Squashed 'third_party/allwpilib_2016/' content from commit 7f61816

Change-Id: If9d9245880859cdf580f5d7f77045135d0521ce7
git-subtree-dir: third_party/allwpilib_2016
git-subtree-split: 7f618166ed253a24629934fcf89c3decb0528a3b
diff --git a/wpilibc/simulation/src/RobotDrive.cpp b/wpilibc/simulation/src/RobotDrive.cpp
new file mode 100644
index 0000000..852d0bf
--- /dev/null
+++ b/wpilibc/simulation/src/RobotDrive.cpp
@@ -0,0 +1,734 @@
+/*----------------------------------------------------------------------------*/
+/* Copyright (c) FIRST 2008. All Rights Reserved.							  */
+/* Open Source Software - may be modified and shared by FRC teams. The code   */
+/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib.  */
+/*----------------------------------------------------------------------------*/
+
+#include "RobotDrive.h"
+
+//#include "CANJaguar.h"
+#include "GenericHID.h"
+#include "Joystick.h"
+#include "Jaguar.h"
+#include "Utility.h"
+#include "WPIErrors.h"
+#include <math.h>
+
+#undef max
+#include <algorithm>
+
+const int32_t RobotDrive::kMaxNumberOfMotors;
+
+/*
+ * Driving functions
+ * These functions provide an interface to multiple motors that is used for C programming
+ * The Drive(speed, direction) function is the main part of the set that makes it easy
+ * to set speeds and direction independently in one call.
+ */
+
+/**
+ * Common function to initialize all the robot drive constructors.
+ * Create a motor safety object (the real reason for the common code) and
+ * initialize all the motor assignments. The default timeout is set for the robot drive.
+ */
+void RobotDrive::InitRobotDrive() {
+	// FIXME: m_safetyHelper = new MotorSafetyHelper(this);
+	// FIXME: m_safetyHelper->SetSafetyEnabled(true);
+}
+
+/** Constructor for RobotDrive with 2 motors specified with channel numbers.
+ * Set up parameters for a two wheel drive system where the
+ * left and right motor pwm channels are specified in the call.
+ * This call assumes Jaguars for controlling the motors.
+ * @param leftMotorChannel The PWM channel number that drives the left motor.
+ * @param rightMotorChannel The PWM channel number that drives the right motor.
+ */
+RobotDrive::RobotDrive(uint32_t leftMotorChannel, uint32_t rightMotorChannel)
+{
+	InitRobotDrive();
+	m_rearLeftMotor = new Jaguar(leftMotorChannel);
+	m_rearRightMotor = new Jaguar(rightMotorChannel);
+	for (int32_t i=0; i < kMaxNumberOfMotors; i++)
+	{
+		m_invertedMotors[i] = 1;
+	}
+	SetLeftRightMotorOutputs(0.0, 0.0);
+	m_deleteSpeedControllers = true;
+}
+
+/**
+ * Constructor for RobotDrive with 4 motors specified with channel numbers.
+ * Set up parameters for a four wheel drive system where all four motor
+ * pwm channels are specified in the call.
+ * This call assumes Jaguars for controlling the motors.
+ * @param frontLeftMotor Front left motor channel number
+ * @param rearLeftMotor Rear Left motor channel number
+ * @param frontRightMotor Front right motor channel number
+ * @param rearRightMotor Rear Right motor channel number
+ */
+RobotDrive::RobotDrive(uint32_t frontLeftMotor, uint32_t rearLeftMotor,
+		uint32_t frontRightMotor, uint32_t rearRightMotor)
+{
+	InitRobotDrive();
+	m_rearLeftMotor = new Jaguar(rearLeftMotor);
+	m_rearRightMotor = new Jaguar(rearRightMotor);
+	m_frontLeftMotor = new Jaguar(frontLeftMotor);
+	m_frontRightMotor = new Jaguar(frontRightMotor);
+	for (int32_t i=0; i < kMaxNumberOfMotors; i++)
+	{
+		m_invertedMotors[i] = 1;
+	}
+	SetLeftRightMotorOutputs(0.0, 0.0);
+	m_deleteSpeedControllers = true;
+}
+
+/**
+ * Constructor for RobotDrive with 2 motors specified as SpeedController objects.
+ * The SpeedController version of the constructor enables programs to use the RobotDrive classes with
+ * subclasses of the SpeedController objects, for example, versions with ramping or reshaping of
+ * the curve to suit motor bias or deadband elimination.
+ * @param leftMotor The left SpeedController object used to drive the robot.
+ * @param rightMotor the right SpeedController object used to drive the robot.
+ */
+RobotDrive::RobotDrive(SpeedController *leftMotor, SpeedController *rightMotor)
+{
+	InitRobotDrive();
+	if (leftMotor == nullptr || rightMotor == nullptr)
+	{
+		wpi_setWPIError(NullParameter);
+		m_rearLeftMotor = m_rearRightMotor = nullptr;
+		return;
+	}
+	m_rearLeftMotor = leftMotor;
+	m_rearRightMotor = rightMotor;
+	for (int32_t i=0; i < kMaxNumberOfMotors; i++)
+	{
+		m_invertedMotors[i] = 1;
+	}
+	m_deleteSpeedControllers = false;
+}
+
+RobotDrive::RobotDrive(SpeedController &leftMotor, SpeedController &rightMotor)
+{
+	InitRobotDrive();
+	m_rearLeftMotor = &leftMotor;
+	m_rearRightMotor = &rightMotor;
+	for (int32_t i=0; i < kMaxNumberOfMotors; i++)
+	{
+		m_invertedMotors[i] = 1;
+	}
+	m_deleteSpeedControllers = false;
+}
+
+/**
+ * Constructor for RobotDrive with 4 motors specified as SpeedController objects.
+ * Speed controller input version of RobotDrive (see previous comments).
+ * @param rearLeftMotor The back left SpeedController object used to drive the robot.
+ * @param frontLeftMotor The front left SpeedController object used to drive the robot
+ * @param rearRightMotor The back right SpeedController object used to drive the robot.
+ * @param frontRightMotor The front right SpeedController object used to drive the robot.
+ */
+RobotDrive::RobotDrive(SpeedController *frontLeftMotor, SpeedController *rearLeftMotor,
+						SpeedController *frontRightMotor, SpeedController *rearRightMotor)
+{
+	InitRobotDrive();
+	if (frontLeftMotor == nullptr || rearLeftMotor == nullptr || frontRightMotor == nullptr || rearRightMotor == nullptr)
+	{
+		wpi_setWPIError(NullParameter);
+		return;
+	}
+	m_frontLeftMotor = frontLeftMotor;
+	m_rearLeftMotor = rearLeftMotor;
+	m_frontRightMotor = frontRightMotor;
+	m_rearRightMotor = rearRightMotor;
+	for (int32_t i=0; i < kMaxNumberOfMotors; i++)
+	{
+		m_invertedMotors[i] = 1;
+	}
+	m_deleteSpeedControllers = false;
+}
+
+RobotDrive::RobotDrive(SpeedController &frontLeftMotor, SpeedController &rearLeftMotor,
+						SpeedController &frontRightMotor, SpeedController &rearRightMotor)
+{
+	InitRobotDrive();
+	m_frontLeftMotor = &frontLeftMotor;
+	m_rearLeftMotor = &rearLeftMotor;
+	m_frontRightMotor = &frontRightMotor;
+	m_rearRightMotor = &rearRightMotor;
+	for (int32_t i=0; i < kMaxNumberOfMotors; i++)
+	{
+		m_invertedMotors[i] = 1;
+	}
+	m_deleteSpeedControllers = false;
+}
+
+/**
+ * RobotDrive destructor.
+ * Deletes motor objects that were not passed in and created internally only.
+ **/
+RobotDrive::~RobotDrive()
+{
+	if (m_deleteSpeedControllers)
+	{
+		delete m_frontLeftMotor;
+		delete m_rearLeftMotor;
+		delete m_frontRightMotor;
+		delete m_rearRightMotor;
+	}
+	// FIXME: delete m_safetyHelper;
+}
+
+/**
+ * Drive the motors at "outputMagnitude" and "curve".
+ * Both outputMagnitude and curve are -1.0 to +1.0 values, where 0.0 represents
+ * stopped and not turning. curve < 0 will turn left and curve > 0 will turn
+ * right.
+ *
+ * The algorithm for steering provides a constant turn radius for any normal
+ * speed range, both forward and backward. Increasing m_sensitivity causes
+ * sharper turns for fixed values of curve.
+ *
+ * This function will most likely be used in an autonomous routine.
+ *
+ * @param outputMagnitude The speed setting for the outside wheel in a turn,
+ *        forward or backwards, +1 to -1.
+ * @param curve The rate of turn, constant for different forward speeds. Set
+ *        curve < 0 for left turn or curve > 0 for right turn.
+ * Set curve = e^(-r/w) to get a turn radius r for wheelbase w of your robot.
+ * Conversely, turn radius r = -ln(curve)*w for a given value of curve and
+ * wheelbase w.
+ */
+void RobotDrive::Drive(float outputMagnitude, float curve)
+{
+	float leftOutput, rightOutput;
+	static bool reported = false;
+	if (!reported)
+	{
+		reported = true;
+	}
+
+	if (curve < 0)
+	{
+		float value = log(-curve);
+		float ratio = (value - m_sensitivity)/(value + m_sensitivity);
+		if (ratio == 0) ratio =.0000000001;
+		leftOutput = outputMagnitude / ratio;
+		rightOutput = outputMagnitude;
+	}
+	else if (curve > 0)
+	{
+		float value = log(curve);
+		float ratio = (value - m_sensitivity)/(value + m_sensitivity);
+		if (ratio == 0) ratio =.0000000001;
+		leftOutput = outputMagnitude;
+		rightOutput = outputMagnitude / ratio;
+	}
+	else
+	{
+		leftOutput = outputMagnitude;
+		rightOutput = outputMagnitude;
+	}
+	SetLeftRightMotorOutputs(leftOutput, rightOutput);
+}
+
+/**
+ * Provide tank steering using the stored robot configuration.
+ * Drive the robot using two joystick inputs. The Y-axis will be selected from
+ * each Joystick object.
+ * @param leftStick The joystick to control the left side of the robot.
+ * @param rightStick The joystick to control the right side of the robot.
+ */
+void RobotDrive::TankDrive(GenericHID *leftStick, GenericHID *rightStick, bool squaredInputs)
+{
+	if (leftStick == nullptr || rightStick == nullptr)
+	{
+		wpi_setWPIError(NullParameter);
+		return;
+	}
+	TankDrive(leftStick->GetY(), rightStick->GetY(), squaredInputs);
+}
+
+void RobotDrive::TankDrive(GenericHID &leftStick, GenericHID &rightStick, bool squaredInputs)
+{
+	TankDrive(leftStick.GetY(), rightStick.GetY(), squaredInputs);
+}
+
+/**
+ * Provide tank steering using the stored robot configuration.
+ * This function lets you pick the axis to be used on each Joystick object for the left
+ * and right sides of the robot.
+ * @param leftStick The Joystick object to use for the left side of the robot.
+ * @param leftAxis The axis to select on the left side Joystick object.
+ * @param rightStick The Joystick object to use for the right side of the robot.
+ * @param rightAxis The axis to select on the right side Joystick object.
+ */
+void RobotDrive::TankDrive(GenericHID *leftStick, uint32_t leftAxis,
+		GenericHID *rightStick, uint32_t rightAxis, bool squaredInputs)
+{
+	if (leftStick == nullptr || rightStick == nullptr)
+	{
+		wpi_setWPIError(NullParameter);
+		return;
+	}
+	TankDrive(leftStick->GetRawAxis(leftAxis), rightStick->GetRawAxis(rightAxis), squaredInputs);
+}
+
+void RobotDrive::TankDrive(GenericHID &leftStick, uint32_t leftAxis,
+		GenericHID &rightStick, uint32_t rightAxis, bool squaredInputs)
+{
+	TankDrive(leftStick.GetRawAxis(leftAxis), rightStick.GetRawAxis(rightAxis), squaredInputs);
+}
+
+
+/**
+ * Provide tank steering using the stored robot configuration.
+ * This function lets you directly provide joystick values from any source.
+ * @param leftValue The value of the left stick.
+ * @param rightValue The value of the right stick.
+ */
+void RobotDrive::TankDrive(float leftValue, float rightValue, bool squaredInputs)
+{
+	static bool reported = false;
+	if (!reported)
+	{
+		reported = true;
+	}
+
+	// square the inputs (while preserving the sign) to increase fine control while permitting full power
+	leftValue = Limit(leftValue);
+	rightValue = Limit(rightValue);
+	if(squaredInputs)
+	{
+		if (leftValue >= 0.0)
+		{
+			leftValue = (leftValue * leftValue);
+		}
+		else
+		{
+			leftValue = -(leftValue * leftValue);
+		}
+		if (rightValue >= 0.0)
+		{
+			rightValue = (rightValue * rightValue);
+		}
+		else
+		{
+			rightValue = -(rightValue * rightValue);
+		}
+	}
+
+	SetLeftRightMotorOutputs(leftValue, rightValue);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ * Given a single Joystick, the class assumes the Y axis for the move value and the X axis
+ * for the rotate value.
+ * (Should add more information here regarding the way that arcade drive works.)
+ * @param stick The joystick to use for Arcade single-stick driving. The Y-axis will be selected
+ * for forwards/backwards and the X-axis will be selected for rotation rate.
+ * @param squaredInputs If true, the sensitivity will be increased for small values
+ */
+void RobotDrive::ArcadeDrive(GenericHID *stick, bool squaredInputs)
+{
+	// simply call the full-featured ArcadeDrive with the appropriate values
+	ArcadeDrive(stick->GetY(), stick->GetX(), squaredInputs);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ * Given a single Joystick, the class assumes the Y axis for the move value and the X axis
+ * for the rotate value.
+ * (Should add more information here regarding the way that arcade drive works.)
+ * @param stick The joystick to use for Arcade single-stick driving. The Y-axis will be selected
+ * for forwards/backwards and the X-axis will be selected for rotation rate.
+ * @param squaredInputs If true, the sensitivity will be increased for small values
+ */
+void RobotDrive::ArcadeDrive(GenericHID &stick, bool squaredInputs)
+{
+	// simply call the full-featured ArcadeDrive with the appropriate values
+	ArcadeDrive(stick.GetY(), stick.GetX(), squaredInputs);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ * Given two joystick instances and two axis, compute the values to send to either two
+ * or four motors.
+ * @param moveStick The Joystick object that represents the forward/backward direction
+ * @param moveAxis The axis on the moveStick object to use for fowards/backwards (typically Y_AXIS)
+ * @param rotateStick The Joystick object that represents the rotation value
+ * @param rotateAxis The axis on the rotation object to use for the rotate right/left (typically X_AXIS)
+ * @param squaredInputs Setting this parameter to true increases the sensitivity at lower speeds
+ */
+void RobotDrive::ArcadeDrive(GenericHID* moveStick, uint32_t moveAxis,
+								GenericHID* rotateStick, uint32_t rotateAxis,
+								bool squaredInputs)
+{
+	float moveValue = moveStick->GetRawAxis(moveAxis);
+	float rotateValue = rotateStick->GetRawAxis(rotateAxis);
+
+	ArcadeDrive(moveValue, rotateValue, squaredInputs);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ * Given two joystick instances and two axis, compute the values to send to either two
+ * or four motors.
+ * @param moveStick The Joystick object that represents the forward/backward direction
+ * @param moveAxis The axis on the moveStick object to use for fowards/backwards (typically Y_AXIS)
+ * @param rotateStick The Joystick object that represents the rotation value
+ * @param rotateAxis The axis on the rotation object to use for the rotate right/left (typically X_AXIS)
+ * @param squaredInputs Setting this parameter to true increases the sensitivity at lower speeds
+ */
+
+void RobotDrive::ArcadeDrive(GenericHID &moveStick, uint32_t moveAxis,
+								GenericHID &rotateStick, uint32_t rotateAxis,
+								bool squaredInputs)
+{
+	float moveValue = moveStick.GetRawAxis(moveAxis);
+	float rotateValue = rotateStick.GetRawAxis(rotateAxis);
+
+	ArcadeDrive(moveValue, rotateValue, squaredInputs);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ * This function lets you directly provide joystick values from any source.
+ * @param moveValue The value to use for fowards/backwards
+ * @param rotateValue The value to use for the rotate right/left
+ * @param squaredInputs If set, increases the sensitivity at low speeds
+ */
+void RobotDrive::ArcadeDrive(float moveValue, float rotateValue, bool squaredInputs)
+{
+	static bool reported = false;
+	if (!reported)
+	{
+		reported = true;
+	}
+
+	// local variables to hold the computed PWM values for the motors
+	float leftMotorOutput;
+	float rightMotorOutput;
+
+	moveValue = Limit(moveValue);
+	rotateValue = Limit(rotateValue);
+
+	if (squaredInputs)
+	{
+		// square the inputs (while preserving the sign) to increase fine control while permitting full power
+		if (moveValue >= 0.0)
+		{
+			moveValue = (moveValue * moveValue);
+		}
+		else
+		{
+			moveValue = -(moveValue * moveValue);
+		}
+		if (rotateValue >= 0.0)
+		{
+			rotateValue = (rotateValue * rotateValue);
+		}
+		else
+		{
+			rotateValue = -(rotateValue * rotateValue);
+		}
+	}
+
+	if (moveValue > 0.0)
+	{
+		if (rotateValue > 0.0)
+		{
+			leftMotorOutput = moveValue - rotateValue;
+			rightMotorOutput = std::max(moveValue, rotateValue);
+		}
+		else
+		{
+			leftMotorOutput = std::max(moveValue, -rotateValue);
+			rightMotorOutput = moveValue + rotateValue;
+		}
+	}
+	else
+	{
+		if (rotateValue > 0.0)
+		{
+			leftMotorOutput = - std::max(-moveValue, rotateValue);
+			rightMotorOutput = moveValue + rotateValue;
+		}
+		else
+		{
+			leftMotorOutput = moveValue - rotateValue;
+			rightMotorOutput = - std::max(-moveValue, -rotateValue);
+		}
+	}
+	SetLeftRightMotorOutputs(leftMotorOutput, rightMotorOutput);
+}
+
+/**
+ * Drive method for Mecanum wheeled robots.
+ *
+ * A method for driving with Mecanum wheeled robots. There are 4 wheels
+ * on the robot, arranged so that the front and back wheels are toed in 45 degrees.
+ * When looking at the wheels from the top, the roller axles should form an X across the robot.
+ *
+ * This is designed to be directly driven by joystick axes.
+ *
+ * @param x The speed that the robot should drive in the X direction. [-1.0..1.0]
+ * @param y The speed that the robot should drive in the Y direction.
+ * This input is inverted to match the forward == -1.0 that joysticks produce. [-1.0..1.0]
+ * @param rotation The rate of rotation for the robot that is completely independent of
+ * the translation. [-1.0..1.0]
+ * @param gyroAngle The current angle reading from the gyro.  Use this to implement field-oriented controls.
+ */
+void RobotDrive::MecanumDrive_Cartesian(float x, float y, float rotation, float gyroAngle)
+{
+	static bool reported = false;
+	if (!reported)
+	{
+		reported = true;
+	}
+
+	double xIn = x;
+	double yIn = y;
+	// Negate y for the joystick.
+	yIn = -yIn;
+	// Compenstate for gyro angle.
+	RotateVector(xIn, yIn, gyroAngle);
+
+	double wheelSpeeds[kMaxNumberOfMotors];
+	wheelSpeeds[kFrontLeftMotor] = xIn + yIn + rotation;
+	wheelSpeeds[kFrontRightMotor] = -xIn + yIn - rotation;
+	wheelSpeeds[kRearLeftMotor] = -xIn + yIn + rotation;
+	wheelSpeeds[kRearRightMotor] = xIn + yIn - rotation;
+
+	Normalize(wheelSpeeds);
+
+	uint8_t syncGroup = 0x80;
+
+	m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup);
+	m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup);
+	m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup);
+	m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup);
+
+	// CANJaguar::UpdateSyncGroup(syncGroup);
+
+	// FIXME: m_safetyHelper->Feed();
+}
+
+/**
+ * Drive method for Mecanum wheeled robots.
+ *
+ * A method for driving with Mecanum wheeled robots. There are 4 wheels
+ * on the robot, arranged so that the front and back wheels are toed in 45 degrees.
+ * When looking at the wheels from the top, the roller axles should form an X across the robot.
+ *
+ * @param magnitude The speed that the robot should drive in a given direction. [-1.0..1.0]
+ * @param direction The direction the robot should drive in degrees. The direction and maginitute are
+ * independent of the rotation rate.
+ * @param rotation The rate of rotation for the robot that is completely independent of
+ * the magnitute or direction. [-1.0..1.0]
+ */
+void RobotDrive::MecanumDrive_Polar(float magnitude, float direction, float rotation)
+{
+	static bool reported = false;
+	if (!reported)
+	{
+		reported = true;
+	}
+
+	// Normalized for full power along the Cartesian axes.
+	magnitude = Limit(magnitude) * sqrt(2.0);
+	// The rollers are at 45 degree angles.
+	double dirInRad = (direction + 45.0) * 3.14159 / 180.0;
+	double cosD = cos(dirInRad);
+	double sinD = sin(dirInRad);
+
+	double wheelSpeeds[kMaxNumberOfMotors];
+	wheelSpeeds[kFrontLeftMotor] = sinD * magnitude + rotation;
+	wheelSpeeds[kFrontRightMotor] = cosD * magnitude - rotation;
+	wheelSpeeds[kRearLeftMotor] = cosD * magnitude + rotation;
+	wheelSpeeds[kRearRightMotor] = sinD * magnitude - rotation;
+
+	Normalize(wheelSpeeds);
+
+	uint8_t syncGroup = 0x80;
+
+	m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup);
+	m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup);
+	m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup);
+	m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup);
+
+	// CANJaguar::UpdateSyncGroup(syncGroup);
+
+	// FIXME: m_safetyHelper->Feed();
+}
+
+/**
+ * Holonomic Drive method for Mecanum wheeled robots.
+ *
+ * This is an alias to MecanumDrive_Polar() for backward compatability
+ *
+ * @param magnitude The speed that the robot should drive in a given direction.  [-1.0..1.0]
+ * @param direction The direction the robot should drive. The direction and maginitute are
+ * independent of the rotation rate.
+ * @param rotation The rate of rotation for the robot that is completely independent of
+ * the magnitute or direction.  [-1.0..1.0]
+ */
+void RobotDrive::HolonomicDrive(float magnitude, float direction, float rotation)
+{
+	MecanumDrive_Polar(magnitude, direction, rotation);
+}
+
+/** Set the speed of the right and left motors.
+ * This is used once an appropriate drive setup function is called such as
+ * TwoWheelDrive(). The motors are set to "leftOutput" and "rightOutput"
+ * and includes flipping the direction of one side for opposing motors.
+ * @param leftOutput The speed to send to the left side of the robot.
+ * @param rightOutput The speed to send to the right side of the robot.
+ */
+void RobotDrive::SetLeftRightMotorOutputs(float leftOutput, float rightOutput)
+{
+	wpi_assert(m_rearLeftMotor != nullptr && m_rearRightMotor != nullptr);
+
+	uint8_t syncGroup = 0x80;
+
+	if (m_frontLeftMotor != nullptr)
+		m_frontLeftMotor->Set(Limit(leftOutput) * m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup);
+	m_rearLeftMotor->Set(Limit(leftOutput) * m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup);
+
+	if (m_frontRightMotor != nullptr)
+		m_frontRightMotor->Set(-Limit(rightOutput) * m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup);
+	m_rearRightMotor->Set(-Limit(rightOutput) * m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup);
+
+	// CANJaguar::UpdateSyncGroup(syncGroup);
+
+	// FIXME: m_safetyHelper->Feed();
+}
+
+/**
+ * Limit motor values to the -1.0 to +1.0 range.
+ */
+float RobotDrive::Limit(float num)
+{
+	if (num > 1.0)
+	{
+		return 1.0;
+	}
+	if (num < -1.0)
+	{
+		return -1.0;
+	}
+	return num;
+}
+
+/**
+ * Normalize all wheel speeds if the magnitude of any wheel is greater than 1.0.
+ */
+void RobotDrive::Normalize(double *wheelSpeeds)
+{
+	double maxMagnitude = fabs(wheelSpeeds[0]);
+	int32_t i;
+	for (i=1; i<kMaxNumberOfMotors; i++)
+	{
+		double temp = fabs(wheelSpeeds[i]);
+		if (maxMagnitude < temp) maxMagnitude = temp;
+	}
+	if (maxMagnitude > 1.0)
+	{
+		for (i=0; i<kMaxNumberOfMotors; i++)
+		{
+			wheelSpeeds[i] = wheelSpeeds[i] / maxMagnitude;
+		}
+	}
+}
+
+/**
+ * Rotate a vector in Cartesian space.
+ */
+void RobotDrive::RotateVector(double &x, double &y, double angle)
+{
+	double cosA = cos(angle * (3.14159 / 180.0));
+	double sinA = sin(angle * (3.14159 / 180.0));
+	double xOut = x * cosA - y * sinA;
+	double yOut = x * sinA + y * cosA;
+	x = xOut;
+	y = yOut;
+}
+
+/*
+ * Invert a motor direction.
+ * This is used when a motor should run in the opposite direction as the drive
+ * code would normally run it. Motors that are direct drive would be inverted, the
+ * Drive code assumes that the motors are geared with one reversal.
+ * @param motor The motor index to invert.
+ * @param isInverted True if the motor should be inverted when operated.
+ */
+void RobotDrive::SetInvertedMotor(MotorType motor, bool isInverted)
+{
+	if (motor < 0 || motor > 3)
+	{
+		wpi_setWPIError(InvalidMotorIndex);
+		return;
+	}
+	m_invertedMotors[motor] = isInverted ? -1 : 1;
+}
+
+/**
+ * Set the turning sensitivity.
+ *
+ * This only impacts the Drive() entry-point.
+ * @param sensitivity Effectively sets the turning sensitivity (or turn radius for a given value)
+ */
+void RobotDrive::SetSensitivity(float sensitivity)
+{
+	m_sensitivity = sensitivity;
+}
+
+/**
+ * Configure the scaling factor for using RobotDrive with motor controllers in a mode other than PercentVbus.
+ * @param maxOutput Multiplied with the output percentage computed by the drive functions.
+ */
+void RobotDrive::SetMaxOutput(double maxOutput)
+{
+	m_maxOutput = maxOutput;
+}
+
+
+
+void RobotDrive::SetExpiration(float timeout)
+{
+	// FIXME: m_safetyHelper->SetExpiration(timeout);
+}
+
+float RobotDrive::GetExpiration() const
+{
+    return -1; // FIXME: return m_safetyHelper->GetExpiration();
+}
+
+bool RobotDrive::IsAlive() const
+{
+    return true; // FIXME: m_safetyHelper->IsAlive();
+}
+
+bool RobotDrive::IsSafetyEnabled() const
+{
+    return false; // FIXME: return m_safetyHelper->IsSafetyEnabled();
+}
+
+void RobotDrive::SetSafetyEnabled(bool enabled)
+{
+	// FIXME: m_safetyHelper->SetSafetyEnabled(enabled);
+}
+
+void RobotDrive::GetDescription(std::ostringstream& desc) const
+{
+	desc << "RobotDrive";
+}
+
+void RobotDrive::StopMotor()
+{
+	if (m_frontLeftMotor != nullptr) m_frontLeftMotor->Disable();
+	if (m_frontRightMotor != nullptr) m_frontRightMotor->Disable();
+	if (m_rearLeftMotor != nullptr) m_rearLeftMotor->Disable();
+	if (m_rearRightMotor != nullptr) m_rearRightMotor->Disable();
+}