Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 4 | // Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 5 | // Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_MATRIX_EXPONENTIAL |
| 12 | #define EIGEN_MATRIX_EXPONENTIAL |
| 13 | |
| 14 | #include "StemFunction.h" |
| 15 | |
| 16 | namespace Eigen { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 17 | namespace internal { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 18 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 19 | /** \brief Scaling operator. |
| 20 | * |
| 21 | * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$. |
| 22 | */ |
| 23 | template <typename RealScalar> |
| 24 | struct MatrixExponentialScalingOp |
| 25 | { |
| 26 | /** \brief Constructor. |
| 27 | * |
| 28 | * \param[in] squarings The integer \f$ s \f$ in this document. |
| 29 | */ |
| 30 | MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 31 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 32 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 33 | /** \brief Scale a matrix coefficient. |
| 34 | * |
| 35 | * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$. |
| 36 | */ |
| 37 | inline const RealScalar operator() (const RealScalar& x) const |
| 38 | { |
| 39 | using std::ldexp; |
| 40 | return ldexp(x, -m_squarings); |
| 41 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 42 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 43 | typedef std::complex<RealScalar> ComplexScalar; |
| 44 | |
| 45 | /** \brief Scale a matrix coefficient. |
| 46 | * |
| 47 | * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$. |
| 48 | */ |
| 49 | inline const ComplexScalar operator() (const ComplexScalar& x) const |
| 50 | { |
| 51 | using std::ldexp; |
| 52 | return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings)); |
| 53 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 54 | |
| 55 | private: |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 56 | int m_squarings; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 57 | }; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 58 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 59 | /** \brief Compute the (3,3)-Padé approximant to the exponential. |
| 60 | * |
| 61 | * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé |
| 62 | * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. |
| 63 | */ |
| 64 | template <typename MatA, typename MatU, typename MatV> |
| 65 | void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V) |
| 66 | { |
| 67 | typedef typename MatA::PlainObject MatrixType; |
| 68 | typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar; |
| 69 | const RealScalar b[] = {120.L, 60.L, 12.L, 1.L}; |
| 70 | const MatrixType A2 = A * A; |
| 71 | const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); |
| 72 | U.noalias() = A * tmp; |
| 73 | V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); |
| 74 | } |
| 75 | |
| 76 | /** \brief Compute the (5,5)-Padé approximant to the exponential. |
| 77 | * |
| 78 | * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé |
| 79 | * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. |
| 80 | */ |
| 81 | template <typename MatA, typename MatU, typename MatV> |
| 82 | void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V) |
| 83 | { |
| 84 | typedef typename MatA::PlainObject MatrixType; |
| 85 | typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; |
| 86 | const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L}; |
| 87 | const MatrixType A2 = A * A; |
| 88 | const MatrixType A4 = A2 * A2; |
| 89 | const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); |
| 90 | U.noalias() = A * tmp; |
| 91 | V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); |
| 92 | } |
| 93 | |
| 94 | /** \brief Compute the (7,7)-Padé approximant to the exponential. |
| 95 | * |
| 96 | * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé |
| 97 | * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. |
| 98 | */ |
| 99 | template <typename MatA, typename MatU, typename MatV> |
| 100 | void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V) |
| 101 | { |
| 102 | typedef typename MatA::PlainObject MatrixType; |
| 103 | typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; |
| 104 | const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L}; |
| 105 | const MatrixType A2 = A * A; |
| 106 | const MatrixType A4 = A2 * A2; |
| 107 | const MatrixType A6 = A4 * A2; |
| 108 | const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2 |
| 109 | + b[1] * MatrixType::Identity(A.rows(), A.cols()); |
| 110 | U.noalias() = A * tmp; |
| 111 | V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); |
| 112 | |
| 113 | } |
| 114 | |
| 115 | /** \brief Compute the (9,9)-Padé approximant to the exponential. |
| 116 | * |
| 117 | * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé |
| 118 | * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. |
| 119 | */ |
| 120 | template <typename MatA, typename MatU, typename MatV> |
| 121 | void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V) |
| 122 | { |
| 123 | typedef typename MatA::PlainObject MatrixType; |
| 124 | typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; |
| 125 | const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L, |
| 126 | 2162160.L, 110880.L, 3960.L, 90.L, 1.L}; |
| 127 | const MatrixType A2 = A * A; |
| 128 | const MatrixType A4 = A2 * A2; |
| 129 | const MatrixType A6 = A4 * A2; |
| 130 | const MatrixType A8 = A6 * A2; |
| 131 | const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 |
| 132 | + b[1] * MatrixType::Identity(A.rows(), A.cols()); |
| 133 | U.noalias() = A * tmp; |
| 134 | V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); |
| 135 | } |
| 136 | |
| 137 | /** \brief Compute the (13,13)-Padé approximant to the exponential. |
| 138 | * |
| 139 | * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé |
| 140 | * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. |
| 141 | */ |
| 142 | template <typename MatA, typename MatU, typename MatV> |
| 143 | void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V) |
| 144 | { |
| 145 | typedef typename MatA::PlainObject MatrixType; |
| 146 | typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; |
| 147 | const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L, |
| 148 | 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L, |
| 149 | 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L}; |
| 150 | const MatrixType A2 = A * A; |
| 151 | const MatrixType A4 = A2 * A2; |
| 152 | const MatrixType A6 = A4 * A2; |
| 153 | V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage |
| 154 | MatrixType tmp = A6 * V; |
| 155 | tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); |
| 156 | U.noalias() = A * tmp; |
| 157 | tmp = b[12] * A6 + b[10] * A4 + b[8] * A2; |
| 158 | V.noalias() = A6 * tmp; |
| 159 | V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); |
| 160 | } |
| 161 | |
| 162 | /** \brief Compute the (17,17)-Padé approximant to the exponential. |
| 163 | * |
| 164 | * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé |
| 165 | * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. |
| 166 | * |
| 167 | * This function activates only if your long double is double-double or quadruple. |
| 168 | */ |
| 169 | #if LDBL_MANT_DIG > 64 |
| 170 | template <typename MatA, typename MatU, typename MatV> |
| 171 | void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V) |
| 172 | { |
| 173 | typedef typename MatA::PlainObject MatrixType; |
| 174 | typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; |
| 175 | const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L, |
| 176 | 100610229646136770560000.L, 15720348382208870400000.L, |
| 177 | 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L, |
| 178 | 595373117923584000.L, 27563570274240000.L, 1060137318240000.L, |
| 179 | 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L, |
| 180 | 46512.L, 306.L, 1.L}; |
| 181 | const MatrixType A2 = A * A; |
| 182 | const MatrixType A4 = A2 * A2; |
| 183 | const MatrixType A6 = A4 * A2; |
| 184 | const MatrixType A8 = A4 * A4; |
| 185 | V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage |
| 186 | MatrixType tmp = A8 * V; |
| 187 | tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 |
| 188 | + b[1] * MatrixType::Identity(A.rows(), A.cols()); |
| 189 | U.noalias() = A * tmp; |
| 190 | tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2; |
| 191 | V.noalias() = tmp * A8; |
| 192 | V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 |
| 193 | + b[0] * MatrixType::Identity(A.rows(), A.cols()); |
| 194 | } |
| 195 | #endif |
| 196 | |
| 197 | template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real> |
| 198 | struct matrix_exp_computeUV |
| 199 | { |
| 200 | /** \brief Compute Padé approximant to the exponential. |
| 201 | * |
| 202 | * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Padé |
| 203 | * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$ |
| 204 | * denotes the matrix \c arg. The degree of the Padé approximant and the value of squarings |
| 205 | * are chosen such that the approximation error is no more than the round-off error. |
| 206 | */ |
| 207 | static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 208 | }; |
| 209 | |
| 210 | template <typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 211 | struct matrix_exp_computeUV<MatrixType, float> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 212 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 213 | template <typename ArgType> |
| 214 | static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) |
| 215 | { |
| 216 | using std::frexp; |
| 217 | using std::pow; |
| 218 | const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); |
| 219 | squarings = 0; |
| 220 | if (l1norm < 4.258730016922831e-001f) { |
| 221 | matrix_exp_pade3(arg, U, V); |
| 222 | } else if (l1norm < 1.880152677804762e+000f) { |
| 223 | matrix_exp_pade5(arg, U, V); |
| 224 | } else { |
| 225 | const float maxnorm = 3.925724783138660f; |
| 226 | frexp(l1norm / maxnorm, &squarings); |
| 227 | if (squarings < 0) squarings = 0; |
| 228 | MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings)); |
| 229 | matrix_exp_pade7(A, U, V); |
| 230 | } |
| 231 | } |
| 232 | }; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 233 | |
| 234 | template <typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 235 | struct matrix_exp_computeUV<MatrixType, double> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 236 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 237 | typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; |
| 238 | template <typename ArgType> |
| 239 | static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) |
| 240 | { |
| 241 | using std::frexp; |
| 242 | using std::pow; |
| 243 | const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); |
| 244 | squarings = 0; |
| 245 | if (l1norm < 1.495585217958292e-002) { |
| 246 | matrix_exp_pade3(arg, U, V); |
| 247 | } else if (l1norm < 2.539398330063230e-001) { |
| 248 | matrix_exp_pade5(arg, U, V); |
| 249 | } else if (l1norm < 9.504178996162932e-001) { |
| 250 | matrix_exp_pade7(arg, U, V); |
| 251 | } else if (l1norm < 2.097847961257068e+000) { |
| 252 | matrix_exp_pade9(arg, U, V); |
| 253 | } else { |
| 254 | const RealScalar maxnorm = 5.371920351148152; |
| 255 | frexp(l1norm / maxnorm, &squarings); |
| 256 | if (squarings < 0) squarings = 0; |
| 257 | MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<RealScalar>(squarings)); |
| 258 | matrix_exp_pade13(A, U, V); |
| 259 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 260 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 261 | }; |
| 262 | |
| 263 | template <typename MatrixType> |
| 264 | struct matrix_exp_computeUV<MatrixType, long double> |
| 265 | { |
| 266 | template <typename ArgType> |
| 267 | static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) |
| 268 | { |
| 269 | #if LDBL_MANT_DIG == 53 // double precision |
| 270 | matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings); |
| 271 | |
| 272 | #else |
| 273 | |
| 274 | using std::frexp; |
| 275 | using std::pow; |
| 276 | const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); |
| 277 | squarings = 0; |
| 278 | |
| 279 | #if LDBL_MANT_DIG <= 64 // extended precision |
| 280 | |
| 281 | if (l1norm < 4.1968497232266989671e-003L) { |
| 282 | matrix_exp_pade3(arg, U, V); |
| 283 | } else if (l1norm < 1.1848116734693823091e-001L) { |
| 284 | matrix_exp_pade5(arg, U, V); |
| 285 | } else if (l1norm < 5.5170388480686700274e-001L) { |
| 286 | matrix_exp_pade7(arg, U, V); |
| 287 | } else if (l1norm < 1.3759868875587845383e+000L) { |
| 288 | matrix_exp_pade9(arg, U, V); |
| 289 | } else { |
| 290 | const long double maxnorm = 4.0246098906697353063L; |
| 291 | frexp(l1norm / maxnorm, &squarings); |
| 292 | if (squarings < 0) squarings = 0; |
| 293 | MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); |
| 294 | matrix_exp_pade13(A, U, V); |
| 295 | } |
| 296 | |
| 297 | #elif LDBL_MANT_DIG <= 106 // double-double |
| 298 | |
| 299 | if (l1norm < 3.2787892205607026992947488108213e-005L) { |
| 300 | matrix_exp_pade3(arg, U, V); |
| 301 | } else if (l1norm < 6.4467025060072760084130906076332e-003L) { |
| 302 | matrix_exp_pade5(arg, U, V); |
| 303 | } else if (l1norm < 6.8988028496595374751374122881143e-002L) { |
| 304 | matrix_exp_pade7(arg, U, V); |
| 305 | } else if (l1norm < 2.7339737518502231741495857201670e-001L) { |
| 306 | matrix_exp_pade9(arg, U, V); |
| 307 | } else if (l1norm < 1.3203382096514474905666448850278e+000L) { |
| 308 | matrix_exp_pade13(arg, U, V); |
| 309 | } else { |
| 310 | const long double maxnorm = 3.2579440895405400856599663723517L; |
| 311 | frexp(l1norm / maxnorm, &squarings); |
| 312 | if (squarings < 0) squarings = 0; |
| 313 | MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); |
| 314 | matrix_exp_pade17(A, U, V); |
| 315 | } |
| 316 | |
| 317 | #elif LDBL_MANT_DIG <= 112 // quadruple precison |
| 318 | |
| 319 | if (l1norm < 1.639394610288918690547467954466970e-005L) { |
| 320 | matrix_exp_pade3(arg, U, V); |
| 321 | } else if (l1norm < 4.253237712165275566025884344433009e-003L) { |
| 322 | matrix_exp_pade5(arg, U, V); |
| 323 | } else if (l1norm < 5.125804063165764409885122032933142e-002L) { |
| 324 | matrix_exp_pade7(arg, U, V); |
| 325 | } else if (l1norm < 2.170000765161155195453205651889853e-001L) { |
| 326 | matrix_exp_pade9(arg, U, V); |
| 327 | } else if (l1norm < 1.125358383453143065081397882891878e+000L) { |
| 328 | matrix_exp_pade13(arg, U, V); |
| 329 | } else { |
| 330 | const long double maxnorm = 2.884233277829519311757165057717815L; |
| 331 | frexp(l1norm / maxnorm, &squarings); |
| 332 | if (squarings < 0) squarings = 0; |
| 333 | MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); |
| 334 | matrix_exp_pade17(A, U, V); |
| 335 | } |
| 336 | |
| 337 | #else |
| 338 | |
| 339 | // this case should be handled in compute() |
| 340 | eigen_assert(false && "Bug in MatrixExponential"); |
| 341 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 342 | #endif |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 343 | #endif // LDBL_MANT_DIG |
| 344 | } |
| 345 | }; |
| 346 | |
| 347 | template<typename T> struct is_exp_known_type : false_type {}; |
| 348 | template<> struct is_exp_known_type<float> : true_type {}; |
| 349 | template<> struct is_exp_known_type<double> : true_type {}; |
| 350 | #if LDBL_MANT_DIG <= 112 |
| 351 | template<> struct is_exp_known_type<long double> : true_type {}; |
| 352 | #endif |
| 353 | |
| 354 | template <typename ArgType, typename ResultType> |
| 355 | void matrix_exp_compute(const ArgType& arg, ResultType &result, true_type) // natively supported scalar type |
| 356 | { |
| 357 | typedef typename ArgType::PlainObject MatrixType; |
| 358 | MatrixType U, V; |
| 359 | int squarings; |
| 360 | matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V) |
| 361 | MatrixType numer = U + V; |
| 362 | MatrixType denom = -U + V; |
| 363 | result = denom.partialPivLu().solve(numer); |
| 364 | for (int i=0; i<squarings; i++) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 365 | result *= result; // undo scaling by repeated squaring |
| 366 | } |
| 367 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 368 | |
| 369 | /* Computes the matrix exponential |
| 370 | * |
| 371 | * \param arg argument of matrix exponential (should be plain object) |
| 372 | * \param result variable in which result will be stored |
| 373 | */ |
| 374 | template <typename ArgType, typename ResultType> |
| 375 | void matrix_exp_compute(const ArgType& arg, ResultType &result, false_type) // default |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 376 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 377 | typedef typename ArgType::PlainObject MatrixType; |
| 378 | typedef typename traits<MatrixType>::Scalar Scalar; |
| 379 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 380 | typedef typename std::complex<RealScalar> ComplexScalar; |
| 381 | result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 382 | } |
| 383 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 384 | } // end namespace Eigen::internal |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 385 | |
| 386 | /** \ingroup MatrixFunctions_Module |
| 387 | * |
| 388 | * \brief Proxy for the matrix exponential of some matrix (expression). |
| 389 | * |
| 390 | * \tparam Derived Type of the argument to the matrix exponential. |
| 391 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 392 | * This class holds the argument to the matrix exponential until it is assigned or evaluated for |
| 393 | * some other reason (so the argument should not be changed in the meantime). It is the return type |
| 394 | * of MatrixBase::exp() and most of the time this is the only way it is used. |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 395 | */ |
| 396 | template<typename Derived> struct MatrixExponentialReturnValue |
| 397 | : public ReturnByValue<MatrixExponentialReturnValue<Derived> > |
| 398 | { |
| 399 | typedef typename Derived::Index Index; |
| 400 | public: |
| 401 | /** \brief Constructor. |
| 402 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 403 | * \param src %Matrix (expression) forming the argument of the matrix exponential. |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 404 | */ |
| 405 | MatrixExponentialReturnValue(const Derived& src) : m_src(src) { } |
| 406 | |
| 407 | /** \brief Compute the matrix exponential. |
| 408 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 409 | * \param result the matrix exponential of \p src in the constructor. |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 410 | */ |
| 411 | template <typename ResultType> |
| 412 | inline void evalTo(ResultType& result) const |
| 413 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 414 | const typename internal::nested_eval<Derived, 10>::type tmp(m_src); |
| 415 | internal::matrix_exp_compute(tmp, result, internal::is_exp_known_type<typename Derived::Scalar>()); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 416 | } |
| 417 | |
| 418 | Index rows() const { return m_src.rows(); } |
| 419 | Index cols() const { return m_src.cols(); } |
| 420 | |
| 421 | protected: |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 422 | const typename internal::ref_selector<Derived>::type m_src; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 423 | }; |
| 424 | |
| 425 | namespace internal { |
| 426 | template<typename Derived> |
| 427 | struct traits<MatrixExponentialReturnValue<Derived> > |
| 428 | { |
| 429 | typedef typename Derived::PlainObject ReturnType; |
| 430 | }; |
| 431 | } |
| 432 | |
| 433 | template <typename Derived> |
| 434 | const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const |
| 435 | { |
| 436 | eigen_assert(rows() == cols()); |
| 437 | return MatrixExponentialReturnValue<Derived>(derived()); |
| 438 | } |
| 439 | |
| 440 | } // end namespace Eigen |
| 441 | |
| 442 | #endif // EIGEN_MATRIX_EXPONENTIAL |