Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 5 | // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | |
| 12 | #ifndef EIGEN_SPARSE_LU_H |
| 13 | #define EIGEN_SPARSE_LU_H |
| 14 | |
| 15 | namespace Eigen { |
| 16 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 17 | template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::StorageIndex> > class SparseLU; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 18 | template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType; |
| 19 | template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType; |
| 20 | |
| 21 | /** \ingroup SparseLU_Module |
| 22 | * \class SparseLU |
| 23 | * |
| 24 | * \brief Sparse supernodal LU factorization for general matrices |
| 25 | * |
| 26 | * This class implements the supernodal LU factorization for general matrices. |
| 27 | * It uses the main techniques from the sequential SuperLU package |
| 28 | * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real |
| 29 | * and complex arithmetics with single and double precision, depending on the |
| 30 | * scalar type of your input matrix. |
| 31 | * The code has been optimized to provide BLAS-3 operations during supernode-panel updates. |
| 32 | * It benefits directly from the built-in high-performant Eigen BLAS routines. |
| 33 | * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to |
| 34 | * enable a better optimization from the compiler. For best performance, |
| 35 | * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors. |
| 36 | * |
| 37 | * An important parameter of this class is the ordering method. It is used to reorder the columns |
| 38 | * (and eventually the rows) of the matrix to reduce the number of new elements that are created during |
| 39 | * numerical factorization. The cheapest method available is COLAMD. |
| 40 | * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of |
| 41 | * built-in and external ordering methods. |
| 42 | * |
| 43 | * Simple example with key steps |
| 44 | * \code |
| 45 | * VectorXd x(n), b(n); |
| 46 | * SparseMatrix<double, ColMajor> A; |
| 47 | * SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<Index> > solver; |
| 48 | * // fill A and b; |
| 49 | * // Compute the ordering permutation vector from the structural pattern of A |
| 50 | * solver.analyzePattern(A); |
| 51 | * // Compute the numerical factorization |
| 52 | * solver.factorize(A); |
| 53 | * //Use the factors to solve the linear system |
| 54 | * x = solver.solve(b); |
| 55 | * \endcode |
| 56 | * |
| 57 | * \warning The input matrix A should be in a \b compressed and \b column-major form. |
| 58 | * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. |
| 59 | * |
| 60 | * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix. |
| 61 | * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization. |
| 62 | * If this is the case for your matrices, you can try the basic scaling method at |
| 63 | * "unsupported/Eigen/src/IterativeSolvers/Scaling.h" |
| 64 | * |
| 65 | * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<> |
| 66 | * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 67 | * |
| 68 | * \implsparsesolverconcept |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 69 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 70 | * \sa \ref TutorialSparseSolverConcept |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 71 | * \sa \ref OrderingMethods_Module |
| 72 | */ |
| 73 | template <typename _MatrixType, typename _OrderingType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 74 | class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::StorageIndex> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 75 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 76 | protected: |
| 77 | typedef SparseSolverBase<SparseLU<_MatrixType,_OrderingType> > APIBase; |
| 78 | using APIBase::m_isInitialized; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 79 | public: |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 80 | using APIBase::_solve_impl; |
| 81 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 82 | typedef _MatrixType MatrixType; |
| 83 | typedef _OrderingType OrderingType; |
| 84 | typedef typename MatrixType::Scalar Scalar; |
| 85 | typedef typename MatrixType::RealScalar RealScalar; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 86 | typedef typename MatrixType::StorageIndex StorageIndex; |
| 87 | typedef SparseMatrix<Scalar,ColMajor,StorageIndex> NCMatrix; |
| 88 | typedef internal::MappedSuperNodalMatrix<Scalar, StorageIndex> SCMatrix; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 89 | typedef Matrix<Scalar,Dynamic,1> ScalarVector; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 90 | typedef Matrix<StorageIndex,Dynamic,1> IndexVector; |
| 91 | typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; |
| 92 | typedef internal::SparseLUImpl<Scalar, StorageIndex> Base; |
| 93 | |
| 94 | enum { |
| 95 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 96 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| 97 | }; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 98 | |
| 99 | public: |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 100 | SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 101 | { |
| 102 | initperfvalues(); |
| 103 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 104 | explicit SparseLU(const MatrixType& matrix) |
| 105 | : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 106 | { |
| 107 | initperfvalues(); |
| 108 | compute(matrix); |
| 109 | } |
| 110 | |
| 111 | ~SparseLU() |
| 112 | { |
| 113 | // Free all explicit dynamic pointers |
| 114 | } |
| 115 | |
| 116 | void analyzePattern (const MatrixType& matrix); |
| 117 | void factorize (const MatrixType& matrix); |
| 118 | void simplicialfactorize(const MatrixType& matrix); |
| 119 | |
| 120 | /** |
| 121 | * Compute the symbolic and numeric factorization of the input sparse matrix. |
| 122 | * The input matrix should be in column-major storage. |
| 123 | */ |
| 124 | void compute (const MatrixType& matrix) |
| 125 | { |
| 126 | // Analyze |
| 127 | analyzePattern(matrix); |
| 128 | //Factorize |
| 129 | factorize(matrix); |
| 130 | } |
| 131 | |
| 132 | inline Index rows() const { return m_mat.rows(); } |
| 133 | inline Index cols() const { return m_mat.cols(); } |
| 134 | /** Indicate that the pattern of the input matrix is symmetric */ |
| 135 | void isSymmetric(bool sym) |
| 136 | { |
| 137 | m_symmetricmode = sym; |
| 138 | } |
| 139 | |
| 140 | /** \returns an expression of the matrix L, internally stored as supernodes |
| 141 | * The only operation available with this expression is the triangular solve |
| 142 | * \code |
| 143 | * y = b; matrixL().solveInPlace(y); |
| 144 | * \endcode |
| 145 | */ |
| 146 | SparseLUMatrixLReturnType<SCMatrix> matrixL() const |
| 147 | { |
| 148 | return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore); |
| 149 | } |
| 150 | /** \returns an expression of the matrix U, |
| 151 | * The only operation available with this expression is the triangular solve |
| 152 | * \code |
| 153 | * y = b; matrixU().solveInPlace(y); |
| 154 | * \endcode |
| 155 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 156 | SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,StorageIndex> > matrixU() const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 157 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 158 | return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,StorageIndex> >(m_Lstore, m_Ustore); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 159 | } |
| 160 | |
| 161 | /** |
| 162 | * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$ |
| 163 | * \sa colsPermutation() |
| 164 | */ |
| 165 | inline const PermutationType& rowsPermutation() const |
| 166 | { |
| 167 | return m_perm_r; |
| 168 | } |
| 169 | /** |
| 170 | * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$ |
| 171 | * \sa rowsPermutation() |
| 172 | */ |
| 173 | inline const PermutationType& colsPermutation() const |
| 174 | { |
| 175 | return m_perm_c; |
| 176 | } |
| 177 | /** Set the threshold used for a diagonal entry to be an acceptable pivot. */ |
| 178 | void setPivotThreshold(const RealScalar& thresh) |
| 179 | { |
| 180 | m_diagpivotthresh = thresh; |
| 181 | } |
| 182 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 183 | #ifdef EIGEN_PARSED_BY_DOXYGEN |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 184 | /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. |
| 185 | * |
| 186 | * \warning the destination matrix X in X = this->solve(B) must be colmun-major. |
| 187 | * |
| 188 | * \sa compute() |
| 189 | */ |
| 190 | template<typename Rhs> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 191 | inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const; |
| 192 | #endif // EIGEN_PARSED_BY_DOXYGEN |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 193 | |
| 194 | /** \brief Reports whether previous computation was successful. |
| 195 | * |
| 196 | * \returns \c Success if computation was succesful, |
| 197 | * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance |
| 198 | * \c InvalidInput if the input matrix is invalid |
| 199 | * |
| 200 | * \sa iparm() |
| 201 | */ |
| 202 | ComputationInfo info() const |
| 203 | { |
| 204 | eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| 205 | return m_info; |
| 206 | } |
| 207 | |
| 208 | /** |
| 209 | * \returns A string describing the type of error |
| 210 | */ |
| 211 | std::string lastErrorMessage() const |
| 212 | { |
| 213 | return m_lastError; |
| 214 | } |
| 215 | |
| 216 | template<typename Rhs, typename Dest> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 217 | bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 218 | { |
| 219 | Dest& X(X_base.derived()); |
| 220 | eigen_assert(m_factorizationIsOk && "The matrix should be factorized first"); |
| 221 | EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0, |
| 222 | THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); |
| 223 | |
| 224 | // Permute the right hand side to form X = Pr*B |
| 225 | // on return, X is overwritten by the computed solution |
| 226 | X.resize(B.rows(),B.cols()); |
| 227 | |
| 228 | // this ugly const_cast_derived() helps to detect aliasing when applying the permutations |
| 229 | for(Index j = 0; j < B.cols(); ++j) |
| 230 | X.col(j) = rowsPermutation() * B.const_cast_derived().col(j); |
| 231 | |
| 232 | //Forward substitution with L |
| 233 | this->matrixL().solveInPlace(X); |
| 234 | this->matrixU().solveInPlace(X); |
| 235 | |
| 236 | // Permute back the solution |
| 237 | for (Index j = 0; j < B.cols(); ++j) |
| 238 | X.col(j) = colsPermutation().inverse() * X.col(j); |
| 239 | |
| 240 | return true; |
| 241 | } |
| 242 | |
| 243 | /** |
| 244 | * \returns the absolute value of the determinant of the matrix of which |
| 245 | * *this is the QR decomposition. |
| 246 | * |
| 247 | * \warning a determinant can be very big or small, so for matrices |
| 248 | * of large enough dimension, there is a risk of overflow/underflow. |
| 249 | * One way to work around that is to use logAbsDeterminant() instead. |
| 250 | * |
| 251 | * \sa logAbsDeterminant(), signDeterminant() |
| 252 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 253 | Scalar absDeterminant() |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 254 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 255 | using std::abs; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 256 | eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); |
| 257 | // Initialize with the determinant of the row matrix |
| 258 | Scalar det = Scalar(1.); |
| 259 | // Note that the diagonal blocks of U are stored in supernodes, |
| 260 | // which are available in the L part :) |
| 261 | for (Index j = 0; j < this->cols(); ++j) |
| 262 | { |
| 263 | for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) |
| 264 | { |
| 265 | if(it.index() == j) |
| 266 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 267 | det *= abs(it.value()); |
| 268 | break; |
| 269 | } |
| 270 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 271 | } |
| 272 | return det; |
| 273 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 274 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 275 | /** \returns the natural log of the absolute value of the determinant of the matrix |
| 276 | * of which **this is the QR decomposition |
| 277 | * |
| 278 | * \note This method is useful to work around the risk of overflow/underflow that's |
| 279 | * inherent to the determinant computation. |
| 280 | * |
| 281 | * \sa absDeterminant(), signDeterminant() |
| 282 | */ |
| 283 | Scalar logAbsDeterminant() const |
| 284 | { |
| 285 | using std::log; |
| 286 | using std::abs; |
| 287 | |
| 288 | eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); |
| 289 | Scalar det = Scalar(0.); |
| 290 | for (Index j = 0; j < this->cols(); ++j) |
| 291 | { |
| 292 | for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) |
| 293 | { |
| 294 | if(it.row() < j) continue; |
| 295 | if(it.row() == j) |
| 296 | { |
| 297 | det += log(abs(it.value())); |
| 298 | break; |
| 299 | } |
| 300 | } |
| 301 | } |
| 302 | return det; |
| 303 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 304 | |
| 305 | /** \returns A number representing the sign of the determinant |
| 306 | * |
| 307 | * \sa absDeterminant(), logAbsDeterminant() |
| 308 | */ |
| 309 | Scalar signDeterminant() |
| 310 | { |
| 311 | eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); |
| 312 | // Initialize with the determinant of the row matrix |
| 313 | Index det = 1; |
| 314 | // Note that the diagonal blocks of U are stored in supernodes, |
| 315 | // which are available in the L part :) |
| 316 | for (Index j = 0; j < this->cols(); ++j) |
| 317 | { |
| 318 | for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) |
| 319 | { |
| 320 | if(it.index() == j) |
| 321 | { |
| 322 | if(it.value()<0) |
| 323 | det = -det; |
| 324 | else if(it.value()==0) |
| 325 | return 0; |
| 326 | break; |
| 327 | } |
| 328 | } |
| 329 | } |
| 330 | return det * m_detPermR * m_detPermC; |
| 331 | } |
| 332 | |
| 333 | /** \returns The determinant of the matrix. |
| 334 | * |
| 335 | * \sa absDeterminant(), logAbsDeterminant() |
| 336 | */ |
| 337 | Scalar determinant() |
| 338 | { |
| 339 | eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); |
| 340 | // Initialize with the determinant of the row matrix |
| 341 | Scalar det = Scalar(1.); |
| 342 | // Note that the diagonal blocks of U are stored in supernodes, |
| 343 | // which are available in the L part :) |
| 344 | for (Index j = 0; j < this->cols(); ++j) |
| 345 | { |
| 346 | for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) |
| 347 | { |
| 348 | if(it.index() == j) |
| 349 | { |
| 350 | det *= it.value(); |
| 351 | break; |
| 352 | } |
| 353 | } |
| 354 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 355 | return (m_detPermR * m_detPermC) > 0 ? det : -det; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 356 | } |
| 357 | |
| 358 | protected: |
| 359 | // Functions |
| 360 | void initperfvalues() |
| 361 | { |
| 362 | m_perfv.panel_size = 16; |
| 363 | m_perfv.relax = 1; |
| 364 | m_perfv.maxsuper = 128; |
| 365 | m_perfv.rowblk = 16; |
| 366 | m_perfv.colblk = 8; |
| 367 | m_perfv.fillfactor = 20; |
| 368 | } |
| 369 | |
| 370 | // Variables |
| 371 | mutable ComputationInfo m_info; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 372 | bool m_factorizationIsOk; |
| 373 | bool m_analysisIsOk; |
| 374 | std::string m_lastError; |
| 375 | NCMatrix m_mat; // The input (permuted ) matrix |
| 376 | SCMatrix m_Lstore; // The lower triangular matrix (supernodal) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 377 | MappedSparseMatrix<Scalar,ColMajor,StorageIndex> m_Ustore; // The upper triangular matrix |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 378 | PermutationType m_perm_c; // Column permutation |
| 379 | PermutationType m_perm_r ; // Row permutation |
| 380 | IndexVector m_etree; // Column elimination tree |
| 381 | |
| 382 | typename Base::GlobalLU_t m_glu; |
| 383 | |
| 384 | // SparseLU options |
| 385 | bool m_symmetricmode; |
| 386 | // values for performance |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 387 | internal::perfvalues m_perfv; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 388 | RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot |
| 389 | Index m_nnzL, m_nnzU; // Nonzeros in L and U factors |
| 390 | Index m_detPermR, m_detPermC; // Determinants of the permutation matrices |
| 391 | private: |
| 392 | // Disable copy constructor |
| 393 | SparseLU (const SparseLU& ); |
| 394 | |
| 395 | }; // End class SparseLU |
| 396 | |
| 397 | |
| 398 | |
| 399 | // Functions needed by the anaysis phase |
| 400 | /** |
| 401 | * Compute the column permutation to minimize the fill-in |
| 402 | * |
| 403 | * - Apply this permutation to the input matrix - |
| 404 | * |
| 405 | * - Compute the column elimination tree on the permuted matrix |
| 406 | * |
| 407 | * - Postorder the elimination tree and the column permutation |
| 408 | * |
| 409 | */ |
| 410 | template <typename MatrixType, typename OrderingType> |
| 411 | void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat) |
| 412 | { |
| 413 | |
| 414 | //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat. |
| 415 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 416 | // Firstly, copy the whole input matrix. |
| 417 | m_mat = mat; |
| 418 | |
| 419 | // Compute fill-in ordering |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 420 | OrderingType ord; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 421 | ord(m_mat,m_perm_c); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 422 | |
| 423 | // Apply the permutation to the column of the input matrix |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 424 | if (m_perm_c.size()) |
| 425 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 426 | m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used. |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 427 | // Then, permute only the column pointers |
| 428 | ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast<StorageIndex*>(mat.outerIndexPtr()):0); |
| 429 | |
| 430 | // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed. |
| 431 | if(!mat.isCompressed()) |
| 432 | IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1); |
| 433 | |
| 434 | // Apply the permutation and compute the nnz per column. |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 435 | for (Index i = 0; i < mat.cols(); i++) |
| 436 | { |
| 437 | m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i]; |
| 438 | m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i]; |
| 439 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 440 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 441 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 442 | // Compute the column elimination tree of the permuted matrix |
| 443 | IndexVector firstRowElt; |
| 444 | internal::coletree(m_mat, m_etree,firstRowElt); |
| 445 | |
| 446 | // In symmetric mode, do not do postorder here |
| 447 | if (!m_symmetricmode) { |
| 448 | IndexVector post, iwork; |
| 449 | // Post order etree |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 450 | internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 451 | |
| 452 | |
| 453 | // Renumber etree in postorder |
| 454 | Index m = m_mat.cols(); |
| 455 | iwork.resize(m+1); |
| 456 | for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i)); |
| 457 | m_etree = iwork; |
| 458 | |
| 459 | // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree |
| 460 | PermutationType post_perm(m); |
| 461 | for (Index i = 0; i < m; i++) |
| 462 | post_perm.indices()(i) = post(i); |
| 463 | |
| 464 | // Combine the two permutations : postorder the permutation for future use |
| 465 | if(m_perm_c.size()) { |
| 466 | m_perm_c = post_perm * m_perm_c; |
| 467 | } |
| 468 | |
| 469 | } // end postordering |
| 470 | |
| 471 | m_analysisIsOk = true; |
| 472 | } |
| 473 | |
| 474 | // Functions needed by the numerical factorization phase |
| 475 | |
| 476 | |
| 477 | /** |
| 478 | * - Numerical factorization |
| 479 | * - Interleaved with the symbolic factorization |
| 480 | * On exit, info is |
| 481 | * |
| 482 | * = 0: successful factorization |
| 483 | * |
| 484 | * > 0: if info = i, and i is |
| 485 | * |
| 486 | * <= A->ncol: U(i,i) is exactly zero. The factorization has |
| 487 | * been completed, but the factor U is exactly singular, |
| 488 | * and division by zero will occur if it is used to solve a |
| 489 | * system of equations. |
| 490 | * |
| 491 | * > A->ncol: number of bytes allocated when memory allocation |
| 492 | * failure occurred, plus A->ncol. If lwork = -1, it is |
| 493 | * the estimated amount of space needed, plus A->ncol. |
| 494 | */ |
| 495 | template <typename MatrixType, typename OrderingType> |
| 496 | void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix) |
| 497 | { |
| 498 | using internal::emptyIdxLU; |
| 499 | eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); |
| 500 | eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices"); |
| 501 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 502 | m_isInitialized = true; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 503 | |
| 504 | |
| 505 | // Apply the column permutation computed in analyzepattern() |
| 506 | // m_mat = matrix * m_perm_c.inverse(); |
| 507 | m_mat = matrix; |
| 508 | if (m_perm_c.size()) |
| 509 | { |
| 510 | m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. |
| 511 | //Then, permute only the column pointers |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 512 | const StorageIndex * outerIndexPtr; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 513 | if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr(); |
| 514 | else |
| 515 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 516 | StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1]; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 517 | for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i]; |
| 518 | outerIndexPtr = outerIndexPtr_t; |
| 519 | } |
| 520 | for (Index i = 0; i < matrix.cols(); i++) |
| 521 | { |
| 522 | m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i]; |
| 523 | m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i]; |
| 524 | } |
| 525 | if(!matrix.isCompressed()) delete[] outerIndexPtr; |
| 526 | } |
| 527 | else |
| 528 | { //FIXME This should not be needed if the empty permutation is handled transparently |
| 529 | m_perm_c.resize(matrix.cols()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 530 | for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 531 | } |
| 532 | |
| 533 | Index m = m_mat.rows(); |
| 534 | Index n = m_mat.cols(); |
| 535 | Index nnz = m_mat.nonZeros(); |
| 536 | Index maxpanel = m_perfv.panel_size * m; |
| 537 | // Allocate working storage common to the factor routines |
| 538 | Index lwork = 0; |
| 539 | Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu); |
| 540 | if (info) |
| 541 | { |
| 542 | m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ; |
| 543 | m_factorizationIsOk = false; |
| 544 | return ; |
| 545 | } |
| 546 | |
| 547 | // Set up pointers for integer working arrays |
| 548 | IndexVector segrep(m); segrep.setZero(); |
| 549 | IndexVector parent(m); parent.setZero(); |
| 550 | IndexVector xplore(m); xplore.setZero(); |
| 551 | IndexVector repfnz(maxpanel); |
| 552 | IndexVector panel_lsub(maxpanel); |
| 553 | IndexVector xprune(n); xprune.setZero(); |
| 554 | IndexVector marker(m*internal::LUNoMarker); marker.setZero(); |
| 555 | |
| 556 | repfnz.setConstant(-1); |
| 557 | panel_lsub.setConstant(-1); |
| 558 | |
| 559 | // Set up pointers for scalar working arrays |
| 560 | ScalarVector dense; |
| 561 | dense.setZero(maxpanel); |
| 562 | ScalarVector tempv; |
| 563 | tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) ); |
| 564 | |
| 565 | // Compute the inverse of perm_c |
| 566 | PermutationType iperm_c(m_perm_c.inverse()); |
| 567 | |
| 568 | // Identify initial relaxed snodes |
| 569 | IndexVector relax_end(n); |
| 570 | if ( m_symmetricmode == true ) |
| 571 | Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end); |
| 572 | else |
| 573 | Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end); |
| 574 | |
| 575 | |
| 576 | m_perm_r.resize(m); |
| 577 | m_perm_r.indices().setConstant(-1); |
| 578 | marker.setConstant(-1); |
| 579 | m_detPermR = 1; // Record the determinant of the row permutation |
| 580 | |
| 581 | m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0); |
| 582 | m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0); |
| 583 | |
| 584 | // Work on one 'panel' at a time. A panel is one of the following : |
| 585 | // (a) a relaxed supernode at the bottom of the etree, or |
| 586 | // (b) panel_size contiguous columns, <panel_size> defined by the user |
| 587 | Index jcol; |
| 588 | IndexVector panel_histo(n); |
| 589 | Index pivrow; // Pivotal row number in the original row matrix |
| 590 | Index nseg1; // Number of segments in U-column above panel row jcol |
| 591 | Index nseg; // Number of segments in each U-column |
| 592 | Index irep; |
| 593 | Index i, k, jj; |
| 594 | for (jcol = 0; jcol < n; ) |
| 595 | { |
| 596 | // Adjust panel size so that a panel won't overlap with the next relaxed snode. |
| 597 | Index panel_size = m_perfv.panel_size; // upper bound on panel width |
| 598 | for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++) |
| 599 | { |
| 600 | if (relax_end(k) != emptyIdxLU) |
| 601 | { |
| 602 | panel_size = k - jcol; |
| 603 | break; |
| 604 | } |
| 605 | } |
| 606 | if (k == n) |
| 607 | panel_size = n - jcol; |
| 608 | |
| 609 | // Symbolic outer factorization on a panel of columns |
| 610 | Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu); |
| 611 | |
| 612 | // Numeric sup-panel updates in topological order |
| 613 | Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu); |
| 614 | |
| 615 | // Sparse LU within the panel, and below the panel diagonal |
| 616 | for ( jj = jcol; jj< jcol + panel_size; jj++) |
| 617 | { |
| 618 | k = (jj - jcol) * m; // Column index for w-wide arrays |
| 619 | |
| 620 | nseg = nseg1; // begin after all the panel segments |
| 621 | //Depth-first-search for the current column |
| 622 | VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m); |
| 623 | VectorBlock<IndexVector> repfnz_k(repfnz, k, m); |
| 624 | info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu); |
| 625 | if ( info ) |
| 626 | { |
| 627 | m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() "; |
| 628 | m_info = NumericalIssue; |
| 629 | m_factorizationIsOk = false; |
| 630 | return; |
| 631 | } |
| 632 | // Numeric updates to this column |
| 633 | VectorBlock<ScalarVector> dense_k(dense, k, m); |
| 634 | VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1); |
| 635 | info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu); |
| 636 | if ( info ) |
| 637 | { |
| 638 | m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() "; |
| 639 | m_info = NumericalIssue; |
| 640 | m_factorizationIsOk = false; |
| 641 | return; |
| 642 | } |
| 643 | |
| 644 | // Copy the U-segments to ucol(*) |
| 645 | info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu); |
| 646 | if ( info ) |
| 647 | { |
| 648 | m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() "; |
| 649 | m_info = NumericalIssue; |
| 650 | m_factorizationIsOk = false; |
| 651 | return; |
| 652 | } |
| 653 | |
| 654 | // Form the L-segment |
| 655 | info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu); |
| 656 | if ( info ) |
| 657 | { |
| 658 | m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT "; |
| 659 | std::ostringstream returnInfo; |
| 660 | returnInfo << info; |
| 661 | m_lastError += returnInfo.str(); |
| 662 | m_info = NumericalIssue; |
| 663 | m_factorizationIsOk = false; |
| 664 | return; |
| 665 | } |
| 666 | |
| 667 | // Update the determinant of the row permutation matrix |
| 668 | // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot. |
| 669 | if (pivrow != jj) m_detPermR = -m_detPermR; |
| 670 | |
| 671 | // Prune columns (0:jj-1) using column jj |
| 672 | Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu); |
| 673 | |
| 674 | // Reset repfnz for this column |
| 675 | for (i = 0; i < nseg; i++) |
| 676 | { |
| 677 | irep = segrep(i); |
| 678 | repfnz_k(irep) = emptyIdxLU; |
| 679 | } |
| 680 | } // end SparseLU within the panel |
| 681 | jcol += panel_size; // Move to the next panel |
| 682 | } // end for -- end elimination |
| 683 | |
| 684 | m_detPermR = m_perm_r.determinant(); |
| 685 | m_detPermC = m_perm_c.determinant(); |
| 686 | |
| 687 | // Count the number of nonzeros in factors |
| 688 | Base::countnz(n, m_nnzL, m_nnzU, m_glu); |
| 689 | // Apply permutation to the L subscripts |
| 690 | Base::fixupL(n, m_perm_r.indices(), m_glu); |
| 691 | |
| 692 | // Create supernode matrix L |
| 693 | m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup); |
| 694 | // Create the column major upper sparse matrix U; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 695 | new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, StorageIndex> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() ); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 696 | |
| 697 | m_info = Success; |
| 698 | m_factorizationIsOk = true; |
| 699 | } |
| 700 | |
| 701 | template<typename MappedSupernodalType> |
| 702 | struct SparseLUMatrixLReturnType : internal::no_assignment_operator |
| 703 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 704 | typedef typename MappedSupernodalType::Scalar Scalar; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 705 | explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 706 | { } |
| 707 | Index rows() { return m_mapL.rows(); } |
| 708 | Index cols() { return m_mapL.cols(); } |
| 709 | template<typename Dest> |
| 710 | void solveInPlace( MatrixBase<Dest> &X) const |
| 711 | { |
| 712 | m_mapL.solveInPlace(X); |
| 713 | } |
| 714 | const MappedSupernodalType& m_mapL; |
| 715 | }; |
| 716 | |
| 717 | template<typename MatrixLType, typename MatrixUType> |
| 718 | struct SparseLUMatrixUReturnType : internal::no_assignment_operator |
| 719 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 720 | typedef typename MatrixLType::Scalar Scalar; |
| 721 | SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU) |
| 722 | : m_mapL(mapL),m_mapU(mapU) |
| 723 | { } |
| 724 | Index rows() { return m_mapL.rows(); } |
| 725 | Index cols() { return m_mapL.cols(); } |
| 726 | |
| 727 | template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const |
| 728 | { |
| 729 | Index nrhs = X.cols(); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 730 | Index n = X.rows(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 731 | // Backward solve with U |
| 732 | for (Index k = m_mapL.nsuper(); k >= 0; k--) |
| 733 | { |
| 734 | Index fsupc = m_mapL.supToCol()[k]; |
| 735 | Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension |
| 736 | Index nsupc = m_mapL.supToCol()[k+1] - fsupc; |
| 737 | Index luptr = m_mapL.colIndexPtr()[fsupc]; |
| 738 | |
| 739 | if (nsupc == 1) |
| 740 | { |
| 741 | for (Index j = 0; j < nrhs; j++) |
| 742 | { |
| 743 | X(fsupc, j) /= m_mapL.valuePtr()[luptr]; |
| 744 | } |
| 745 | } |
| 746 | else |
| 747 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 748 | Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) ); |
| 749 | Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) ); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 750 | U = A.template triangularView<Upper>().solve(U); |
| 751 | } |
| 752 | |
| 753 | for (Index j = 0; j < nrhs; ++j) |
| 754 | { |
| 755 | for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++) |
| 756 | { |
| 757 | typename MatrixUType::InnerIterator it(m_mapU, jcol); |
| 758 | for ( ; it; ++it) |
| 759 | { |
| 760 | Index irow = it.index(); |
| 761 | X(irow, j) -= X(jcol, j) * it.value(); |
| 762 | } |
| 763 | } |
| 764 | } |
| 765 | } // End For U-solve |
| 766 | } |
| 767 | const MatrixLType& m_mapL; |
| 768 | const MatrixUType& m_mapU; |
| 769 | }; |
| 770 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 771 | } // End namespace Eigen |
| 772 | |
| 773 | #endif |