Austin Schuh | a88c407 | 2016-02-06 14:31:03 -0800 | [diff] [blame] | 1 | #!/usr/bin/python |
| 2 | |
| 3 | import numpy |
| 4 | import sys |
| 5 | import operator |
| 6 | |
| 7 | from frc971.control_loops.python import control_loop |
| 8 | from frc971.control_loops.python import controls |
| 9 | |
| 10 | from y2016.control_loops.python.shoulder import Shoulder, IntegralShoulder |
| 11 | from y2016.control_loops.python.wrist import Wrist, IntegralWrist |
Philipp Schrader | 1a25ee4 | 2016-02-11 07:02:03 +0000 | [diff] [blame^] | 12 | from aos.common.util.trapezoid_profile import TrapezoidProfile |
Austin Schuh | a88c407 | 2016-02-06 14:31:03 -0800 | [diff] [blame] | 13 | |
| 14 | from matplotlib import pylab |
| 15 | import gflags |
| 16 | import glog |
| 17 | |
| 18 | FLAGS = gflags.FLAGS |
| 19 | |
| 20 | try: |
| 21 | gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.') |
| 22 | except gflags.DuplicateFlagError: |
| 23 | pass |
| 24 | |
| 25 | |
| 26 | class Arm(control_loop.ControlLoop): |
| 27 | def __init__(self, name="Arm"): |
| 28 | super(Arm, self).__init__(name=name) |
| 29 | self._shoulder = Shoulder(name=name) |
| 30 | self._shooter = Wrist(name=name) |
| 31 | |
| 32 | # Do a coordinate transformation. |
| 33 | # X_shooter_grounded = X_shooter + X_shoulder |
| 34 | # dX_shooter_grounded/dt = A_shooter * X_shooter + A_shoulder * X_shoulder + |
| 35 | # B_shoulder * U_shoulder + B_shooter * U_shooter |
| 36 | # dX_shooter_grounded/dt = A_shooter * (X_shooter_grounded - X_shoulder) + |
| 37 | # A_shoulder * X_shoulder + B_shooter * U_shooter + B_shoulder * U_shoulder |
| 38 | # X = [X_shoulder; X_shooter + X_shoulder] |
| 39 | # dX/dt = [A_shoulder 0] [X_shoulder ] + [B_shoulder 0] [U_shoulder] |
| 40 | # [(A_shoulder - A_shooter) A_shooter] [X_shooter_grounded] + [B_shoulder B_shooter] [ U_shooter] |
| 41 | # Y_shooter_grounded = Y_shooter + Y_shoulder |
| 42 | |
| 43 | self.A_continuous = numpy.matrix(numpy.zeros((4, 4))) |
| 44 | self.A_continuous[0:2, 0:2] = self._shoulder.A_continuous |
| 45 | self.A_continuous[2:4, 0:2] = (self._shoulder.A_continuous - |
| 46 | self._shooter.A_continuous) |
| 47 | self.A_continuous[2:4, 2:4] = self._shooter.A_continuous |
| 48 | |
| 49 | self.B_continuous = numpy.matrix(numpy.zeros((4, 2))) |
| 50 | self.B_continuous[0:2, 0:1] = self._shoulder.B_continuous |
| 51 | self.B_continuous[2:4, 1:2] = self._shooter.B_continuous |
| 52 | self.B_continuous[2:4, 0:1] = self._shoulder.B_continuous |
| 53 | |
| 54 | self.C = numpy.matrix(numpy.zeros((2, 4))) |
| 55 | self.C[0:1, 0:2] = self._shoulder.C |
| 56 | self.C[1:2, 0:2] = -self._shoulder.C |
| 57 | self.C[1:2, 2:4] = self._shooter.C |
| 58 | |
| 59 | # D is 0 for all our loops. |
| 60 | self.D = numpy.matrix(numpy.zeros((2, 2))) |
| 61 | |
| 62 | self.dt = 0.005 |
| 63 | |
| 64 | self.A, self.B = self.ContinuousToDiscrete( |
| 65 | self.A_continuous, self.B_continuous, self.dt) |
| 66 | |
| 67 | # Cost of error |
| 68 | self.Q = numpy.matrix(numpy.zeros((4, 4))) |
| 69 | q_pos_shoulder = 0.014 |
| 70 | q_vel_shoulder = 4.00 |
| 71 | q_pos_shooter = 0.014 |
| 72 | q_vel_shooter = 4.00 |
| 73 | self.Q[0, 0] = 1.0 / q_pos_shoulder ** 2.0 |
| 74 | self.Q[1, 1] = 1.0 / q_vel_shoulder ** 2.0 |
| 75 | self.Q[2, 2] = 1.0 / q_pos_shooter ** 2.0 |
| 76 | self.Q[3, 3] = 1.0 / q_vel_shooter ** 2.0 |
| 77 | |
Austin Schuh | 2fc10fa | 2016-02-08 00:44:34 -0800 | [diff] [blame] | 78 | self.Qff = numpy.matrix(numpy.zeros((4, 4))) |
| 79 | qff_pos_shoulder = 0.005 |
| 80 | qff_vel_shoulder = 1.00 |
| 81 | qff_pos_shooter = 0.005 |
| 82 | qff_vel_shooter = 1.00 |
| 83 | self.Qff[0, 0] = 1.0 / qff_pos_shoulder ** 2.0 |
| 84 | self.Qff[1, 1] = 1.0 / qff_vel_shoulder ** 2.0 |
| 85 | self.Qff[2, 2] = 1.0 / qff_pos_shooter ** 2.0 |
| 86 | self.Qff[3, 3] = 1.0 / qff_vel_shooter ** 2.0 |
| 87 | |
Austin Schuh | a88c407 | 2016-02-06 14:31:03 -0800 | [diff] [blame] | 88 | # Cost of control effort |
| 89 | self.R = numpy.matrix(numpy.zeros((2, 2))) |
| 90 | r_voltage = 1.0 / 12.0 |
| 91 | self.R[0, 0] = r_voltage ** 2.0 |
| 92 | self.R[1, 1] = r_voltage ** 2.0 |
| 93 | |
Austin Schuh | 2fc10fa | 2016-02-08 00:44:34 -0800 | [diff] [blame] | 94 | self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff) |
Austin Schuh | a88c407 | 2016-02-06 14:31:03 -0800 | [diff] [blame] | 95 | |
| 96 | glog.debug('Shoulder K') |
| 97 | glog.debug(self._shoulder.K) |
| 98 | |
| 99 | # Compute controller gains. |
| 100 | # self.K = controls.dlqr(self.A, self.B, self.Q, self.R) |
| 101 | self.K = numpy.matrix(numpy.zeros((2, 4))) |
| 102 | self.K[0:1, 0:2] = self._shoulder.K |
| 103 | self.K[1:2, 0:2] = ( |
| 104 | -self.Kff[1:2, 2:4] * self.B[2:4, 0:1] * self._shoulder.K |
| 105 | + self.Kff[1:2, 2:4] * self.A[2:4, 0:2]) |
| 106 | self.K[1:2, 2:4] = self._shooter.K |
| 107 | |
| 108 | glog.debug('Arm controller %s', repr(self.K)) |
| 109 | |
| 110 | # Cost of error |
| 111 | self.Q = numpy.matrix(numpy.zeros((4, 4))) |
| 112 | q_pos_shoulder = 0.05 |
| 113 | q_vel_shoulder = 2.65 |
| 114 | q_pos_shooter = 0.05 |
| 115 | q_vel_shooter = 2.65 |
| 116 | self.Q[0, 0] = q_pos_shoulder ** 2.0 |
| 117 | self.Q[1, 1] = q_vel_shoulder ** 2.0 |
| 118 | self.Q[2, 2] = q_pos_shooter ** 2.0 |
| 119 | self.Q[3, 3] = q_vel_shooter ** 2.0 |
| 120 | |
| 121 | # Cost of control effort |
| 122 | self.R = numpy.matrix(numpy.zeros((2, 2))) |
| 123 | r_voltage = 0.025 |
| 124 | self.R[0, 0] = r_voltage ** 2.0 |
| 125 | self.R[1, 1] = r_voltage ** 2.0 |
| 126 | |
| 127 | self.KalmanGain, self.Q_steady = controls.kalman( |
| 128 | A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| 129 | self.L = self.A * self.KalmanGain |
| 130 | |
| 131 | self.U_max = numpy.matrix([[12.0], [12.0]]) |
| 132 | self.U_min = numpy.matrix([[-12.0], [-12.0]]) |
| 133 | |
| 134 | self.InitializeState() |
| 135 | |
| 136 | |
| 137 | class IntegralArm(Arm): |
| 138 | def __init__(self, name="IntegralArm"): |
| 139 | super(IntegralArm, self).__init__(name=name) |
| 140 | |
| 141 | self.A_continuous_unaugmented = self.A_continuous |
| 142 | self.B_continuous_unaugmented = self.B_continuous |
| 143 | |
| 144 | self.A_continuous = numpy.matrix(numpy.zeros((6, 6))) |
| 145 | self.A_continuous[0:4, 0:4] = self.A_continuous_unaugmented |
| 146 | self.A_continuous[0:4, 4:6] = self.B_continuous_unaugmented |
| 147 | |
| 148 | self.B_continuous = numpy.matrix(numpy.zeros((6, 2))) |
| 149 | self.B_continuous[0:4, 0:2] = self.B_continuous_unaugmented |
| 150 | |
| 151 | self.C_unaugmented = self.C |
| 152 | self.C = numpy.matrix(numpy.zeros((2, 6))) |
| 153 | self.C[0:2, 0:4] = self.C_unaugmented |
| 154 | |
| 155 | self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous, self.dt) |
| 156 | |
| 157 | q_pos_shoulder = 0.08 |
| 158 | q_vel_shoulder = 4.00 |
| 159 | q_voltage_shoulder = 6.0 |
| 160 | q_pos_shooter = 0.08 |
| 161 | q_vel_shooter = 4.00 |
| 162 | q_voltage_shooter = 6.0 |
| 163 | self.Q = numpy.matrix(numpy.zeros((6, 6))) |
| 164 | self.Q[0, 0] = q_pos_shoulder ** 2.0 |
| 165 | self.Q[1, 1] = q_vel_shoulder ** 2.0 |
| 166 | self.Q[2, 2] = q_pos_shooter ** 2.0 |
| 167 | self.Q[3, 3] = q_vel_shooter ** 2.0 |
| 168 | self.Q[4, 4] = q_voltage_shoulder ** 2.0 |
| 169 | self.Q[5, 5] = q_voltage_shooter ** 2.0 |
| 170 | |
| 171 | self.R = numpy.matrix(numpy.zeros((2, 2))) |
| 172 | r_pos = 0.05 |
| 173 | self.R[0, 0] = r_pos ** 2.0 |
| 174 | self.R[1, 1] = r_pos ** 2.0 |
| 175 | |
| 176 | self.KalmanGain, self.Q_steady = controls.kalman( |
| 177 | A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| 178 | self.L = self.A * self.KalmanGain |
| 179 | |
| 180 | self.K_unaugmented = self.K |
| 181 | self.K = numpy.matrix(numpy.zeros((2, 6))) |
| 182 | self.K[0:2, 0:4] = self.K_unaugmented |
| 183 | self.K[0, 4] = 1 |
| 184 | self.K[1, 5] = 1 |
| 185 | |
| 186 | self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((2, 2)))), axis=1) |
| 187 | |
| 188 | self.InitializeState() |
| 189 | |
| 190 | |
| 191 | class ScenarioPlotter(object): |
| 192 | def __init__(self): |
| 193 | # Various lists for graphing things. |
| 194 | self.t = [] |
| 195 | self.x_shoulder = [] |
| 196 | self.v_shoulder = [] |
| 197 | self.a_shoulder = [] |
| 198 | self.x_hat_shoulder = [] |
| 199 | self.u_shoulder = [] |
| 200 | self.offset_shoulder = [] |
| 201 | self.x_shooter = [] |
| 202 | self.v_shooter = [] |
| 203 | self.a_shooter = [] |
| 204 | self.x_hat_shooter = [] |
| 205 | self.u_shooter = [] |
| 206 | self.offset_shooter = [] |
| 207 | self.goal_x_shoulder = [] |
| 208 | self.goal_v_shoulder = [] |
| 209 | self.goal_x_shooter = [] |
| 210 | self.goal_v_shooter = [] |
| 211 | |
| 212 | def run_test(self, arm, end_goal, |
| 213 | iterations=200, controller=None, observer=None): |
| 214 | """Runs the plant with an initial condition and goal. |
| 215 | |
| 216 | Args: |
| 217 | arm: Arm object to use. |
| 218 | end_goal: numpy.Matrix[6, 1], end goal state. |
| 219 | iterations: Number of timesteps to run the model for. |
| 220 | controller: Arm object to get K from, or None if we should |
| 221 | use arm. |
| 222 | observer: Arm object to use for the observer, or None if we should |
| 223 | use the actual state. |
| 224 | """ |
| 225 | |
| 226 | if controller is None: |
| 227 | controller = arm |
| 228 | |
| 229 | vbat = 12.0 |
| 230 | |
| 231 | if self.t: |
| 232 | initial_t = self.t[-1] + arm.dt |
| 233 | else: |
| 234 | initial_t = 0 |
| 235 | |
| 236 | goal = numpy.concatenate((arm.X, numpy.matrix(numpy.zeros((2, 1)))), axis=0) |
Austin Schuh | a88c407 | 2016-02-06 14:31:03 -0800 | [diff] [blame] | 237 | |
Philipp Schrader | 1a25ee4 | 2016-02-11 07:02:03 +0000 | [diff] [blame^] | 238 | shoulder_profile = TrapezoidProfile(arm.dt) |
Austin Schuh | a88c407 | 2016-02-06 14:31:03 -0800 | [diff] [blame] | 239 | shoulder_profile.set_maximum_acceleration(50.0) |
| 240 | shoulder_profile.set_maximum_velocity(10.0) |
Austin Schuh | 2fc10fa | 2016-02-08 00:44:34 -0800 | [diff] [blame] | 241 | shoulder_profile.SetGoal(goal[0, 0]) |
Philipp Schrader | 1a25ee4 | 2016-02-11 07:02:03 +0000 | [diff] [blame^] | 242 | shooter_profile = TrapezoidProfile(arm.dt) |
Austin Schuh | a88c407 | 2016-02-06 14:31:03 -0800 | [diff] [blame] | 243 | shooter_profile.set_maximum_acceleration(50.0) |
| 244 | shooter_profile.set_maximum_velocity(10.0) |
Austin Schuh | 2fc10fa | 2016-02-08 00:44:34 -0800 | [diff] [blame] | 245 | shooter_profile.SetGoal(goal[2, 0]) |
Austin Schuh | a88c407 | 2016-02-06 14:31:03 -0800 | [diff] [blame] | 246 | |
| 247 | U_last = numpy.matrix(numpy.zeros((2, 1))) |
| 248 | for i in xrange(iterations): |
| 249 | X_hat = arm.X |
| 250 | |
| 251 | if observer is not None: |
| 252 | observer.Y = arm.Y |
| 253 | observer.CorrectObserver(U_last) |
| 254 | self.offset_shoulder.append(observer.X_hat[4, 0]) |
| 255 | self.offset_shooter.append(observer.X_hat[5, 0]) |
| 256 | |
Austin Schuh | 2fc10fa | 2016-02-08 00:44:34 -0800 | [diff] [blame] | 257 | X_hat = observer.X_hat |
| 258 | self.x_hat_shoulder.append(observer.X_hat[0, 0]) |
| 259 | self.x_hat_shooter.append(observer.X_hat[2, 0]) |
| 260 | |
Austin Schuh | a88c407 | 2016-02-06 14:31:03 -0800 | [diff] [blame] | 261 | next_shoulder_goal = shoulder_profile.Update(end_goal[0, 0], end_goal[1, 0]) |
| 262 | next_shooter_goal = shooter_profile.Update(end_goal[2, 0], end_goal[3, 0]) |
| 263 | |
Austin Schuh | 2fc10fa | 2016-02-08 00:44:34 -0800 | [diff] [blame] | 264 | next_goal = numpy.concatenate( |
| 265 | (next_shoulder_goal, |
| 266 | next_shooter_goal, |
| 267 | numpy.matrix(numpy.zeros((2, 1)))), |
| 268 | axis=0) |
Austin Schuh | a88c407 | 2016-02-06 14:31:03 -0800 | [diff] [blame] | 269 | self.goal_x_shoulder.append(goal[0, 0]) |
| 270 | self.goal_v_shoulder.append(goal[1, 0]) |
| 271 | self.goal_x_shooter.append(goal[2, 0]) |
| 272 | self.goal_v_shooter.append(goal[3, 0]) |
| 273 | |
| 274 | ff_U = controller.Kff * (next_goal - observer.A * goal) |
| 275 | |
Austin Schuh | a88c407 | 2016-02-06 14:31:03 -0800 | [diff] [blame] | 276 | U_uncapped = controller.K * (goal - X_hat) + ff_U |
| 277 | U = U_uncapped.copy() |
| 278 | |
| 279 | U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat) |
| 280 | U[1, 0] = numpy.clip(U[1, 0], -vbat, vbat) |
| 281 | self.x_shoulder.append(arm.X[0, 0]) |
| 282 | self.x_shooter.append(arm.X[2, 0]) |
| 283 | |
| 284 | if self.v_shoulder: |
| 285 | last_v_shoulder = self.v_shoulder[-1] |
| 286 | else: |
| 287 | last_v_shoulder = 0 |
| 288 | self.v_shoulder.append(arm.X[1, 0]) |
| 289 | self.a_shoulder.append( |
| 290 | (self.v_shoulder[-1] - last_v_shoulder) / arm.dt) |
| 291 | |
| 292 | if self.v_shooter: |
| 293 | last_v_shooter = self.v_shooter[-1] |
| 294 | else: |
| 295 | last_v_shooter = 0 |
| 296 | self.v_shooter.append(arm.X[3, 0]) |
| 297 | self.a_shooter.append( |
| 298 | (self.v_shooter[-1] - last_v_shooter) / arm.dt) |
| 299 | |
| 300 | if i % 40 == 0: |
| 301 | # Test that if we move the shoulder, the shooter stays perfect. |
| 302 | #observer.X_hat[0, 0] += 0.20 |
| 303 | #arm.X[0, 0] += 0.20 |
| 304 | pass |
| 305 | U_error = numpy.matrix([[0.0], [0.0]]) |
| 306 | # Kick it and see what happens. |
| 307 | #if (initial_t + i * arm.dt) % 0.4 > 0.2: |
| 308 | #U_error = numpy.matrix([[4.0], [0.0]]) |
| 309 | #else: |
| 310 | #U_error = numpy.matrix([[-4.0], [0.0]]) |
| 311 | |
| 312 | arm.Update(U + U_error) |
| 313 | |
| 314 | if observer is not None: |
| 315 | observer.PredictObserver(U) |
| 316 | |
| 317 | self.t.append(initial_t + i * arm.dt) |
| 318 | self.u_shoulder.append(U[0, 0]) |
| 319 | self.u_shooter.append(U[1, 0]) |
| 320 | |
| 321 | glog.debug('Time: %f', self.t[-1]) |
| 322 | |
| 323 | ff_U -= U_uncapped - U |
| 324 | goal = controller.A * goal + controller.B * ff_U |
| 325 | |
| 326 | if U[0, 0] != U_uncapped[0, 0]: |
| 327 | glog.debug('Moving shoulder %s', repr(initial_t + i * arm.dt)) |
| 328 | glog.debug('U error %s', repr(U_uncapped - U)) |
| 329 | glog.debug('goal change is %s', |
| 330 | repr(next_shoulder_goal - |
| 331 | numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))) |
| 332 | shoulder_profile.MoveCurrentState( |
| 333 | numpy.matrix([[goal[0, 0]], [goal[1, 0]]])) |
| 334 | if U[1, 0] != U_uncapped[1, 0]: |
| 335 | glog.debug('Moving shooter %s', repr(initial_t + i * arm.dt)) |
| 336 | glog.debug('U error %s', repr(U_uncapped - U)) |
| 337 | shooter_profile.MoveCurrentState( |
| 338 | numpy.matrix([[goal[2, 0]], [goal[3, 0]]])) |
| 339 | U_last = U |
Austin Schuh | 2fc10fa | 2016-02-08 00:44:34 -0800 | [diff] [blame] | 340 | glog.debug('goal_error %s', repr(end_goal - goal)) |
| 341 | glog.debug('error %s', repr(observer.X_hat - end_goal)) |
Austin Schuh | a88c407 | 2016-02-06 14:31:03 -0800 | [diff] [blame] | 342 | |
| 343 | |
| 344 | def Plot(self): |
| 345 | pylab.subplot(3, 1, 1) |
| 346 | pylab.plot(self.t, self.x_shoulder, label='x shoulder') |
| 347 | pylab.plot(self.t, self.goal_x_shoulder, label='goal x shoulder') |
| 348 | pylab.plot(self.t, self.x_hat_shoulder, label='x_hat shoulder') |
| 349 | |
| 350 | pylab.plot(self.t, self.x_shooter, label='x shooter') |
| 351 | pylab.plot(self.t, self.x_hat_shooter, label='x_hat shooter') |
| 352 | pylab.plot(self.t, self.goal_x_shooter, label='goal x shooter') |
| 353 | pylab.plot(self.t, map(operator.add, self.x_shooter, self.x_shoulder), |
| 354 | label='x shooter ground') |
| 355 | pylab.plot(self.t, map(operator.add, self.x_hat_shooter, self.x_hat_shoulder), |
| 356 | label='x_hat shooter ground') |
| 357 | pylab.legend() |
| 358 | |
| 359 | pylab.subplot(3, 1, 2) |
| 360 | pylab.plot(self.t, self.u_shoulder, label='u shoulder') |
| 361 | pylab.plot(self.t, self.offset_shoulder, label='voltage_offset shoulder') |
| 362 | pylab.plot(self.t, self.u_shooter, label='u shooter') |
| 363 | pylab.plot(self.t, self.offset_shooter, label='voltage_offset shooter') |
| 364 | pylab.legend() |
| 365 | |
| 366 | pylab.subplot(3, 1, 3) |
| 367 | pylab.plot(self.t, self.a_shoulder, label='a_shoulder') |
| 368 | pylab.plot(self.t, self.a_shooter, label='a_shooter') |
| 369 | pylab.legend() |
| 370 | |
| 371 | pylab.show() |
| 372 | |
| 373 | |
| 374 | def main(argv): |
| 375 | argv = FLAGS(argv) |
| 376 | glog.init() |
| 377 | |
| 378 | scenario_plotter = ScenarioPlotter() |
| 379 | |
| 380 | arm = Arm() |
| 381 | arm_controller = IntegralArm() |
| 382 | arm_observer = IntegralArm() |
| 383 | |
| 384 | # Test moving the shoulder with constant separation. |
| 385 | initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]) |
| 386 | R = numpy.matrix([[numpy.pi / 2.0], |
| 387 | [0.0], |
| 388 | [0.0], #[numpy.pi / 2.0], |
| 389 | [0.0], |
| 390 | [0.0], |
| 391 | [0.0]]) |
| 392 | arm.X = initial_X[0:4, 0] |
| 393 | arm_observer.X = initial_X |
| 394 | |
| 395 | scenario_plotter.run_test(arm=arm, |
| 396 | end_goal=R, |
| 397 | iterations=300, |
| 398 | controller=arm_controller, |
| 399 | observer=arm_observer) |
| 400 | |
| 401 | if len(argv) != 5: |
| 402 | glog.fatal('Expected .h file name and .cc file name for the wrist and integral wrist.') |
| 403 | else: |
| 404 | namespaces = ['y2016', 'control_loops', 'superstructure'] |
| 405 | loop_writer = control_loop.ControlLoopWriter('Arm', [arm], |
| 406 | namespaces=namespaces) |
| 407 | loop_writer.Write(argv[1], argv[2]) |
| 408 | |
| 409 | integral_loop_writer = control_loop.ControlLoopWriter( |
| 410 | 'IntegralArm', [arm_controller], namespaces=namespaces) |
| 411 | integral_loop_writer.Write(argv[3], argv[4]) |
| 412 | |
| 413 | if FLAGS.plot: |
| 414 | scenario_plotter.Plot() |
| 415 | |
| 416 | if __name__ == '__main__': |
| 417 | sys.exit(main(sys.argv)) |