Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_SPARSELU_GEMM_KERNEL_H |
| 11 | #define EIGEN_SPARSELU_GEMM_KERNEL_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | namespace internal { |
| 16 | |
| 17 | |
| 18 | /** \internal |
| 19 | * A general matrix-matrix product kernel optimized for the SparseLU factorization. |
| 20 | * - A, B, and C must be column major |
| 21 | * - lda and ldc must be multiples of the respective packet size |
| 22 | * - C must have the same alignment as A |
| 23 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 24 | template<typename Scalar> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 25 | EIGEN_DONT_INLINE |
| 26 | void sparselu_gemm(Index m, Index n, Index d, const Scalar* A, Index lda, const Scalar* B, Index ldb, Scalar* C, Index ldc) |
| 27 | { |
| 28 | using namespace Eigen::internal; |
| 29 | |
| 30 | typedef typename packet_traits<Scalar>::type Packet; |
| 31 | enum { |
| 32 | NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, |
| 33 | PacketSize = packet_traits<Scalar>::size, |
| 34 | PM = 8, // peeling in M |
| 35 | RN = 2, // register blocking |
| 36 | RK = NumberOfRegisters>=16 ? 4 : 2, // register blocking |
| 37 | BM = 4096/sizeof(Scalar), // number of rows of A-C per chunk |
| 38 | SM = PM*PacketSize // step along M |
| 39 | }; |
| 40 | Index d_end = (d/RK)*RK; // number of columns of A (rows of B) suitable for full register blocking |
| 41 | Index n_end = (n/RN)*RN; // number of columns of B-C suitable for processing RN columns at once |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 42 | Index i0 = internal::first_default_aligned(A,m); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 43 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 44 | eigen_internal_assert(((lda%PacketSize)==0) && ((ldc%PacketSize)==0) && (i0==internal::first_default_aligned(C,m))); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 45 | |
| 46 | // handle the non aligned rows of A and C without any optimization: |
| 47 | for(Index i=0; i<i0; ++i) |
| 48 | { |
| 49 | for(Index j=0; j<n; ++j) |
| 50 | { |
| 51 | Scalar c = C[i+j*ldc]; |
| 52 | for(Index k=0; k<d; ++k) |
| 53 | c += B[k+j*ldb] * A[i+k*lda]; |
| 54 | C[i+j*ldc] = c; |
| 55 | } |
| 56 | } |
| 57 | // process the remaining rows per chunk of BM rows |
| 58 | for(Index ib=i0; ib<m; ib+=BM) |
| 59 | { |
| 60 | Index actual_b = std::min<Index>(BM, m-ib); // actual number of rows |
| 61 | Index actual_b_end1 = (actual_b/SM)*SM; // actual number of rows suitable for peeling |
| 62 | Index actual_b_end2 = (actual_b/PacketSize)*PacketSize; // actual number of rows suitable for vectorization |
| 63 | |
| 64 | // Let's process two columns of B-C at once |
| 65 | for(Index j=0; j<n_end; j+=RN) |
| 66 | { |
| 67 | const Scalar* Bc0 = B+(j+0)*ldb; |
| 68 | const Scalar* Bc1 = B+(j+1)*ldb; |
| 69 | |
| 70 | for(Index k=0; k<d_end; k+=RK) |
| 71 | { |
| 72 | |
| 73 | // load and expand a RN x RK block of B |
| 74 | Packet b00, b10, b20, b30, b01, b11, b21, b31; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 75 | { b00 = pset1<Packet>(Bc0[0]); } |
| 76 | { b10 = pset1<Packet>(Bc0[1]); } |
| 77 | if(RK==4) { b20 = pset1<Packet>(Bc0[2]); } |
| 78 | if(RK==4) { b30 = pset1<Packet>(Bc0[3]); } |
| 79 | { b01 = pset1<Packet>(Bc1[0]); } |
| 80 | { b11 = pset1<Packet>(Bc1[1]); } |
| 81 | if(RK==4) { b21 = pset1<Packet>(Bc1[2]); } |
| 82 | if(RK==4) { b31 = pset1<Packet>(Bc1[3]); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 83 | |
| 84 | Packet a0, a1, a2, a3, c0, c1, t0, t1; |
| 85 | |
| 86 | const Scalar* A0 = A+ib+(k+0)*lda; |
| 87 | const Scalar* A1 = A+ib+(k+1)*lda; |
| 88 | const Scalar* A2 = A+ib+(k+2)*lda; |
| 89 | const Scalar* A3 = A+ib+(k+3)*lda; |
| 90 | |
| 91 | Scalar* C0 = C+ib+(j+0)*ldc; |
| 92 | Scalar* C1 = C+ib+(j+1)*ldc; |
| 93 | |
| 94 | a0 = pload<Packet>(A0); |
| 95 | a1 = pload<Packet>(A1); |
| 96 | if(RK==4) |
| 97 | { |
| 98 | a2 = pload<Packet>(A2); |
| 99 | a3 = pload<Packet>(A3); |
| 100 | } |
| 101 | else |
| 102 | { |
| 103 | // workaround "may be used uninitialized in this function" warning |
| 104 | a2 = a3 = a0; |
| 105 | } |
| 106 | |
| 107 | #define KMADD(c, a, b, tmp) {tmp = b; tmp = pmul(a,tmp); c = padd(c,tmp);} |
| 108 | #define WORK(I) \ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 109 | c0 = pload<Packet>(C0+i+(I)*PacketSize); \ |
| 110 | c1 = pload<Packet>(C1+i+(I)*PacketSize); \ |
| 111 | KMADD(c0, a0, b00, t0) \ |
| 112 | KMADD(c1, a0, b01, t1) \ |
| 113 | a0 = pload<Packet>(A0+i+(I+1)*PacketSize); \ |
| 114 | KMADD(c0, a1, b10, t0) \ |
| 115 | KMADD(c1, a1, b11, t1) \ |
| 116 | a1 = pload<Packet>(A1+i+(I+1)*PacketSize); \ |
| 117 | if(RK==4){ KMADD(c0, a2, b20, t0) }\ |
| 118 | if(RK==4){ KMADD(c1, a2, b21, t1) }\ |
| 119 | if(RK==4){ a2 = pload<Packet>(A2+i+(I+1)*PacketSize); }\ |
| 120 | if(RK==4){ KMADD(c0, a3, b30, t0) }\ |
| 121 | if(RK==4){ KMADD(c1, a3, b31, t1) }\ |
| 122 | if(RK==4){ a3 = pload<Packet>(A3+i+(I+1)*PacketSize); }\ |
| 123 | pstore(C0+i+(I)*PacketSize, c0); \ |
| 124 | pstore(C1+i+(I)*PacketSize, c1) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 125 | |
| 126 | // process rows of A' - C' with aggressive vectorization and peeling |
| 127 | for(Index i=0; i<actual_b_end1; i+=PacketSize*8) |
| 128 | { |
| 129 | EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL1"); |
| 130 | prefetch((A0+i+(5)*PacketSize)); |
| 131 | prefetch((A1+i+(5)*PacketSize)); |
| 132 | if(RK==4) prefetch((A2+i+(5)*PacketSize)); |
| 133 | if(RK==4) prefetch((A3+i+(5)*PacketSize)); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 134 | |
| 135 | WORK(0); |
| 136 | WORK(1); |
| 137 | WORK(2); |
| 138 | WORK(3); |
| 139 | WORK(4); |
| 140 | WORK(5); |
| 141 | WORK(6); |
| 142 | WORK(7); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 143 | } |
| 144 | // process the remaining rows with vectorization only |
| 145 | for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize) |
| 146 | { |
| 147 | WORK(0); |
| 148 | } |
| 149 | #undef WORK |
| 150 | // process the remaining rows without vectorization |
| 151 | for(Index i=actual_b_end2; i<actual_b; ++i) |
| 152 | { |
| 153 | if(RK==4) |
| 154 | { |
| 155 | C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3]; |
| 156 | C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1]+A2[i]*Bc1[2]+A3[i]*Bc1[3]; |
| 157 | } |
| 158 | else |
| 159 | { |
| 160 | C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]; |
| 161 | C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1]; |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | Bc0 += RK; |
| 166 | Bc1 += RK; |
| 167 | } // peeled loop on k |
| 168 | } // peeled loop on the columns j |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 169 | // process the last column (we now perform a matrix-vector product) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 170 | if((n-n_end)>0) |
| 171 | { |
| 172 | const Scalar* Bc0 = B+(n-1)*ldb; |
| 173 | |
| 174 | for(Index k=0; k<d_end; k+=RK) |
| 175 | { |
| 176 | |
| 177 | // load and expand a 1 x RK block of B |
| 178 | Packet b00, b10, b20, b30; |
| 179 | b00 = pset1<Packet>(Bc0[0]); |
| 180 | b10 = pset1<Packet>(Bc0[1]); |
| 181 | if(RK==4) b20 = pset1<Packet>(Bc0[2]); |
| 182 | if(RK==4) b30 = pset1<Packet>(Bc0[3]); |
| 183 | |
| 184 | Packet a0, a1, a2, a3, c0, t0/*, t1*/; |
| 185 | |
| 186 | const Scalar* A0 = A+ib+(k+0)*lda; |
| 187 | const Scalar* A1 = A+ib+(k+1)*lda; |
| 188 | const Scalar* A2 = A+ib+(k+2)*lda; |
| 189 | const Scalar* A3 = A+ib+(k+3)*lda; |
| 190 | |
| 191 | Scalar* C0 = C+ib+(n_end)*ldc; |
| 192 | |
| 193 | a0 = pload<Packet>(A0); |
| 194 | a1 = pload<Packet>(A1); |
| 195 | if(RK==4) |
| 196 | { |
| 197 | a2 = pload<Packet>(A2); |
| 198 | a3 = pload<Packet>(A3); |
| 199 | } |
| 200 | else |
| 201 | { |
| 202 | // workaround "may be used uninitialized in this function" warning |
| 203 | a2 = a3 = a0; |
| 204 | } |
| 205 | |
| 206 | #define WORK(I) \ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 207 | c0 = pload<Packet>(C0+i+(I)*PacketSize); \ |
| 208 | KMADD(c0, a0, b00, t0) \ |
| 209 | a0 = pload<Packet>(A0+i+(I+1)*PacketSize); \ |
| 210 | KMADD(c0, a1, b10, t0) \ |
| 211 | a1 = pload<Packet>(A1+i+(I+1)*PacketSize); \ |
| 212 | if(RK==4){ KMADD(c0, a2, b20, t0) }\ |
| 213 | if(RK==4){ a2 = pload<Packet>(A2+i+(I+1)*PacketSize); }\ |
| 214 | if(RK==4){ KMADD(c0, a3, b30, t0) }\ |
| 215 | if(RK==4){ a3 = pload<Packet>(A3+i+(I+1)*PacketSize); }\ |
| 216 | pstore(C0+i+(I)*PacketSize, c0); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 217 | |
| 218 | // agressive vectorization and peeling |
| 219 | for(Index i=0; i<actual_b_end1; i+=PacketSize*8) |
| 220 | { |
| 221 | EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL2"); |
| 222 | WORK(0); |
| 223 | WORK(1); |
| 224 | WORK(2); |
| 225 | WORK(3); |
| 226 | WORK(4); |
| 227 | WORK(5); |
| 228 | WORK(6); |
| 229 | WORK(7); |
| 230 | } |
| 231 | // vectorization only |
| 232 | for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize) |
| 233 | { |
| 234 | WORK(0); |
| 235 | } |
| 236 | // remaining scalars |
| 237 | for(Index i=actual_b_end2; i<actual_b; ++i) |
| 238 | { |
| 239 | if(RK==4) |
| 240 | C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3]; |
| 241 | else |
| 242 | C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]; |
| 243 | } |
| 244 | |
| 245 | Bc0 += RK; |
| 246 | #undef WORK |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | // process the last columns of A, corresponding to the last rows of B |
| 251 | Index rd = d-d_end; |
| 252 | if(rd>0) |
| 253 | { |
| 254 | for(Index j=0; j<n; ++j) |
| 255 | { |
| 256 | enum { |
| 257 | Alignment = PacketSize>1 ? Aligned : 0 |
| 258 | }; |
| 259 | typedef Map<Matrix<Scalar,Dynamic,1>, Alignment > MapVector; |
| 260 | typedef Map<const Matrix<Scalar,Dynamic,1>, Alignment > ConstMapVector; |
| 261 | if(rd==1) MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b); |
| 262 | |
| 263 | else if(rd==2) MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b) |
| 264 | + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b); |
| 265 | |
| 266 | else MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b) |
| 267 | + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b) |
| 268 | + B[2+d_end+j*ldb] * ConstMapVector(A+(d_end+2)*lda+ib, actual_b); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | } // blocking on the rows of A and C |
| 273 | } |
| 274 | #undef KMADD |
| 275 | |
| 276 | } // namespace internal |
| 277 | |
| 278 | } // namespace Eigen |
| 279 | |
| 280 | #endif // EIGEN_SPARSELU_GEMM_KERNEL_H |