Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 6 | // |
| 7 | // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> |
| 8 | // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> |
| 9 | // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> |
| 10 | // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> |
| 11 | // |
| 12 | // This Source Code Form is subject to the terms of the Mozilla |
| 13 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 14 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 15 | |
| 16 | #ifndef EIGEN_SVDBASE_H |
| 17 | #define EIGEN_SVDBASE_H |
| 18 | |
| 19 | namespace Eigen { |
| 20 | /** \ingroup SVD_Module |
| 21 | * |
| 22 | * |
| 23 | * \class SVDBase |
| 24 | * |
| 25 | * \brief Base class of SVD algorithms |
| 26 | * |
| 27 | * \tparam Derived the type of the actual SVD decomposition |
| 28 | * |
| 29 | * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product |
| 30 | * \f[ A = U S V^* \f] |
| 31 | * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; |
| 32 | * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left |
| 33 | * and right \em singular \em vectors of \a A respectively. |
| 34 | * |
| 35 | * Singular values are always sorted in decreasing order. |
| 36 | * |
| 37 | * |
| 38 | * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the |
| 39 | * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual |
| 40 | * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, |
| 41 | * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. |
| 42 | * |
| 43 | * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to |
| 44 | * terminate in finite (and reasonable) time. |
| 45 | * \sa class BDCSVD, class JacobiSVD |
| 46 | */ |
| 47 | template<typename Derived> |
| 48 | class SVDBase |
| 49 | { |
| 50 | |
| 51 | public: |
| 52 | typedef typename internal::traits<Derived>::MatrixType MatrixType; |
| 53 | typedef typename MatrixType::Scalar Scalar; |
| 54 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| 55 | typedef typename MatrixType::StorageIndex StorageIndex; |
| 56 | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| 57 | enum { |
| 58 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 59 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 60 | DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), |
| 61 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 62 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| 63 | MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), |
| 64 | MatrixOptions = MatrixType::Options |
| 65 | }; |
| 66 | |
| 67 | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType; |
| 68 | typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType; |
| 69 | typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; |
| 70 | |
| 71 | Derived& derived() { return *static_cast<Derived*>(this); } |
| 72 | const Derived& derived() const { return *static_cast<const Derived*>(this); } |
| 73 | |
| 74 | /** \returns the \a U matrix. |
| 75 | * |
| 76 | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, |
| 77 | * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink. |
| 78 | * |
| 79 | * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. |
| 80 | * |
| 81 | * This method asserts that you asked for \a U to be computed. |
| 82 | */ |
| 83 | const MatrixUType& matrixU() const |
| 84 | { |
| 85 | eigen_assert(m_isInitialized && "SVD is not initialized."); |
| 86 | eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); |
| 87 | return m_matrixU; |
| 88 | } |
| 89 | |
| 90 | /** \returns the \a V matrix. |
| 91 | * |
| 92 | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, |
| 93 | * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink. |
| 94 | * |
| 95 | * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. |
| 96 | * |
| 97 | * This method asserts that you asked for \a V to be computed. |
| 98 | */ |
| 99 | const MatrixVType& matrixV() const |
| 100 | { |
| 101 | eigen_assert(m_isInitialized && "SVD is not initialized."); |
| 102 | eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); |
| 103 | return m_matrixV; |
| 104 | } |
| 105 | |
| 106 | /** \returns the vector of singular values. |
| 107 | * |
| 108 | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the |
| 109 | * returned vector has size \a m. Singular values are always sorted in decreasing order. |
| 110 | */ |
| 111 | const SingularValuesType& singularValues() const |
| 112 | { |
| 113 | eigen_assert(m_isInitialized && "SVD is not initialized."); |
| 114 | return m_singularValues; |
| 115 | } |
| 116 | |
| 117 | /** \returns the number of singular values that are not exactly 0 */ |
| 118 | Index nonzeroSingularValues() const |
| 119 | { |
| 120 | eigen_assert(m_isInitialized && "SVD is not initialized."); |
| 121 | return m_nonzeroSingularValues; |
| 122 | } |
| 123 | |
| 124 | /** \returns the rank of the matrix of which \c *this is the SVD. |
| 125 | * |
| 126 | * \note This method has to determine which singular values should be considered nonzero. |
| 127 | * For that, it uses the threshold value that you can control by calling |
| 128 | * setThreshold(const RealScalar&). |
| 129 | */ |
| 130 | inline Index rank() const |
| 131 | { |
| 132 | using std::abs; |
| 133 | eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); |
| 134 | if(m_singularValues.size()==0) return 0; |
| 135 | RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)()); |
| 136 | Index i = m_nonzeroSingularValues-1; |
| 137 | while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i; |
| 138 | return i+1; |
| 139 | } |
| 140 | |
| 141 | /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), |
| 142 | * which need to determine when singular values are to be considered nonzero. |
| 143 | * This is not used for the SVD decomposition itself. |
| 144 | * |
| 145 | * When it needs to get the threshold value, Eigen calls threshold(). |
| 146 | * The default is \c NumTraits<Scalar>::epsilon() |
| 147 | * |
| 148 | * \param threshold The new value to use as the threshold. |
| 149 | * |
| 150 | * A singular value will be considered nonzero if its value is strictly greater than |
| 151 | * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$. |
| 152 | * |
| 153 | * If you want to come back to the default behavior, call setThreshold(Default_t) |
| 154 | */ |
| 155 | Derived& setThreshold(const RealScalar& threshold) |
| 156 | { |
| 157 | m_usePrescribedThreshold = true; |
| 158 | m_prescribedThreshold = threshold; |
| 159 | return derived(); |
| 160 | } |
| 161 | |
| 162 | /** Allows to come back to the default behavior, letting Eigen use its default formula for |
| 163 | * determining the threshold. |
| 164 | * |
| 165 | * You should pass the special object Eigen::Default as parameter here. |
| 166 | * \code svd.setThreshold(Eigen::Default); \endcode |
| 167 | * |
| 168 | * See the documentation of setThreshold(const RealScalar&). |
| 169 | */ |
| 170 | Derived& setThreshold(Default_t) |
| 171 | { |
| 172 | m_usePrescribedThreshold = false; |
| 173 | return derived(); |
| 174 | } |
| 175 | |
| 176 | /** Returns the threshold that will be used by certain methods such as rank(). |
| 177 | * |
| 178 | * See the documentation of setThreshold(const RealScalar&). |
| 179 | */ |
| 180 | RealScalar threshold() const |
| 181 | { |
| 182 | eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
| 183 | // this temporary is needed to workaround a MSVC issue |
| 184 | Index diagSize = (std::max<Index>)(1,m_diagSize); |
| 185 | return m_usePrescribedThreshold ? m_prescribedThreshold |
| 186 | : diagSize*NumTraits<Scalar>::epsilon(); |
| 187 | } |
| 188 | |
| 189 | /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ |
| 190 | inline bool computeU() const { return m_computeFullU || m_computeThinU; } |
| 191 | /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ |
| 192 | inline bool computeV() const { return m_computeFullV || m_computeThinV; } |
| 193 | |
| 194 | inline Index rows() const { return m_rows; } |
| 195 | inline Index cols() const { return m_cols; } |
| 196 | |
| 197 | /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. |
| 198 | * |
| 199 | * \param b the right-hand-side of the equation to solve. |
| 200 | * |
| 201 | * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. |
| 202 | * |
| 203 | * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. |
| 204 | * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. |
| 205 | */ |
| 206 | template<typename Rhs> |
| 207 | inline const Solve<Derived, Rhs> |
| 208 | solve(const MatrixBase<Rhs>& b) const |
| 209 | { |
| 210 | eigen_assert(m_isInitialized && "SVD is not initialized."); |
| 211 | eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."); |
| 212 | return Solve<Derived, Rhs>(derived(), b.derived()); |
| 213 | } |
| 214 | |
| 215 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 216 | template<typename RhsType, typename DstType> |
| 217 | EIGEN_DEVICE_FUNC |
| 218 | void _solve_impl(const RhsType &rhs, DstType &dst) const; |
| 219 | #endif |
| 220 | |
| 221 | protected: |
| 222 | |
| 223 | static void check_template_parameters() |
| 224 | { |
| 225 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
| 226 | } |
| 227 | |
| 228 | // return true if already allocated |
| 229 | bool allocate(Index rows, Index cols, unsigned int computationOptions) ; |
| 230 | |
| 231 | MatrixUType m_matrixU; |
| 232 | MatrixVType m_matrixV; |
| 233 | SingularValuesType m_singularValues; |
| 234 | bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold; |
| 235 | bool m_computeFullU, m_computeThinU; |
| 236 | bool m_computeFullV, m_computeThinV; |
| 237 | unsigned int m_computationOptions; |
| 238 | Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; |
| 239 | RealScalar m_prescribedThreshold; |
| 240 | |
| 241 | /** \brief Default Constructor. |
| 242 | * |
| 243 | * Default constructor of SVDBase |
| 244 | */ |
| 245 | SVDBase() |
| 246 | : m_isInitialized(false), |
| 247 | m_isAllocated(false), |
| 248 | m_usePrescribedThreshold(false), |
| 249 | m_computationOptions(0), |
| 250 | m_rows(-1), m_cols(-1), m_diagSize(0) |
| 251 | { |
| 252 | check_template_parameters(); |
| 253 | } |
| 254 | |
| 255 | |
| 256 | }; |
| 257 | |
| 258 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 259 | template<typename Derived> |
| 260 | template<typename RhsType, typename DstType> |
| 261 | void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const |
| 262 | { |
| 263 | eigen_assert(rhs.rows() == rows()); |
| 264 | |
| 265 | // A = U S V^* |
| 266 | // So A^{-1} = V S^{-1} U^* |
| 267 | |
| 268 | Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp; |
| 269 | Index l_rank = rank(); |
| 270 | tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs; |
| 271 | tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp; |
| 272 | dst = m_matrixV.leftCols(l_rank) * tmp; |
| 273 | } |
| 274 | #endif |
| 275 | |
| 276 | template<typename MatrixType> |
| 277 | bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions) |
| 278 | { |
| 279 | eigen_assert(rows >= 0 && cols >= 0); |
| 280 | |
| 281 | if (m_isAllocated && |
| 282 | rows == m_rows && |
| 283 | cols == m_cols && |
| 284 | computationOptions == m_computationOptions) |
| 285 | { |
| 286 | return true; |
| 287 | } |
| 288 | |
| 289 | m_rows = rows; |
| 290 | m_cols = cols; |
| 291 | m_isInitialized = false; |
| 292 | m_isAllocated = true; |
| 293 | m_computationOptions = computationOptions; |
| 294 | m_computeFullU = (computationOptions & ComputeFullU) != 0; |
| 295 | m_computeThinU = (computationOptions & ComputeThinU) != 0; |
| 296 | m_computeFullV = (computationOptions & ComputeFullV) != 0; |
| 297 | m_computeThinV = (computationOptions & ComputeThinV) != 0; |
| 298 | eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U"); |
| 299 | eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V"); |
| 300 | eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && |
| 301 | "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns."); |
| 302 | |
| 303 | m_diagSize = (std::min)(m_rows, m_cols); |
| 304 | m_singularValues.resize(m_diagSize); |
| 305 | if(RowsAtCompileTime==Dynamic) |
| 306 | m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0); |
| 307 | if(ColsAtCompileTime==Dynamic) |
| 308 | m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0); |
| 309 | |
| 310 | return false; |
| 311 | } |
| 312 | |
| 313 | }// end namespace |
| 314 | |
| 315 | #endif // EIGEN_SVDBASE_H |