotorOutputs(leftOutput, rightOutput); |
| 233 | } |
| 234 | |
| 235 | /** |
| 236 | * Provide tank steering using the stored robot configuration. |
| 237 | * Drive the robot using two joystick inputs. The Y-axis will be selected from |
| 238 | * each Joystick object. |
| 239 | * @param leftStick The joystick to control the left side of the robot. |
| 240 | * @param rightStick The joystick to control the right side of the robot. |
| 241 | */ |
| 242 | void RobotDrive::TankDrive(GenericHID *leftStick, GenericHID *rightStick, bool squaredInputs) |
| 243 | { |
| 244 | if (leftStick == nullptr || rightStick == nullptr) |
| 245 | { |
| 246 | wpi_setWPIError(NullParameter); |
| 247 | return; |
| 248 | } |
| 249 | TankDrive(leftStick->GetY(), rightStick->GetY(), squaredInputs); |
| 250 | } |
| 251 | |
| 252 | void RobotDrive::TankDrive(GenericHID &leftStick, GenericHID &rightStick, bool squaredInputs) |
| 253 | { |
| 254 | TankDrive(leftStick.GetY(), rightStick.GetY(), squaredInputs); |
| 255 | } |
| 256 | |
| 257 | /** |
| 258 | * Provide tank steering using the stored robot configuration. |
| 259 | * This function lets you pick the axis to be used on each Joystick object for the left |
| 260 | * and right sides of the robot. |
| 261 | * @param leftStick The Joystick object to use for the left side of the robot. |
| 262 | * @param leftAxis The axis to select on the left side Joystick object. |
| 263 | * @param rightStick The Joystick object to use for the right side of the robot. |
| 264 | * @param rightAxis The axis to select on the right side Joystick object. |
| 265 | */ |
| 266 | void RobotDrive::TankDrive(GenericHID *leftStick, uint32_t leftAxis, |
| 267 | GenericHID *rightStick, uint32_t rightAxis, bool squaredInputs) |
| 268 | { |
| 269 | if (leftStick == nullptr || rightStick == nullptr) |
| 270 | { |
| 271 | wpi_setWPIError(NullParameter); |
| 272 | return; |
| 273 | } |
| 274 | TankDrive(leftStick->GetRawAxis(leftAxis), rightStick->GetRawAxis(rightAxis), squaredInputs); |
| 275 | } |
| 276 | |
| 277 | void RobotDrive::TankDrive(GenericHID &leftStick, uint32_t leftAxis, |
| 278 | GenericHID &rightStick, uint32_t rightAxis, bool squaredInputs) |
| 279 | { |
| 280 | TankDrive(leftStick.GetRawAxis(leftAxis), rightStick.GetRawAxis(rightAxis), squaredInputs); |
| 281 | } |
| 282 | |
| 283 | |
| 284 | /** |
| 285 | * Provide tank steering using the stored robot configuration. |
| 286 | * This function lets you directly provide joystick values from any source. |
| 287 | * @param leftValue The value of the left stick. |
| 288 | * @param rightValue The value of the right stick. |
| 289 | */ |
| 290 | void RobotDrive::TankDrive(float leftValue, float rightValue, bool squaredInputs) |
| 291 | { |
| 292 | static bool reported = false; |
| 293 | if (!reported) |
| 294 | { |
| 295 | reported = true; |
| 296 | } |
| 297 | |
| 298 | // square the inputs (while preserving the sign) to increase fine control while permitting full power |
| 299 | leftValue = Limit(leftValue); |
| 300 | rightValue = Limit(rightValue); |
| 301 | if(squaredInputs) |
| 302 | { |
| 303 | if (leftValue >= 0.0) |
| 304 | { |
| 305 | leftValue = (leftValue * leftValue); |
| 306 | } |
| 307 | else |
| 308 | { |
| 309 | leftValue = -(leftValue * leftValue); |
| 310 | } |
| 311 | if (rightValue >= 0.0) |
| 312 | { |
| 313 | rightValue = (rightValue * rightValue); |
| 314 | } |
| 315 | else |
| 316 | { |
| 317 | rightValue = -(rightValue * rightValue); |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | SetLeftRightMotorOutputs(leftValue, rightValue); |
| 322 | } |
| 323 | |
| 324 | /** |
| 325 | * Arcade drive implements single stick driving. |
| 326 | * Given a single Joystick, the class assumes the Y axis for the move value and the X axis |
| 327 | * for the rotate value. |
| 328 | * (Should add more information here regarding the way that arcade drive works.) |
| 329 | * @param stick The joystick to use for Arcade single-stick driving. The Y-axis will be selected |
| 330 | * for forwards/backwards and the X-axis will be selected for rotation rate. |
| 331 | * @param squaredInputs If true, the sensitivity will be increased for small values |
| 332 | */ |
| 333 | void RobotDrive::ArcadeDrive(GenericHID *stick, bool squaredInputs) |
| 334 | { |
| 335 | // simply call the full-featured ArcadeDrive with the appropriate values |
| 336 | ArcadeDrive(stick->GetY(), stick->GetX(), squaredInputs); |
| 337 | } |
| 338 | |
| 339 | /** |
| 340 | * Arcade drive implements single stick driving. |
| 341 | * Given a single Joystick, the class assumes the Y axis for the move value and the X axis |
| 342 | * for the rotate value. |
| 343 | * (Should add more information here regarding the way that arcade drive works.) |
| 344 | * @param stick The joystick to use for Arcade single-stick driving. The Y-axis will be selected |
| 345 | * for forwards/backwards and the X-axis will be selected for rotation rate. |
| 346 | * @param squaredInputs If true, the sensitivity will be increased for small values |
| 347 | */ |
| 348 | void RobotDrive::ArcadeDrive(GenericHID &stick, bool squaredInputs) |
| 349 | { |
| 350 | // simply call the full-featured ArcadeDrive with the appropriate values |
| 351 | ArcadeDrive(stick.GetY(), stick.GetX(), squaredInputs); |
| 352 | } |
| 353 | |
| 354 | /** |
| 355 | * Arcade drive implements single stick driving. |
| 356 | * Given two joystick instances and two axis, compute the values to send to either two |
| 357 | * or four motors. |
| 358 | * @param moveStick The Joystick object that represents the forward/backward direction |
| 359 | * @param moveAxis The axis on the moveStick object to use for fowards/backwards (typically Y_AXIS) |
| 360 | * @param rotateStick The Joystick object that represents the rotation value |
| 361 | * @param rotateAxis The axis on the rotation object to use for the rotate right/left (typically X_AXIS) |
| 362 | * @param squaredInputs Setting this parameter to true increases the sensitivity at lower speeds |
| 363 | */ |
| 364 | void RobotDrive::ArcadeDrive(GenericHID* moveStick, uint32_t moveAxis, |
| 365 | GenericHID* rotateStick, uint32_t rotateAxis, |
| 366 | bool squaredInputs) |
| 367 | { |
| 368 | float moveValue = moveStick->GetRawAxis(moveAxis); |
| 369 | float rotateValue = rotateStick->GetRawAxis(rotateAxis); |
| 370 | |
| 371 | ArcadeDrive(moveValue, rotateValue, squaredInputs); |
| 372 | } |
| 373 | |
| 374 | /** |
| 375 | * Arcade drive implements single stick driving. |
| 376 | * Given two joystick instances and two axis, compute the values to send to either two |
| 377 | * or four motors. |
| 378 | * @param moveStick The Joystick object that represents the forward/backward direction |
| 379 | * @param moveAxis The axis on the moveStick object to use for fowards/backwards (typically Y_AXIS) |
| 380 | * @param rotateStick The Joystick object that represents the rotation value |
| 381 | * @param rotateAxis The axis on the rotation object to use for the rotate right/left (typically X_AXIS) |
| 382 | * @param squaredInputs Setting this parameter to true increases the sensitivity at lower speeds |
| 383 | */ |
| 384 | |
| 385 | void RobotDrive::ArcadeDrive(GenericHID &moveStick, uint32_t moveAxis, |
| 386 | GenericHID &rotateStick, uint32_t rotateAxis, |
| 387 | bool squaredInputs) |
| 388 | { |
| 389 | float moveValue = moveStick.GetRawAxis(moveAxis); |
| 390 | float rotateValue = rotateStick.GetRawAxis(rotateAxis); |
| 391 | |
| 392 | ArcadeDrive(moveValue, rotateValue, squaredInputs); |
| 393 | } |
| 394 | |
| 395 | /** |
| 396 | * Arcade drive implements single stick driving. |
| 397 | * This function lets you directly provide joystick values from any source. |
| 398 | * @param moveValue The value to use for fowards/backwards |
| 399 | * @param rotateValue The value to use for the rotate right/left |
| 400 | * @param squaredInputs If set, increases the sensitivity at low speeds |
| 401 | */ |
| 402 | void RobotDrive::ArcadeDrive(float moveValue, float rotateValue, bool squaredInputs) |
| 403 | { |
| 404 | static bool reported = false; |
| 405 | if (!reported) |
| 406 | { |
| 407 | reported = true; |
| 408 | } |
| 409 | |
| 410 | // local variables to hold the computed PWM values for the motors |
| 411 | float leftMotorOutput; |
| 412 | float rightMotorOutput; |
| 413 | |
| 414 | moveValue = Limit(moveValue); |
| 415 | rotateValue = Limit(rotateValue); |
| 416 | |
| 417 | if (squaredInputs) |
| 418 | { |
| 419 | // square the inputs (while preserving the sign) to increase fine control while permitting full power |
| 420 | if (moveValue >= 0.0) |
| 421 | { |
| 422 | moveValue = (moveValue * moveValue); |
| 423 | } |
| 424 | else |
| 425 | { |
| 426 | moveValue = -(moveValue * moveValue); |
| 427 | } |
| 428 | if (rotateValue >= 0.0) |
| 429 | { |
| 430 | rotateValue = (rotateValue * rotateValue); |
| 431 | } |
| 432 | else |
| 433 | { |
| 434 | rotateValue = -(rotateValue * rotateValue); |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | if (moveValue > 0.0) |
| 439 | { |
| 440 | if (rotateValue > 0.0) |
| 441 | { |
| 442 | leftMotorOutput = moveValue - rotateValue; |
| 443 | rightMotorOutput = std::max(moveValue, rotateValue); |
| 444 | } |
| 445 | else |
| 446 | { |
| 447 | leftMotorOutput = std::max(moveValue, -rotateValue); |
| 448 | rightMotorOutput = moveValue + rotateValue; |
| 449 | } |
| 450 | } |
| 451 | else |
| 452 | { |
| 453 | if (rotateValue > 0.0) |
| 454 | { |
| 455 | leftMotorOutput = - std::max(-moveValue, rotateValue); |
| 456 | rightMotorOutput = moveValue + rotateValue; |
| 457 | } |
| 458 | else |
| 459 | { |
| 460 | leftMotorOutput = moveValue - rotateValue; |
| 461 | rightMotorOutput = - std::max(-moveValue, -rotateValue); |
| 462 | } |
| 463 | } |
| 464 | SetLeftRightMotorOutputs(leftMotorOutput, rightMotorOutput); |
| 465 | } |
| 466 | |
| 467 | /** |
| 468 | * Drive method for Mecanum wheeled robots. |
| 469 | * |
| 470 | * A method for driving with Mecanum wheeled robots. There are 4 wheels |
| 471 | * on the robot, arranged so that the front and back wheels are toed in 45 degrees. |
| 472 | * When looking at the wheels from the top, the roller axles should form an X across the robot. |
| 473 | * |
| 474 | * This is designed to be directly driven by joystick axes. |
| 475 | * |
| 476 | * @param x The speed that the robot should drive in the X direction. [-1.0..1.0] |
| 477 | * @param y The speed that the robot should drive in the Y direction. |
| 478 | * This input is inverted to match the forward == -1.0 that joysticks produce. [-1.0..1.0] |
| 479 | * @param rotation The rate of rotation for the robot that is completely independent of |
| 480 | * the translation. [-1.0..1.0] |
| 481 | * @param gyroAngle The current angle reading from the gyro. Use this to implement field-oriented controls. |
| 482 | */ |
| 483 | void RobotDrive::MecanumDrive_Cartesian(float x, float y, float rotation, float gyroAngle) |
| 484 | { |
| 485 | static bool reported = false; |
| 486 | if (!reported) |
| 487 | { |
| 488 | reported = true; |
| 489 | } |
| 490 | |
| 491 | double xIn = x; |
| 492 | double yIn = y; |
| 493 | // Negate y for the joystick. |
| 494 | yIn = -yIn; |
| 495 | // Compenstate for gyro angle. |
| 496 | RotateVector(xIn, yIn, gyroAngle); |
| 497 | |
| 498 | double wheelSpeeds[kMaxNumberOfMotors]; |
| 499 | wheelSpeeds[kFrontLeftMotor] = xIn + yIn + rotation; |
| 500 | wheelSpeeds[kFrontRightMotor] = -xIn + yIn - rotation; |
| 501 | wheelSpeeds[kRearLeftMotor] = -xIn + yIn + rotation; |
| 502 | wheelSpeeds[kRearRightMotor] = xIn + yIn - rotation; |
| 503 | |
| 504 | Normalize(wheelSpeeds); |
| 505 | |
| 506 | uint8_t syncGroup = 0x80; |
| 507 | |
| 508 | m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup); |
| 509 | m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup); |
| 510 | m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup); |
| 511 | m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup); |
| 512 | |
| 513 | // CANJaguar::UpdateSyncGroup(syncGroup); |
| 514 | |
| 515 | // FIXME: m_safetyHelper->Feed(); |
| 516 | } |
| 517 | |
| 518 | /** |
| 519 | * Drive method for Mecanum wheeled robots. |
| 520 | * |
| 521 | * A method for driving with Mecanum wheeled robots. There are 4 wheels |
| 522 | * on the robot, arranged so that the front and back wheels are toed in 45 degrees. |
| 523 | * When looking at the wheels from the top, the roller axles should form an X across the robot. |
| 524 | * |
| 525 | * @param magnitude The speed that the robot should drive in a given direction. [-1.0..1.0] |
| 526 | * @param direction The direction the robot should drive in degrees. The direction and maginitute are |
| 527 | * independent of the rotation rate. |
| 528 | * @param rotation The rate of rotation for the robot that is completely independent of |
| 529 | * the magnitute or direction. [-1.0..1.0] |
| 530 | */ |
| 531 | void RobotDrive::MecanumDrive_Polar(float magnitude, float direction, float rotation) |
| 532 | { |
| 533 | static bool reported = false; |
| 534 | if (!reported) |
| 535 | { |
| 536 | reported = true; |
| 537 | } |
| 538 | |
| 539 | // Normalized for full power along the Cartesian axes. |
| 540 | magnitude = Limit(magnitude) * sqrt(2.0); |
| 541 | // The rollers are at 45 degree angles. |
| 542 | double dirInRad = (direction + 45.0) * 3.14159 / 180.0; |
| 543 | double cosD = cos(dirInRad); |
| 544 | double sinD = sin(dirInRad); |
| 545 | |
| 546 | double wheelSpeeds[kMaxNumberOfMotors]; |
| 547 | wheelSpeeds[kFrontLeftMotor] = sinD * magnitude + rotation; |
| 548 | wheelSpeeds[kFrontRightMotor] = cosD * magnitude - rotation; |
| 549 | wheelSpeeds[kRearLeftMotor] = cosD * magnitude + rotation; |
| 550 | wheelSpeeds[kRearRightMotor] = sinD * magnitude - rotation; |
| 551 | |
| 552 | Normalize(wheelSpeeds); |
| 553 | |
| 554 | uint8_t syncGroup = 0x80; |
| 555 | |
| 556 | m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup); |
| 557 | m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup); |
| 558 | m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup); |
| 559 | m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup); |
| 560 | |
| 561 | // CANJaguar::UpdateSyncGroup(syncGroup); |
| 562 | |
| 563 | // FIXME: m_safetyHelper->Feed(); |
| 564 | } |
| 565 | |
| 566 | /** |
| 567 | * Holonomic Drive method for Mecanum wheeled robots. |
| 568 | * |
| 569 | * This is an alias to MecanumDrive_Polar() for backward compatability |
| 570 | * |
| 571 | * @param magnitude The speed that the robot should drive in a given direction. [-1.0..1.0] |
| 572 | * @param direction The direction the robot should drive. The direction and maginitute are |
| 573 | * independent of the rotation rate. |
| 574 | * @param rotation The rate of rotation for the robot that is completely independent of |
| 575 | * the magnitute or direction. [-1.0..1.0] |
| 576 | */ |
| 577 | void RobotDrive::HolonomicDrive(float magnitude, float direction, float rotation) |
| 578 | { |
| 579 | MecanumDrive_Polar(magnitude, direction, rotation); |
| 580 | } |
| 581 | |
| 582 | /** Set the speed of the right and left motors. |
| 583 | * This is used once an appropriate drive setup function is called such as |
| 584 | * TwoWheelDrive(). The motors are set to "leftOutput" and "rightOutput" |
| 585 | * and includes flipping the direction of one side for opposing motors. |
| 586 | * @param leftOutput The speed to send to the left side of the robot. |
| 587 | * @param rightOutput The speed to send to the right side of the robot. |
| 588 | */ |
| 589 | void RobotDrive::SetLeftRightMotorOutputs(float leftOutput, float rightOutput) |
| 590 | { |
| 591 | wpi_assert(m_rearLeftMotor != nullptr && m_rearRightMotor != nullptr); |
| 592 | |
| 593 | uint8_t syncGroup = 0x80; |
| 594 | |
| 595 | if (m_frontLeftMotor != nullptr) |
| 596 | m_frontLeftMotor->Set(Limit(leftOutput) * m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup); |
| 597 | m_rearLeftMotor->Set(Limit(leftOutput) * m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup); |
| 598 | |
| 599 | if (m_frontRightMotor != nullptr) |
| 600 | m_frontRightMotor->Set(-Limit(rightOutput) * m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup); |
| 601 | m_rearRightMotor->Set(-Limit(rightOutput) * m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup); |
| 602 | |
| 603 | // CANJaguar::UpdateSyncGroup(syncGroup); |
| 604 | |
| 605 | // FIXME: m_safetyHelper->Feed(); |
| 606 | } |
| 607 | |
| 608 | /** |
| 609 | * Limit motor values to the -1.0 to +1.0 range. |
| 610 | */ |
| 611 | float RobotDrive::Limit(float num) |
| 612 | { |
| 613 | if (num > 1.0) |
| 614 | { |
| 615 | return 1.0; |
| 616 | } |
| 617 | if (num < -1.0) |
| 618 | { |
| 619 | return -1.0; |
| 620 | } |
| 621 | return num; |
| 622 | } |
| 623 | |
| 624 | /** |
| 625 | * Normalize all wheel speeds if the magnitude of any wheel is greater than 1.0. |
| 626 | */ |
| 627 | void RobotDrive::Normalize(double *wheelSpeeds) |
| 628 | { |
| 629 | double maxMagnitude = fabs(wheelSpeeds[0]); |
| 630 | int32_t i; |
| 631 | for (i=1; i<kMaxNumberOfMotors; i++) |
| 632 | { |
| 633 | double temp = fabs(wheelSpeeds[i]); |
| 634 | if (maxMagnitude < temp) maxMagnitude = temp; |
| 635 | } |
| 636 | if (maxMagnitude > 1.0) |
| 637 | { |
| 638 | for (i=0; i<kMaxNumberOfMotors; i++) |
| 639 | { |
| 640 | wheelSpeeds[i] = wheelSpeeds[i] / maxMagnitude; |
| 641 | } |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | /** |
| 646 | * Rotate a vector in Cartesian space. |
| 647 | */ |
| 648 | void RobotDrive::RotateVector(double &x, double &y, double angle) |
| 649 | { |
| 650 | double cosA = cos(angle * (3.14159 / 180.0)); |
| 651 | double sinA = sin(angle * (3.14159 / 180.0)); |
| 652 | double xOut = x * cosA - y * sinA; |
| 653 | double yOut = x * sinA + y * cosA; |
| 654 | x = xOut; |
| 655 | y = yOut; |
| 656 | } |
| 657 | |
| 658 | /* |
| 659 | * Invert a motor direction. |
| 660 | * This is used when a motor should run in the opposite direction as the drive |
| 661 | * code would normally run it. Motors that are direct drive would be inverted, the |
| 662 | * Drive code assumes that the motors are geared with one reversal. |
| 663 | * @param motor The motor index to invert. |
| 664 | * @param isInverted True if the motor should be inverted when operated. |
| 665 | */ |
| 666 | void RobotDrive::SetInvertedMotor(MotorType motor, bool isInverted) |
| 667 | { |
| 668 | if (motor < 0 || motor > 3) |
| 669 | { |
| 670 | wpi_setWPIError(InvalidMotorIndex); |
| 671 | return; |
| 672 | } |
| 673 | m_invertedMotors[motor] = isInverted ? -1 : 1; |
| 674 | } |
| 675 | |
| 676 | /** |
| 677 | * Set the turning sensitivity. |
| 678 | * |
| 679 | * This only impacts the Drive() entry-point. |
| 680 | * @param sensitivity Effectively sets the turning sensitivity (or turn radius for a given value) |
| 681 | */ |
| 682 | void RobotDrive::SetSensitivity(float sensitivity) |
| 683 | { |
| 684 | m_sensitivity = sensitivity; |
| 685 | } |
| 686 | |
| 687 | /** |
| 688 | * Configure the scaling factor for using RobotDrive with motor controllers in a mode other than PercentVbus. |
| 689 | * @param maxOutput Multiplied with the output percentage computed by the drive functions. |
| 690 | */ |
| 691 | void RobotDrive::SetMaxOutput(double maxOutput) |
| 692 | { |
| 693 | m_maxOutput = maxOutput; |
| 694 | } |
| 695 | |
| 696 | |
| 697 | |
| 698 | void RobotDrive::SetExpiration(float timeout) |
| 699 | { |
| 700 | // FIXME: m_safetyHelper->SetExpiration(timeout); |
| 701 | } |
| 702 | |
| 703 | float RobotDrive::GetExpiration() const |
| 704 | { |
| 705 | return -1; // FIXME: return m_safetyHelper->GetExpiration(); |
| 706 | } |
| 707 | |
| 708 | bool RobotDrive::IsAlive() const |
| 709 | { |
| 710 | return true; // FIXME: m_safetyHelper->IsAlive(); |
| 711 | } |
| 712 | |
| 713 | bool RobotDrive::IsSafetyEnabled() const |
| 714 | { |
| 715 | return false; // FIXME: return m_safetyHelper->IsSafetyEnabled(); |
| 716 | } |
| 717 | |
| 718 | void RobotDrive::SetSafetyEnabled(bool enabled) |
| 719 | { |
| 720 | // FIXME: m_safetyHelper->SetSafetyEnabled(enabled); |
| 721 | } |
| 722 | |
| 723 | void RobotDrive::GetDescription(std::ostringstream& desc) const |
| 724 | { |
| 725 | desc << "RobotDrive"; |
| 726 | } |
| 727 | |
| 728 | void RobotDrive::StopMotor() |
| 729 | { |
| 730 | if (m_frontLeftMotor != nullptr) m_frontLeftMotor->Disable(); |
| 731 | if (m_frontRightMotor != nullptr) m_frontRightMotor->Disable(); |
| 732 | if (m_rearLeftMotor != nullptr) m_rearLeftMotor->Disable(); |
| 733 | if (m_rearRightMotor != nullptr) m_rearRightMotor->Disable(); |
| 734 | } |