Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 1 | #ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |
| 2 | #define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |
| 3 | |
| 4 | typedef int TensorIndex; |
| 5 | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| 6 | |
| 7 | #include "unsupported/Eigen/CXX11/Tensor" |
| 8 | #include "benchmark.h" |
| 9 | |
| 10 | #define BENCHMARK_RANGE(bench, lo, hi) \ |
| 11 | BENCHMARK(bench)->Range(lo, hi) |
| 12 | |
| 13 | using Eigen::Tensor; |
| 14 | using Eigen::TensorMap; |
| 15 | |
| 16 | // TODO(bsteiner): also templatize on the input type since we have users |
| 17 | // for int8 as well as floats. |
| 18 | template <typename Device, typename T> class BenchmarkSuite { |
| 19 | public: |
| 20 | BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n) |
| 21 | : m_(m), k_(k), n_(n), device_(device) { |
| 22 | initialize(); |
| 23 | } |
| 24 | |
| 25 | BenchmarkSuite(const Device& device, size_t m) |
| 26 | : m_(m), k_(m), n_(m), device_(device) { |
| 27 | initialize(); |
| 28 | } |
| 29 | |
| 30 | ~BenchmarkSuite() { |
| 31 | device_.deallocate(a_); |
| 32 | device_.deallocate(b_); |
| 33 | device_.deallocate(c_); |
| 34 | } |
| 35 | |
| 36 | void memcpy(int num_iters) { |
| 37 | eigen_assert(m_ == k_ && k_ == n_); |
| 38 | StartBenchmarkTiming(); |
| 39 | for (int iter = 0; iter < num_iters; ++iter) { |
| 40 | device_.memcpy(c_, a_, m_ * m_ * sizeof(T)); |
| 41 | } |
| 42 | // Record the number of values copied per second |
| 43 | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| 44 | } |
| 45 | |
| 46 | void typeCasting(int num_iters) { |
| 47 | eigen_assert(m_ == n_); |
| 48 | Eigen::array<TensorIndex, 2> sizes; |
| 49 | if (sizeof(T) >= sizeof(int)) { |
| 50 | sizes[0] = m_; |
| 51 | sizes[1] = k_; |
| 52 | } else { |
| 53 | sizes[0] = m_ * sizeof(T) / sizeof(int); |
| 54 | sizes[1] = k_ * sizeof(T) / sizeof(int); |
| 55 | } |
| 56 | const TensorMap<Tensor<int, 2, 0, TensorIndex>, Eigen::Aligned> A((int*)a_, sizes); |
| 57 | TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, sizes); |
| 58 | |
| 59 | StartBenchmarkTiming(); |
| 60 | for (int iter = 0; iter < num_iters; ++iter) { |
| 61 | B.device(device_) = A.template cast<T>(); |
| 62 | } |
| 63 | // Record the number of values copied per second |
| 64 | finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); |
| 65 | } |
| 66 | |
| 67 | void random(int num_iters) { |
| 68 | eigen_assert(m_ == k_ && k_ == n_); |
| 69 | Eigen::array<TensorIndex, 2> sizes; |
| 70 | sizes[0] = m_; |
| 71 | sizes[1] = m_; |
| 72 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| 73 | |
| 74 | StartBenchmarkTiming(); |
| 75 | for (int iter = 0; iter < num_iters; ++iter) { |
| 76 | C.device(device_) = C.random(); |
| 77 | } |
| 78 | // Record the number of random numbers generated per second |
| 79 | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| 80 | } |
| 81 | |
| 82 | void slicing(int num_iters) { |
| 83 | eigen_assert(m_ == k_ && k_ == n_); |
| 84 | Eigen::array<TensorIndex, 2> sizes; |
| 85 | sizes[0] = m_; |
| 86 | sizes[1] = m_; |
| 87 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); |
| 88 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); |
| 89 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| 90 | |
| 91 | const Eigen::DSizes<TensorIndex, 2> quarter_sizes(m_/2, m_/2); |
| 92 | const Eigen::DSizes<TensorIndex, 2> first_quadrant(0, 0); |
| 93 | const Eigen::DSizes<TensorIndex, 2> second_quadrant(0, m_/2); |
| 94 | const Eigen::DSizes<TensorIndex, 2> third_quadrant(m_/2, 0); |
| 95 | const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(m_/2, m_/2); |
| 96 | |
| 97 | StartBenchmarkTiming(); |
| 98 | for (int iter = 0; iter < num_iters; ++iter) { |
| 99 | C.slice(first_quadrant, quarter_sizes).device(device_) = |
| 100 | A.slice(first_quadrant, quarter_sizes); |
| 101 | C.slice(second_quadrant, quarter_sizes).device(device_) = |
| 102 | B.slice(second_quadrant, quarter_sizes); |
| 103 | C.slice(third_quadrant, quarter_sizes).device(device_) = |
| 104 | A.slice(third_quadrant, quarter_sizes); |
| 105 | C.slice(fourth_quadrant, quarter_sizes).device(device_) = |
| 106 | B.slice(fourth_quadrant, quarter_sizes); |
| 107 | } |
| 108 | // Record the number of values copied from the rhs slice to the lhs slice |
| 109 | // each second |
| 110 | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| 111 | } |
| 112 | |
| 113 | void rowChip(int num_iters) { |
| 114 | Eigen::array<TensorIndex, 2> input_size; |
| 115 | input_size[0] = k_; |
| 116 | input_size[1] = n_; |
| 117 | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); |
| 118 | Eigen::array<TensorIndex, 1> output_size; |
| 119 | output_size[0] = n_; |
| 120 | TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); |
| 121 | |
| 122 | StartBenchmarkTiming(); |
| 123 | for (int iter = 0; iter < num_iters; ++iter) { |
| 124 | C.device(device_) = B.chip(iter % k_, 0); |
| 125 | } |
| 126 | // Record the number of values copied from the rhs chip to the lhs. |
| 127 | finalizeBenchmark(static_cast<int64_t>(n_) * num_iters); |
| 128 | } |
| 129 | |
| 130 | void colChip(int num_iters) { |
| 131 | Eigen::array<TensorIndex, 2> input_size; |
| 132 | input_size[0] = k_; |
| 133 | input_size[1] = n_; |
| 134 | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); |
| 135 | Eigen::array<TensorIndex, 1> output_size; |
| 136 | output_size[0] = n_; |
| 137 | TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); |
| 138 | |
| 139 | StartBenchmarkTiming(); |
| 140 | for (int iter = 0; iter < num_iters; ++iter) { |
| 141 | C.device(device_) = B.chip(iter % n_, 1); |
| 142 | } |
| 143 | // Record the number of values copied from the rhs chip to the lhs. |
| 144 | finalizeBenchmark(static_cast<int64_t>(n_) * num_iters); |
| 145 | } |
| 146 | |
| 147 | void shuffling(int num_iters) { |
| 148 | eigen_assert(m_ == n_); |
| 149 | Eigen::array<TensorIndex, 2> size_a; |
| 150 | size_a[0] = m_; |
| 151 | size_a[1] = k_; |
| 152 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); |
| 153 | Eigen::array<TensorIndex, 2> size_b; |
| 154 | size_b[0] = k_; |
| 155 | size_b[1] = m_; |
| 156 | TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); |
| 157 | |
| 158 | Eigen::array<int, 2> shuffle; |
| 159 | shuffle[0] = 1; |
| 160 | shuffle[1] = 0; |
| 161 | |
| 162 | StartBenchmarkTiming(); |
| 163 | for (int iter = 0; iter < num_iters; ++iter) { |
| 164 | B.device(device_) = A.shuffle(shuffle); |
| 165 | } |
| 166 | // Record the number of values shuffled from A and copied to B each second |
| 167 | finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); |
| 168 | } |
| 169 | |
| 170 | void padding(int num_iters) { |
| 171 | eigen_assert(m_ == k_); |
| 172 | Eigen::array<TensorIndex, 2> size_a; |
| 173 | size_a[0] = m_; |
| 174 | size_a[1] = k_-3; |
| 175 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); |
| 176 | Eigen::array<TensorIndex, 2> size_b; |
| 177 | size_b[0] = k_; |
| 178 | size_b[1] = m_; |
| 179 | TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); |
| 180 | |
| 181 | #if defined(EIGEN_HAS_INDEX_LIST) |
| 182 | Eigen::IndexPairList<Eigen::type2indexpair<0, 0>, |
| 183 | Eigen::type2indexpair<2, 1> > paddings; |
| 184 | #else |
| 185 | Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings; |
| 186 | paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0); |
| 187 | paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1); |
| 188 | #endif |
| 189 | |
| 190 | StartBenchmarkTiming(); |
| 191 | for (int iter = 0; iter < num_iters; ++iter) { |
| 192 | B.device(device_) = A.pad(paddings); |
| 193 | } |
| 194 | // Record the number of values copied from the padded tensor A each second |
| 195 | finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); |
| 196 | } |
| 197 | |
| 198 | void striding(int num_iters) { |
| 199 | eigen_assert(m_ == k_); |
| 200 | Eigen::array<TensorIndex, 2> size_a; |
| 201 | size_a[0] = m_; |
| 202 | size_a[1] = k_; |
| 203 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); |
| 204 | Eigen::array<TensorIndex, 2> size_b; |
| 205 | size_b[0] = m_; |
| 206 | size_b[1] = k_/2; |
| 207 | TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); |
| 208 | |
| 209 | #ifndef EIGEN_HAS_INDEX_LIST |
| 210 | Eigen::array<TensorIndex, 2> strides; |
| 211 | strides[0] = 1; |
| 212 | strides[1] = 2; |
| 213 | #else |
| 214 | // Take advantage of cxx11 to give the compiler information it can use to |
| 215 | // optimize the code. |
| 216 | Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> > strides; |
| 217 | #endif |
| 218 | |
| 219 | StartBenchmarkTiming(); |
| 220 | for (int iter = 0; iter < num_iters; ++iter) { |
| 221 | B.device(device_) = A.stride(strides); |
| 222 | } |
| 223 | // Record the number of values copied from the padded tensor A each second |
| 224 | finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); |
| 225 | } |
| 226 | |
| 227 | void broadcasting(int num_iters) { |
| 228 | Eigen::array<TensorIndex, 2> size_a; |
| 229 | size_a[0] = m_; |
| 230 | size_a[1] = 1; |
| 231 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); |
| 232 | Eigen::array<TensorIndex, 2> size_c; |
| 233 | size_c[0] = m_; |
| 234 | size_c[1] = n_; |
| 235 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, size_c); |
| 236 | |
| 237 | #ifndef EIGEN_HAS_INDEX_LIST |
| 238 | Eigen::array<int, 2> broadcast; |
| 239 | broadcast[0] = 1; |
| 240 | broadcast[1] = n_; |
| 241 | #else |
| 242 | // Take advantage of cxx11 to give the compiler information it can use to |
| 243 | // optimize the code. |
| 244 | Eigen::IndexList<Eigen::type2index<1>, int> broadcast; |
| 245 | broadcast.set(1, n_); |
| 246 | #endif |
| 247 | |
| 248 | StartBenchmarkTiming(); |
| 249 | for (int iter = 0; iter < num_iters; ++iter) { |
| 250 | C.device(device_) = A.broadcast(broadcast); |
| 251 | } |
| 252 | // Record the number of values broadcasted from A and copied to C each second |
| 253 | finalizeBenchmark(static_cast<int64_t>(m_) * n_ * num_iters); |
| 254 | } |
| 255 | |
| 256 | void coeffWiseOp(int num_iters) { |
| 257 | eigen_assert(m_ == k_ && k_ == n_); |
| 258 | Eigen::array<TensorIndex, 2> sizes; |
| 259 | sizes[0] = m_; |
| 260 | sizes[1] = m_; |
| 261 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); |
| 262 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); |
| 263 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| 264 | |
| 265 | StartBenchmarkTiming(); |
| 266 | for (int iter = 0; iter < num_iters; ++iter) { |
| 267 | C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7)); |
| 268 | } |
| 269 | // Record the number of FLOP executed per second (2 multiplications and |
| 270 | // 1 addition per value) |
| 271 | finalizeBenchmark(static_cast<int64_t>(3) * m_ * m_ * num_iters); |
| 272 | } |
| 273 | |
| 274 | void algebraicFunc(int num_iters) { |
| 275 | eigen_assert(m_ == k_ && k_ == n_); |
| 276 | Eigen::array<TensorIndex, 2> sizes; |
| 277 | sizes[0] = m_; |
| 278 | sizes[1] = m_; |
| 279 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); |
| 280 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); |
| 281 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| 282 | |
| 283 | StartBenchmarkTiming(); |
| 284 | for (int iter = 0; iter < num_iters; ++iter) { |
| 285 | C.device(device_) = A.rsqrt() + B.sqrt() * B.square(); |
| 286 | } |
| 287 | // Record the number of FLOP executed per second (assuming one operation |
| 288 | // per value) |
| 289 | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| 290 | } |
| 291 | |
| 292 | void transcendentalFunc(int num_iters) { |
| 293 | eigen_assert(m_ == k_ && k_ == n_); |
| 294 | Eigen::array<TensorIndex, 2> sizes; |
| 295 | sizes[0] = m_; |
| 296 | sizes[1] = m_; |
| 297 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); |
| 298 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); |
| 299 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| 300 | |
| 301 | StartBenchmarkTiming(); |
| 302 | for (int iter = 0; iter < num_iters; ++iter) { |
| 303 | C.device(device_) = A.exp() + B.log(); |
| 304 | } |
| 305 | // Record the number of FLOP executed per second (assuming one operation |
| 306 | // per value) |
| 307 | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| 308 | } |
| 309 | |
| 310 | // Row reduction |
| 311 | void rowReduction(int num_iters) { |
| 312 | Eigen::array<TensorIndex, 2> input_size; |
| 313 | input_size[0] = k_; |
| 314 | input_size[1] = n_; |
| 315 | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); |
| 316 | Eigen::array<TensorIndex, 1> output_size; |
| 317 | output_size[0] = n_; |
| 318 | TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); |
| 319 | |
| 320 | #ifndef EIGEN_HAS_INDEX_LIST |
| 321 | Eigen::array<TensorIndex, 1> sum_along_dim; |
| 322 | sum_along_dim[0] = 0; |
| 323 | #else |
| 324 | // Take advantage of cxx11 to give the compiler information it can use to |
| 325 | // optimize the code. |
| 326 | Eigen::IndexList<Eigen::type2index<0>> sum_along_dim; |
| 327 | #endif |
| 328 | |
| 329 | StartBenchmarkTiming(); |
| 330 | for (int iter = 0; iter < num_iters; ++iter) { |
| 331 | C.device(device_) = B.sum(sum_along_dim); |
| 332 | } |
| 333 | // Record the number of FLOP executed per second (assuming one operation |
| 334 | // per value) |
| 335 | finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); |
| 336 | } |
| 337 | |
| 338 | // Column reduction |
| 339 | void colReduction(int num_iters) { |
| 340 | Eigen::array<TensorIndex, 2> input_size; |
| 341 | input_size[0] = k_; |
| 342 | input_size[1] = n_; |
| 343 | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B( |
| 344 | b_, input_size); |
| 345 | Eigen::array<TensorIndex, 1> output_size; |
| 346 | output_size[0] = k_; |
| 347 | TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C( |
| 348 | c_, output_size); |
| 349 | |
| 350 | #ifndef EIGEN_HAS_INDEX_LIST |
| 351 | Eigen::array<TensorIndex, 1> sum_along_dim; |
| 352 | sum_along_dim[0] = 1; |
| 353 | #else |
| 354 | // Take advantage of cxx11 to give the compiler information it can use to |
| 355 | // optimize the code. |
| 356 | Eigen::IndexList<Eigen::type2index<1>> sum_along_dim; |
| 357 | #endif |
| 358 | |
| 359 | StartBenchmarkTiming(); |
| 360 | for (int iter = 0; iter < num_iters; ++iter) { |
| 361 | C.device(device_) = B.sum(sum_along_dim); |
| 362 | } |
| 363 | // Record the number of FLOP executed per second (assuming one operation |
| 364 | // per value) |
| 365 | finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); |
| 366 | } |
| 367 | |
| 368 | // Full reduction |
| 369 | void fullReduction(int num_iters) { |
| 370 | Eigen::array<TensorIndex, 2> input_size; |
| 371 | input_size[0] = k_; |
| 372 | input_size[1] = n_; |
| 373 | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B( |
| 374 | b_, input_size); |
| 375 | Eigen::array<TensorIndex, 0> output_size; |
| 376 | TensorMap<Tensor<T, 0, 0, TensorIndex>, Eigen::Aligned> C( |
| 377 | c_, output_size); |
| 378 | |
| 379 | StartBenchmarkTiming(); |
| 380 | for (int iter = 0; iter < num_iters; ++iter) { |
| 381 | C.device(device_) = B.sum(); |
| 382 | } |
| 383 | // Record the number of FLOP executed per second (assuming one operation |
| 384 | // per value) |
| 385 | finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); |
| 386 | } |
| 387 | |
| 388 | // do a contraction which is equivalent to a matrix multiplication |
| 389 | void contraction(int num_iters) { |
| 390 | Eigen::array<TensorIndex, 2> sizeA; |
| 391 | sizeA[0] = m_; |
| 392 | sizeA[1] = k_; |
| 393 | Eigen::array<TensorIndex, 2> sizeB; |
| 394 | sizeB[0] = k_; |
| 395 | sizeB[1] = n_; |
| 396 | Eigen::array<TensorIndex, 2> sizeC; |
| 397 | sizeC[0] = m_; |
| 398 | sizeC[1] = n_; |
| 399 | |
| 400 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizeA); |
| 401 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizeB); |
| 402 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizeC); |
| 403 | |
| 404 | typedef typename Tensor<T, 2>::DimensionPair DimPair; |
| 405 | Eigen::array<DimPair, 1> dims; |
| 406 | dims[0] = DimPair(1, 0); |
| 407 | |
| 408 | StartBenchmarkTiming(); |
| 409 | for (int iter = 0; iter < num_iters; ++iter) { |
| 410 | C.device(device_) = A.contract(B, dims); |
| 411 | } |
| 412 | // Record the number of FLOP executed per second (size_ multiplications and |
| 413 | // additions for each value in the resulting tensor) |
| 414 | finalizeBenchmark(static_cast<int64_t>(2) * m_ * n_ * k_ * num_iters); |
| 415 | } |
| 416 | |
| 417 | void convolution(int num_iters, int kernel_x, int kernel_y) { |
| 418 | Eigen::array<TensorIndex, 2> input_sizes; |
| 419 | input_sizes[0] = m_; |
| 420 | input_sizes[1] = n_; |
| 421 | TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, input_sizes); |
| 422 | Eigen::array<TensorIndex, 2> kernel_sizes; |
| 423 | kernel_sizes[0] = kernel_x; |
| 424 | kernel_sizes[1] = kernel_y; |
| 425 | TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, kernel_sizes); |
| 426 | Eigen::array<TensorIndex, 2> result_sizes; |
| 427 | result_sizes[0] = m_ - kernel_x + 1; |
| 428 | result_sizes[1] = n_ - kernel_y + 1; |
| 429 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, result_sizes); |
| 430 | Eigen::array<TensorIndex, 2> dims; |
| 431 | dims[0] = 0; |
| 432 | dims[1] = 1; |
| 433 | |
| 434 | StartBenchmarkTiming(); |
| 435 | for (int iter = 0; iter < num_iters; ++iter) { |
| 436 | C.device(device_) = A.convolve(B, dims); |
| 437 | } |
| 438 | // Record the number of FLOP executed per second (kernel_size |
| 439 | // multiplications and additions for each value in the resulting tensor) |
| 440 | finalizeBenchmark(static_cast<int64_t>(2) * |
| 441 | (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * num_iters); |
| 442 | } |
| 443 | |
| 444 | private: |
| 445 | void initialize() { |
| 446 | a_ = (T *) device_.allocate(m_ * k_ * sizeof(T)); |
| 447 | b_ = (T *) device_.allocate(k_ * n_ * sizeof(T)); |
| 448 | c_ = (T *) device_.allocate(m_ * n_ * sizeof(T)); |
| 449 | |
| 450 | // Initialize the content of the memory pools to prevent asan from |
| 451 | // complaining. |
| 452 | device_.memset(a_, 12, m_ * k_ * sizeof(T)); |
| 453 | device_.memset(b_, 23, k_ * n_ * sizeof(T)); |
| 454 | device_.memset(c_, 31, m_ * n_ * sizeof(T)); |
| 455 | |
| 456 | //BenchmarkUseRealTime(); |
| 457 | } |
| 458 | |
| 459 | inline void finalizeBenchmark(int64_t num_items) { |
| 460 | #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) |
| 461 | if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) { |
| 462 | device_.synchronize(); |
| 463 | } |
| 464 | #endif |
| 465 | StopBenchmarkTiming(); |
| 466 | SetBenchmarkFlopsProcessed(num_items); |
| 467 | } |
| 468 | |
| 469 | |
| 470 | TensorIndex m_; |
| 471 | TensorIndex k_; |
| 472 | TensorIndex n_; |
| 473 | T* a_; |
| 474 | T* b_; |
| 475 | T* c_; |
| 476 | Device device_; |
| 477 | }; |
| 478 | #endif // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |