Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 4 | // Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 5 | // Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_MATRIX_LOGARITHM |
| 12 | #define EIGEN_MATRIX_LOGARITHM |
| 13 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 14 | namespace Eigen { |
| 15 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 16 | namespace internal { |
| 17 | |
| 18 | template <typename Scalar> |
| 19 | struct matrix_log_min_pade_degree |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 20 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 21 | static const int value = 3; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 22 | }; |
| 23 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 24 | template <typename Scalar> |
| 25 | struct matrix_log_max_pade_degree |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 26 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 27 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 28 | static const int value = std::numeric_limits<RealScalar>::digits<= 24? 5: // single precision |
| 29 | std::numeric_limits<RealScalar>::digits<= 53? 7: // double precision |
| 30 | std::numeric_limits<RealScalar>::digits<= 64? 8: // extended precision |
| 31 | std::numeric_limits<RealScalar>::digits<=106? 10: // double-double |
| 32 | 11; // quadruple precision |
| 33 | }; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 34 | |
| 35 | /** \brief Compute logarithm of 2x2 triangular matrix. */ |
| 36 | template <typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 37 | void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 38 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 39 | typedef typename MatrixType::Scalar Scalar; |
| 40 | typedef typename MatrixType::RealScalar RealScalar; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 41 | using std::abs; |
| 42 | using std::ceil; |
| 43 | using std::imag; |
| 44 | using std::log; |
| 45 | |
| 46 | Scalar logA00 = log(A(0,0)); |
| 47 | Scalar logA11 = log(A(1,1)); |
| 48 | |
| 49 | result(0,0) = logA00; |
| 50 | result(1,0) = Scalar(0); |
| 51 | result(1,1) = logA11; |
| 52 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 53 | Scalar y = A(1,1) - A(0,0); |
| 54 | if (y==Scalar(0)) |
| 55 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 56 | result(0,1) = A(0,1) / A(0,0); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 57 | } |
| 58 | else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) |
| 59 | { |
| 60 | result(0,1) = A(0,1) * (logA11 - logA00) / y; |
| 61 | } |
| 62 | else |
| 63 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 64 | // computation in previous branch is inaccurate if A(1,1) \approx A(0,0) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 65 | int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI))); |
| 66 | result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,2*EIGEN_PI*unwindingNumber)) / y; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 67 | } |
| 68 | } |
| 69 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 70 | /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 71 | inline int matrix_log_get_pade_degree(float normTminusI) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 72 | { |
| 73 | const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1, |
| 74 | 5.3149729967117310e-1 }; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 75 | const int minPadeDegree = matrix_log_min_pade_degree<float>::value; |
| 76 | const int maxPadeDegree = matrix_log_max_pade_degree<float>::value; |
| 77 | int degree = minPadeDegree; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 78 | for (; degree <= maxPadeDegree; ++degree) |
| 79 | if (normTminusI <= maxNormForPade[degree - minPadeDegree]) |
| 80 | break; |
| 81 | return degree; |
| 82 | } |
| 83 | |
| 84 | /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 85 | inline int matrix_log_get_pade_degree(double normTminusI) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 86 | { |
| 87 | const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2, |
| 88 | 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 }; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 89 | const int minPadeDegree = matrix_log_min_pade_degree<double>::value; |
| 90 | const int maxPadeDegree = matrix_log_max_pade_degree<double>::value; |
| 91 | int degree = minPadeDegree; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 92 | for (; degree <= maxPadeDegree; ++degree) |
| 93 | if (normTminusI <= maxNormForPade[degree - minPadeDegree]) |
| 94 | break; |
| 95 | return degree; |
| 96 | } |
| 97 | |
| 98 | /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 99 | inline int matrix_log_get_pade_degree(long double normTminusI) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 100 | { |
| 101 | #if LDBL_MANT_DIG == 53 // double precision |
| 102 | const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L, |
| 103 | 1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L }; |
| 104 | #elif LDBL_MANT_DIG <= 64 // extended precision |
| 105 | const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L, |
| 106 | 5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L, |
| 107 | 2.32777776523703892094e-1L }; |
| 108 | #elif LDBL_MANT_DIG <= 106 // double-double |
| 109 | const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */, |
| 110 | 9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L, |
| 111 | 1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L, |
| 112 | 4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L, |
| 113 | 1.05026503471351080481093652651105e-1L }; |
| 114 | #else // quadruple precision |
| 115 | const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */, |
| 116 | 5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L, |
| 117 | 8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L, |
| 118 | 3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L, |
| 119 | 8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L }; |
| 120 | #endif |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 121 | const int minPadeDegree = matrix_log_min_pade_degree<long double>::value; |
| 122 | const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value; |
| 123 | int degree = minPadeDegree; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 124 | for (; degree <= maxPadeDegree; ++degree) |
| 125 | if (normTminusI <= maxNormForPade[degree - minPadeDegree]) |
| 126 | break; |
| 127 | return degree; |
| 128 | } |
| 129 | |
| 130 | /* \brief Compute Pade approximation to matrix logarithm */ |
| 131 | template <typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 132 | void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 133 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 134 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| 135 | const int minPadeDegree = 3; |
| 136 | const int maxPadeDegree = 11; |
| 137 | assert(degree >= minPadeDegree && degree <= maxPadeDegree); |
| 138 | |
| 139 | const RealScalar nodes[][maxPadeDegree] = { |
| 140 | { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L, // degree 3 |
| 141 | 0.8872983346207416885179265399782400L }, |
| 142 | { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L, // degree 4 |
| 143 | 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L }, |
| 144 | { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L, // degree 5 |
| 145 | 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L, |
| 146 | 0.9530899229693319963988134391496965L }, |
| 147 | { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L, // degree 6 |
| 148 | 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L, |
| 149 | 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L }, |
| 150 | { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L, // degree 7 |
| 151 | 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L, |
| 152 | 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L, |
| 153 | 0.9745539561713792622630948420239256L }, |
| 154 | { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L, // degree 8 |
| 155 | 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L, |
| 156 | 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L, |
| 157 | 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L }, |
| 158 | { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L, // degree 9 |
| 159 | 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L, |
| 160 | 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L, |
| 161 | 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L, |
| 162 | 0.9840801197538130449177881014518364L }, |
| 163 | { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L, // degree 10 |
| 164 | 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L, |
| 165 | 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L, |
| 166 | 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L, |
| 167 | 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L }, |
| 168 | { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L, // degree 11 |
| 169 | 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L, |
| 170 | 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L, |
| 171 | 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L, |
| 172 | 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L, |
| 173 | 0.9891143290730284964019690005614287L } }; |
| 174 | |
| 175 | const RealScalar weights[][maxPadeDegree] = { |
| 176 | { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L, // degree 3 |
| 177 | 0.2777777777777777777777777777777778L }, |
| 178 | { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L, // degree 4 |
| 179 | 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L }, |
| 180 | { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L, // degree 5 |
| 181 | 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L, |
| 182 | 0.1184634425280945437571320203599587L }, |
| 183 | { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, // degree 6 |
| 184 | 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L, |
| 185 | 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L }, |
| 186 | { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L, // degree 7 |
| 187 | 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L, |
| 188 | 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L, |
| 189 | 0.0647424830844348466353057163395410L }, |
| 190 | { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L, // degree 8 |
| 191 | 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L, |
| 192 | 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L, |
| 193 | 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L }, |
| 194 | { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L, // degree 9 |
| 195 | 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L, |
| 196 | 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L, |
| 197 | 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L, |
| 198 | 0.0406371941807872059859460790552618L }, |
| 199 | { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L, // degree 10 |
| 200 | 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L, |
| 201 | 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L, |
| 202 | 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L, |
| 203 | 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L }, |
| 204 | { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L, // degree 11 |
| 205 | 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L, |
| 206 | 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L, |
| 207 | 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L, |
| 208 | 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L, |
| 209 | 0.0278342835580868332413768602212743L } }; |
| 210 | |
| 211 | MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); |
| 212 | result.setZero(T.rows(), T.rows()); |
| 213 | for (int k = 0; k < degree; ++k) { |
| 214 | RealScalar weight = weights[degree-minPadeDegree][k]; |
| 215 | RealScalar node = nodes[degree-minPadeDegree][k]; |
| 216 | result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI) |
| 217 | .template triangularView<Upper>().solve(TminusI); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 218 | } |
| 219 | } |
| 220 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 221 | /** \brief Compute logarithm of triangular matrices with size > 2. |
| 222 | * \details This uses a inverse scale-and-square algorithm. */ |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 223 | template <typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 224 | void matrix_log_compute_big(const MatrixType& A, MatrixType& result) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 225 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 226 | typedef typename MatrixType::Scalar Scalar; |
| 227 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 228 | using std::pow; |
| 229 | |
| 230 | int numberOfSquareRoots = 0; |
| 231 | int numberOfExtraSquareRoots = 0; |
| 232 | int degree; |
| 233 | MatrixType T = A, sqrtT; |
| 234 | |
| 235 | int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value; |
| 236 | const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1L: // single precision |
| 237 | maxPadeDegree<= 7? 2.6429608311114350e-1L: // double precision |
| 238 | maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision |
| 239 | maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double |
| 240 | 1.1880960220216759245467951592883642e-1L; // quadruple precision |
| 241 | |
| 242 | while (true) { |
| 243 | RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff(); |
| 244 | if (normTminusI < maxNormForPade) { |
| 245 | degree = matrix_log_get_pade_degree(normTminusI); |
| 246 | int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2)); |
| 247 | if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1)) |
| 248 | break; |
| 249 | ++numberOfExtraSquareRoots; |
| 250 | } |
| 251 | matrix_sqrt_triangular(T, sqrtT); |
| 252 | T = sqrtT.template triangularView<Upper>(); |
| 253 | ++numberOfSquareRoots; |
| 254 | } |
| 255 | |
| 256 | matrix_log_compute_pade(result, T, degree); |
| 257 | result *= pow(RealScalar(2), numberOfSquareRoots); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 258 | } |
| 259 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 260 | /** \ingroup MatrixFunctions_Module |
| 261 | * \class MatrixLogarithmAtomic |
| 262 | * \brief Helper class for computing matrix logarithm of atomic matrices. |
| 263 | * |
| 264 | * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other. |
| 265 | * |
| 266 | * \sa class MatrixFunctionAtomic, MatrixBase::log() |
| 267 | */ |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 268 | template <typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 269 | class MatrixLogarithmAtomic |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 270 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 271 | public: |
| 272 | /** \brief Compute matrix logarithm of atomic matrix |
| 273 | * \param[in] A argument of matrix logarithm, should be upper triangular and atomic |
| 274 | * \returns The logarithm of \p A. |
| 275 | */ |
| 276 | MatrixType compute(const MatrixType& A); |
| 277 | }; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 278 | |
| 279 | template <typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 280 | MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 281 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 282 | using std::log; |
| 283 | MatrixType result(A.rows(), A.rows()); |
| 284 | if (A.rows() == 1) |
| 285 | result(0,0) = log(A(0,0)); |
| 286 | else if (A.rows() == 2) |
| 287 | matrix_log_compute_2x2(A, result); |
| 288 | else |
| 289 | matrix_log_compute_big(A, result); |
| 290 | return result; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 291 | } |
| 292 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 293 | } // end of namespace internal |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 294 | |
| 295 | /** \ingroup MatrixFunctions_Module |
| 296 | * |
| 297 | * \brief Proxy for the matrix logarithm of some matrix (expression). |
| 298 | * |
| 299 | * \tparam Derived Type of the argument to the matrix function. |
| 300 | * |
| 301 | * This class holds the argument to the matrix function until it is |
| 302 | * assigned or evaluated for some other reason (so the argument |
| 303 | * should not be changed in the meantime). It is the return type of |
| 304 | * MatrixBase::log() and most of the time this is the only way it |
| 305 | * is used. |
| 306 | */ |
| 307 | template<typename Derived> class MatrixLogarithmReturnValue |
| 308 | : public ReturnByValue<MatrixLogarithmReturnValue<Derived> > |
| 309 | { |
| 310 | public: |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 311 | typedef typename Derived::Scalar Scalar; |
| 312 | typedef typename Derived::Index Index; |
| 313 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 314 | protected: |
| 315 | typedef typename internal::ref_selector<Derived>::type DerivedNested; |
| 316 | |
| 317 | public: |
| 318 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 319 | /** \brief Constructor. |
| 320 | * |
| 321 | * \param[in] A %Matrix (expression) forming the argument of the matrix logarithm. |
| 322 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 323 | explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 324 | |
| 325 | /** \brief Compute the matrix logarithm. |
| 326 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 327 | * \param[out] result Logarithm of \c A, where \c A is as specified in the constructor. |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 328 | */ |
| 329 | template <typename ResultType> |
| 330 | inline void evalTo(ResultType& result) const |
| 331 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 332 | typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType; |
| 333 | typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean; |
| 334 | typedef internal::traits<DerivedEvalTypeClean> Traits; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 335 | static const int RowsAtCompileTime = Traits::RowsAtCompileTime; |
| 336 | static const int ColsAtCompileTime = Traits::ColsAtCompileTime; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 337 | typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 338 | typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; |
| 339 | typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 340 | AtomicType atomic; |
| 341 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 342 | internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 343 | } |
| 344 | |
| 345 | Index rows() const { return m_A.rows(); } |
| 346 | Index cols() const { return m_A.cols(); } |
| 347 | |
| 348 | private: |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 349 | const DerivedNested m_A; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 350 | }; |
| 351 | |
| 352 | namespace internal { |
| 353 | template<typename Derived> |
| 354 | struct traits<MatrixLogarithmReturnValue<Derived> > |
| 355 | { |
| 356 | typedef typename Derived::PlainObject ReturnType; |
| 357 | }; |
| 358 | } |
| 359 | |
| 360 | |
| 361 | /********** MatrixBase method **********/ |
| 362 | |
| 363 | |
| 364 | template <typename Derived> |
| 365 | const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const |
| 366 | { |
| 367 | eigen_assert(rows() == cols()); |
| 368 | return MatrixLogarithmReturnValue<Derived>(derived()); |
| 369 | } |
| 370 | |
| 371 | } // end namespace Eigen |
| 372 | |
| 373 | #endif // EIGEN_MATRIX_LOGARITHM |