blob: a099d17c876dc038013168c6409d22edffe6c09c [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
Austin Schuh189376f2018-12-20 22:11:15 +11005// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
Brian Silverman72890c22015-09-19 14:37:37 -04006//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
Austin Schuh189376f2018-12-20 22:11:15 +110011#define TEST_ENABLE_TEMPORARY_TRACKING
Brian Silverman72890c22015-09-19 14:37:37 -040012#define EIGEN_NO_STATIC_ASSERT
13
14#include "main.h"
15
16template<typename ArrayType> void vectorwiseop_array(const ArrayType& m)
17{
Brian Silverman72890c22015-09-19 14:37:37 -040018 typedef typename ArrayType::Scalar Scalar;
19 typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
20 typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
21
22 Index rows = m.rows();
23 Index cols = m.cols();
24 Index r = internal::random<Index>(0, rows-1),
25 c = internal::random<Index>(0, cols-1);
26
27 ArrayType m1 = ArrayType::Random(rows, cols),
28 m2(rows, cols),
29 m3(rows, cols);
30
31 ColVectorType colvec = ColVectorType::Random(rows);
32 RowVectorType rowvec = RowVectorType::Random(cols);
33
34 // test addition
35
36 m2 = m1;
37 m2.colwise() += colvec;
38 VERIFY_IS_APPROX(m2, m1.colwise() + colvec);
39 VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec);
40
41 VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose());
42 VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose());
43
44 m2 = m1;
45 m2.rowwise() += rowvec;
46 VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec);
47 VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec);
48
49 VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose());
50 VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose());
51
52 // test substraction
53
54 m2 = m1;
55 m2.colwise() -= colvec;
56 VERIFY_IS_APPROX(m2, m1.colwise() - colvec);
57 VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec);
58
59 VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose());
60 VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose());
61
62 m2 = m1;
63 m2.rowwise() -= rowvec;
64 VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec);
65 VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec);
66
67 VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose());
68 VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose());
69
70 // test multiplication
71
72 m2 = m1;
73 m2.colwise() *= colvec;
74 VERIFY_IS_APPROX(m2, m1.colwise() * colvec);
75 VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec);
76
77 VERIFY_RAISES_ASSERT(m2.colwise() *= colvec.transpose());
78 VERIFY_RAISES_ASSERT(m1.colwise() * colvec.transpose());
79
80 m2 = m1;
81 m2.rowwise() *= rowvec;
82 VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec);
83 VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec);
84
85 VERIFY_RAISES_ASSERT(m2.rowwise() *= rowvec.transpose());
86 VERIFY_RAISES_ASSERT(m1.rowwise() * rowvec.transpose());
87
88 // test quotient
89
90 m2 = m1;
91 m2.colwise() /= colvec;
92 VERIFY_IS_APPROX(m2, m1.colwise() / colvec);
93 VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec);
94
95 VERIFY_RAISES_ASSERT(m2.colwise() /= colvec.transpose());
96 VERIFY_RAISES_ASSERT(m1.colwise() / colvec.transpose());
97
98 m2 = m1;
99 m2.rowwise() /= rowvec;
100 VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec);
101 VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec);
102
103 VERIFY_RAISES_ASSERT(m2.rowwise() /= rowvec.transpose());
104 VERIFY_RAISES_ASSERT(m1.rowwise() / rowvec.transpose());
Austin Schuh189376f2018-12-20 22:11:15 +1100105
Brian Silverman72890c22015-09-19 14:37:37 -0400106 m2 = m1;
107 // yes, there might be an aliasing issue there but ".rowwise() /="
Austin Schuh189376f2018-12-20 22:11:15 +1100108 // is supposed to evaluate " m2.colwise().sum()" into a temporary to avoid
109 // evaluating the reduction multiple times
Brian Silverman72890c22015-09-19 14:37:37 -0400110 if(ArrayType::RowsAtCompileTime>2 || ArrayType::RowsAtCompileTime==Dynamic)
111 {
112 m2.rowwise() /= m2.colwise().sum();
113 VERIFY_IS_APPROX(m2, m1.rowwise() / m1.colwise().sum());
114 }
Austin Schuh189376f2018-12-20 22:11:15 +1100115
116 // all/any
117 Array<bool,Dynamic,Dynamic> mb(rows,cols);
118 mb = (m1.real()<=0.7).colwise().all();
119 VERIFY( (mb.col(c) == (m1.real().col(c)<=0.7).all()).all() );
120 mb = (m1.real()<=0.7).rowwise().all();
121 VERIFY( (mb.row(r) == (m1.real().row(r)<=0.7).all()).all() );
122
123 mb = (m1.real()>=0.7).colwise().any();
124 VERIFY( (mb.col(c) == (m1.real().col(c)>=0.7).any()).all() );
125 mb = (m1.real()>=0.7).rowwise().any();
126 VERIFY( (mb.row(r) == (m1.real().row(r)>=0.7).any()).all() );
Brian Silverman72890c22015-09-19 14:37:37 -0400127}
128
129template<typename MatrixType> void vectorwiseop_matrix(const MatrixType& m)
130{
Brian Silverman72890c22015-09-19 14:37:37 -0400131 typedef typename MatrixType::Scalar Scalar;
132 typedef typename NumTraits<Scalar>::Real RealScalar;
133 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
134 typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
135 typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealColVectorType;
136 typedef Matrix<RealScalar, 1, MatrixType::ColsAtCompileTime> RealRowVectorType;
137
138 Index rows = m.rows();
139 Index cols = m.cols();
140 Index r = internal::random<Index>(0, rows-1),
141 c = internal::random<Index>(0, cols-1);
142
143 MatrixType m1 = MatrixType::Random(rows, cols),
144 m2(rows, cols),
145 m3(rows, cols);
146
147 ColVectorType colvec = ColVectorType::Random(rows);
148 RowVectorType rowvec = RowVectorType::Random(cols);
149 RealColVectorType rcres;
150 RealRowVectorType rrres;
151
152 // test addition
153
154 m2 = m1;
155 m2.colwise() += colvec;
156 VERIFY_IS_APPROX(m2, m1.colwise() + colvec);
157 VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec);
158
Austin Schuh189376f2018-12-20 22:11:15 +1100159 if(rows>1)
160 {
161 VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose());
162 VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose());
163 }
Brian Silverman72890c22015-09-19 14:37:37 -0400164
165 m2 = m1;
166 m2.rowwise() += rowvec;
167 VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec);
168 VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec);
169
Austin Schuh189376f2018-12-20 22:11:15 +1100170 if(cols>1)
171 {
172 VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose());
173 VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose());
174 }
Brian Silverman72890c22015-09-19 14:37:37 -0400175
176 // test substraction
177
178 m2 = m1;
179 m2.colwise() -= colvec;
180 VERIFY_IS_APPROX(m2, m1.colwise() - colvec);
181 VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec);
182
Austin Schuh189376f2018-12-20 22:11:15 +1100183 if(rows>1)
184 {
185 VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose());
186 VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose());
187 }
Brian Silverman72890c22015-09-19 14:37:37 -0400188
189 m2 = m1;
190 m2.rowwise() -= rowvec;
191 VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec);
192 VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec);
193
Austin Schuh189376f2018-12-20 22:11:15 +1100194 if(cols>1)
195 {
196 VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose());
197 VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose());
198 }
199
Brian Silverman72890c22015-09-19 14:37:37 -0400200 // test norm
201 rrres = m1.colwise().norm();
202 VERIFY_IS_APPROX(rrres(c), m1.col(c).norm());
203 rcres = m1.rowwise().norm();
204 VERIFY_IS_APPROX(rcres(r), m1.row(r).norm());
Austin Schuh189376f2018-12-20 22:11:15 +1100205
206 VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum(), m1.colwise().template lpNorm<1>());
207 VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().sum(), m1.rowwise().template lpNorm<1>());
208 VERIFY_IS_APPROX(m1.cwiseAbs().colwise().maxCoeff(), m1.colwise().template lpNorm<Infinity>());
209 VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().maxCoeff(), m1.rowwise().template lpNorm<Infinity>());
210
211 // regression for bug 1158
212 VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum().x(), m1.col(0).cwiseAbs().sum());
213
Brian Silverman72890c22015-09-19 14:37:37 -0400214 // test normalized
215 m2 = m1.colwise().normalized();
216 VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized());
217 m2 = m1.rowwise().normalized();
218 VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized());
Austin Schuh189376f2018-12-20 22:11:15 +1100219
Brian Silverman72890c22015-09-19 14:37:37 -0400220 // test normalize
221 m2 = m1;
222 m2.colwise().normalize();
223 VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized());
224 m2 = m1;
225 m2.rowwise().normalize();
226 VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized());
Austin Schuh189376f2018-12-20 22:11:15 +1100227
228 // test with partial reduction of products
229 Matrix<Scalar,MatrixType::RowsAtCompileTime,MatrixType::RowsAtCompileTime> m1m1 = m1 * m1.transpose();
230 VERIFY_IS_APPROX( (m1 * m1.transpose()).colwise().sum(), m1m1.colwise().sum());
231 Matrix<Scalar,1,MatrixType::RowsAtCompileTime> tmp(rows);
232 VERIFY_EVALUATION_COUNT( tmp = (m1 * m1.transpose()).colwise().sum(), 1);
233
234 m2 = m1.rowwise() - (m1.colwise().sum()/RealScalar(m1.rows())).eval();
235 m1 = m1.rowwise() - (m1.colwise().sum()/RealScalar(m1.rows()));
236 VERIFY_IS_APPROX( m1, m2 );
237 VERIFY_EVALUATION_COUNT( m2 = (m1.rowwise() - m1.colwise().sum()/RealScalar(m1.rows())), (MatrixType::RowsAtCompileTime!=1 ? 1 : 0) );
Brian Silverman72890c22015-09-19 14:37:37 -0400238}
239
240void test_vectorwiseop()
241{
Austin Schuh189376f2018-12-20 22:11:15 +1100242 CALL_SUBTEST_1( vectorwiseop_array(Array22cd()) );
243 CALL_SUBTEST_2( vectorwiseop_array(Array<double, 3, 2>()) );
244 CALL_SUBTEST_3( vectorwiseop_array(ArrayXXf(3, 4)) );
245 CALL_SUBTEST_4( vectorwiseop_matrix(Matrix4cf()) );
246 CALL_SUBTEST_5( vectorwiseop_matrix(Matrix<float,4,5>()) );
247 CALL_SUBTEST_6( vectorwiseop_matrix(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
248 CALL_SUBTEST_7( vectorwiseop_matrix(VectorXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
249 CALL_SUBTEST_7( vectorwiseop_matrix(RowVectorXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
Brian Silverman72890c22015-09-19 14:37:37 -0400250}