Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_LU_H |
| 11 | #define EIGEN_LU_H |
| 12 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 13 | namespace Eigen { |
| 14 | |
| 15 | namespace internal { |
| 16 | template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> > |
| 17 | : traits<_MatrixType> |
| 18 | { |
| 19 | typedef MatrixXpr XprKind; |
| 20 | typedef SolverStorage StorageKind; |
| 21 | enum { Flags = 0 }; |
| 22 | }; |
| 23 | |
| 24 | } // end namespace internal |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 25 | |
| 26 | /** \ingroup LU_Module |
| 27 | * |
| 28 | * \class FullPivLU |
| 29 | * |
| 30 | * \brief LU decomposition of a matrix with complete pivoting, and related features |
| 31 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 32 | * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 33 | * |
| 34 | * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is |
| 35 | * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is |
| 36 | * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU |
| 37 | * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any |
| 38 | * zeros are at the end. |
| 39 | * |
| 40 | * This decomposition provides the generic approach to solving systems of linear equations, computing |
| 41 | * the rank, invertibility, inverse, kernel, and determinant. |
| 42 | * |
| 43 | * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD |
| 44 | * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, |
| 45 | * working with the SVD allows to select the smallest singular values of the matrix, something that |
| 46 | * the LU decomposition doesn't see. |
| 47 | * |
| 48 | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), |
| 49 | * permutationP(), permutationQ(). |
| 50 | * |
| 51 | * As an exemple, here is how the original matrix can be retrieved: |
| 52 | * \include class_FullPivLU.cpp |
| 53 | * Output: \verbinclude class_FullPivLU.out |
| 54 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 55 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
| 56 | * |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 57 | * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse() |
| 58 | */ |
| 59 | template<typename _MatrixType> class FullPivLU |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 60 | : public SolverBase<FullPivLU<_MatrixType> > |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 61 | { |
| 62 | public: |
| 63 | typedef _MatrixType MatrixType; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 64 | typedef SolverBase<FullPivLU> Base; |
| 65 | |
| 66 | EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU) |
| 67 | // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 68 | enum { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 69 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 70 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| 71 | }; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 72 | typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType; |
| 73 | typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 74 | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType; |
| 75 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 76 | typedef typename MatrixType::PlainObject PlainObject; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 77 | |
| 78 | /** |
| 79 | * \brief Default Constructor. |
| 80 | * |
| 81 | * The default constructor is useful in cases in which the user intends to |
| 82 | * perform decompositions via LU::compute(const MatrixType&). |
| 83 | */ |
| 84 | FullPivLU(); |
| 85 | |
| 86 | /** \brief Default Constructor with memory preallocation |
| 87 | * |
| 88 | * Like the default constructor but with preallocation of the internal data |
| 89 | * according to the specified problem \a size. |
| 90 | * \sa FullPivLU() |
| 91 | */ |
| 92 | FullPivLU(Index rows, Index cols); |
| 93 | |
| 94 | /** Constructor. |
| 95 | * |
| 96 | * \param matrix the matrix of which to compute the LU decomposition. |
| 97 | * It is required to be nonzero. |
| 98 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 99 | template<typename InputType> |
| 100 | explicit FullPivLU(const EigenBase<InputType>& matrix); |
| 101 | |
| 102 | /** \brief Constructs a LU factorization from a given matrix |
| 103 | * |
| 104 | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. |
| 105 | * |
| 106 | * \sa FullPivLU(const EigenBase&) |
| 107 | */ |
| 108 | template<typename InputType> |
| 109 | explicit FullPivLU(EigenBase<InputType>& matrix); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 110 | |
| 111 | /** Computes the LU decomposition of the given matrix. |
| 112 | * |
| 113 | * \param matrix the matrix of which to compute the LU decomposition. |
| 114 | * It is required to be nonzero. |
| 115 | * |
| 116 | * \returns a reference to *this |
| 117 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 118 | template<typename InputType> |
| 119 | FullPivLU& compute(const EigenBase<InputType>& matrix) { |
| 120 | m_lu = matrix.derived(); |
| 121 | computeInPlace(); |
| 122 | return *this; |
| 123 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 124 | |
| 125 | /** \returns the LU decomposition matrix: the upper-triangular part is U, the |
| 126 | * unit-lower-triangular part is L (at least for square matrices; in the non-square |
| 127 | * case, special care is needed, see the documentation of class FullPivLU). |
| 128 | * |
| 129 | * \sa matrixL(), matrixU() |
| 130 | */ |
| 131 | inline const MatrixType& matrixLU() const |
| 132 | { |
| 133 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 134 | return m_lu; |
| 135 | } |
| 136 | |
| 137 | /** \returns the number of nonzero pivots in the LU decomposition. |
| 138 | * Here nonzero is meant in the exact sense, not in a fuzzy sense. |
| 139 | * So that notion isn't really intrinsically interesting, but it is |
| 140 | * still useful when implementing algorithms. |
| 141 | * |
| 142 | * \sa rank() |
| 143 | */ |
| 144 | inline Index nonzeroPivots() const |
| 145 | { |
| 146 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 147 | return m_nonzero_pivots; |
| 148 | } |
| 149 | |
| 150 | /** \returns the absolute value of the biggest pivot, i.e. the biggest |
| 151 | * diagonal coefficient of U. |
| 152 | */ |
| 153 | RealScalar maxPivot() const { return m_maxpivot; } |
| 154 | |
| 155 | /** \returns the permutation matrix P |
| 156 | * |
| 157 | * \sa permutationQ() |
| 158 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 159 | EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 160 | { |
| 161 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 162 | return m_p; |
| 163 | } |
| 164 | |
| 165 | /** \returns the permutation matrix Q |
| 166 | * |
| 167 | * \sa permutationP() |
| 168 | */ |
| 169 | inline const PermutationQType& permutationQ() const |
| 170 | { |
| 171 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 172 | return m_q; |
| 173 | } |
| 174 | |
| 175 | /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix |
| 176 | * will form a basis of the kernel. |
| 177 | * |
| 178 | * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros. |
| 179 | * |
| 180 | * \note This method has to determine which pivots should be considered nonzero. |
| 181 | * For that, it uses the threshold value that you can control by calling |
| 182 | * setThreshold(const RealScalar&). |
| 183 | * |
| 184 | * Example: \include FullPivLU_kernel.cpp |
| 185 | * Output: \verbinclude FullPivLU_kernel.out |
| 186 | * |
| 187 | * \sa image() |
| 188 | */ |
| 189 | inline const internal::kernel_retval<FullPivLU> kernel() const |
| 190 | { |
| 191 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 192 | return internal::kernel_retval<FullPivLU>(*this); |
| 193 | } |
| 194 | |
| 195 | /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 196 | * will form a basis of the image (column-space). |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 197 | * |
| 198 | * \param originalMatrix the original matrix, of which *this is the LU decomposition. |
| 199 | * The reason why it is needed to pass it here, is that this allows |
| 200 | * a large optimization, as otherwise this method would need to reconstruct it |
| 201 | * from the LU decomposition. |
| 202 | * |
| 203 | * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros. |
| 204 | * |
| 205 | * \note This method has to determine which pivots should be considered nonzero. |
| 206 | * For that, it uses the threshold value that you can control by calling |
| 207 | * setThreshold(const RealScalar&). |
| 208 | * |
| 209 | * Example: \include FullPivLU_image.cpp |
| 210 | * Output: \verbinclude FullPivLU_image.out |
| 211 | * |
| 212 | * \sa kernel() |
| 213 | */ |
| 214 | inline const internal::image_retval<FullPivLU> |
| 215 | image(const MatrixType& originalMatrix) const |
| 216 | { |
| 217 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 218 | return internal::image_retval<FullPivLU>(*this, originalMatrix); |
| 219 | } |
| 220 | |
| 221 | /** \return a solution x to the equation Ax=b, where A is the matrix of which |
| 222 | * *this is the LU decomposition. |
| 223 | * |
| 224 | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, |
| 225 | * the only requirement in order for the equation to make sense is that |
| 226 | * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
| 227 | * |
| 228 | * \returns a solution. |
| 229 | * |
| 230 | * \note_about_checking_solutions |
| 231 | * |
| 232 | * \note_about_arbitrary_choice_of_solution |
| 233 | * \note_about_using_kernel_to_study_multiple_solutions |
| 234 | * |
| 235 | * Example: \include FullPivLU_solve.cpp |
| 236 | * Output: \verbinclude FullPivLU_solve.out |
| 237 | * |
| 238 | * \sa TriangularView::solve(), kernel(), inverse() |
| 239 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 240 | // FIXME this is a copy-paste of the base-class member to add the isInitialized assertion. |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 241 | template<typename Rhs> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 242 | inline const Solve<FullPivLU, Rhs> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 243 | solve(const MatrixBase<Rhs>& b) const |
| 244 | { |
| 245 | eigen_assert(m_isInitialized && "LU is not initialized."); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 246 | return Solve<FullPivLU, Rhs>(*this, b.derived()); |
| 247 | } |
| 248 | |
| 249 | /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is |
| 250 | the LU decomposition. |
| 251 | */ |
| 252 | inline RealScalar rcond() const |
| 253 | { |
| 254 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| 255 | return internal::rcond_estimate_helper(m_l1_norm, *this); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 256 | } |
| 257 | |
| 258 | /** \returns the determinant of the matrix of which |
| 259 | * *this is the LU decomposition. It has only linear complexity |
| 260 | * (that is, O(n) where n is the dimension of the square matrix) |
| 261 | * as the LU decomposition has already been computed. |
| 262 | * |
| 263 | * \note This is only for square matrices. |
| 264 | * |
| 265 | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers |
| 266 | * optimized paths. |
| 267 | * |
| 268 | * \warning a determinant can be very big or small, so for matrices |
| 269 | * of large enough dimension, there is a risk of overflow/underflow. |
| 270 | * |
| 271 | * \sa MatrixBase::determinant() |
| 272 | */ |
| 273 | typename internal::traits<MatrixType>::Scalar determinant() const; |
| 274 | |
| 275 | /** Allows to prescribe a threshold to be used by certain methods, such as rank(), |
| 276 | * who need to determine when pivots are to be considered nonzero. This is not used for the |
| 277 | * LU decomposition itself. |
| 278 | * |
| 279 | * When it needs to get the threshold value, Eigen calls threshold(). By default, this |
| 280 | * uses a formula to automatically determine a reasonable threshold. |
| 281 | * Once you have called the present method setThreshold(const RealScalar&), |
| 282 | * your value is used instead. |
| 283 | * |
| 284 | * \param threshold The new value to use as the threshold. |
| 285 | * |
| 286 | * A pivot will be considered nonzero if its absolute value is strictly greater than |
| 287 | * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ |
| 288 | * where maxpivot is the biggest pivot. |
| 289 | * |
| 290 | * If you want to come back to the default behavior, call setThreshold(Default_t) |
| 291 | */ |
| 292 | FullPivLU& setThreshold(const RealScalar& threshold) |
| 293 | { |
| 294 | m_usePrescribedThreshold = true; |
| 295 | m_prescribedThreshold = threshold; |
| 296 | return *this; |
| 297 | } |
| 298 | |
| 299 | /** Allows to come back to the default behavior, letting Eigen use its default formula for |
| 300 | * determining the threshold. |
| 301 | * |
| 302 | * You should pass the special object Eigen::Default as parameter here. |
| 303 | * \code lu.setThreshold(Eigen::Default); \endcode |
| 304 | * |
| 305 | * See the documentation of setThreshold(const RealScalar&). |
| 306 | */ |
| 307 | FullPivLU& setThreshold(Default_t) |
| 308 | { |
| 309 | m_usePrescribedThreshold = false; |
| 310 | return *this; |
| 311 | } |
| 312 | |
| 313 | /** Returns the threshold that will be used by certain methods such as rank(). |
| 314 | * |
| 315 | * See the documentation of setThreshold(const RealScalar&). |
| 316 | */ |
| 317 | RealScalar threshold() const |
| 318 | { |
| 319 | eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
| 320 | return m_usePrescribedThreshold ? m_prescribedThreshold |
| 321 | // this formula comes from experimenting (see "LU precision tuning" thread on the list) |
| 322 | // and turns out to be identical to Higham's formula used already in LDLt. |
| 323 | : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize(); |
| 324 | } |
| 325 | |
| 326 | /** \returns the rank of the matrix of which *this is the LU decomposition. |
| 327 | * |
| 328 | * \note This method has to determine which pivots should be considered nonzero. |
| 329 | * For that, it uses the threshold value that you can control by calling |
| 330 | * setThreshold(const RealScalar&). |
| 331 | */ |
| 332 | inline Index rank() const |
| 333 | { |
| 334 | using std::abs; |
| 335 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 336 | RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); |
| 337 | Index result = 0; |
| 338 | for(Index i = 0; i < m_nonzero_pivots; ++i) |
| 339 | result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold); |
| 340 | return result; |
| 341 | } |
| 342 | |
| 343 | /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition. |
| 344 | * |
| 345 | * \note This method has to determine which pivots should be considered nonzero. |
| 346 | * For that, it uses the threshold value that you can control by calling |
| 347 | * setThreshold(const RealScalar&). |
| 348 | */ |
| 349 | inline Index dimensionOfKernel() const |
| 350 | { |
| 351 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 352 | return cols() - rank(); |
| 353 | } |
| 354 | |
| 355 | /** \returns true if the matrix of which *this is the LU decomposition represents an injective |
| 356 | * linear map, i.e. has trivial kernel; false otherwise. |
| 357 | * |
| 358 | * \note This method has to determine which pivots should be considered nonzero. |
| 359 | * For that, it uses the threshold value that you can control by calling |
| 360 | * setThreshold(const RealScalar&). |
| 361 | */ |
| 362 | inline bool isInjective() const |
| 363 | { |
| 364 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 365 | return rank() == cols(); |
| 366 | } |
| 367 | |
| 368 | /** \returns true if the matrix of which *this is the LU decomposition represents a surjective |
| 369 | * linear map; false otherwise. |
| 370 | * |
| 371 | * \note This method has to determine which pivots should be considered nonzero. |
| 372 | * For that, it uses the threshold value that you can control by calling |
| 373 | * setThreshold(const RealScalar&). |
| 374 | */ |
| 375 | inline bool isSurjective() const |
| 376 | { |
| 377 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 378 | return rank() == rows(); |
| 379 | } |
| 380 | |
| 381 | /** \returns true if the matrix of which *this is the LU decomposition is invertible. |
| 382 | * |
| 383 | * \note This method has to determine which pivots should be considered nonzero. |
| 384 | * For that, it uses the threshold value that you can control by calling |
| 385 | * setThreshold(const RealScalar&). |
| 386 | */ |
| 387 | inline bool isInvertible() const |
| 388 | { |
| 389 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 390 | return isInjective() && (m_lu.rows() == m_lu.cols()); |
| 391 | } |
| 392 | |
| 393 | /** \returns the inverse of the matrix of which *this is the LU decomposition. |
| 394 | * |
| 395 | * \note If this matrix is not invertible, the returned matrix has undefined coefficients. |
| 396 | * Use isInvertible() to first determine whether this matrix is invertible. |
| 397 | * |
| 398 | * \sa MatrixBase::inverse() |
| 399 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 400 | inline const Inverse<FullPivLU> inverse() const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 401 | { |
| 402 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 403 | eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 404 | return Inverse<FullPivLU>(*this); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 405 | } |
| 406 | |
| 407 | MatrixType reconstructedMatrix() const; |
| 408 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 409 | EIGEN_DEVICE_FUNC inline Index rows() const { return m_lu.rows(); } |
| 410 | EIGEN_DEVICE_FUNC inline Index cols() const { return m_lu.cols(); } |
| 411 | |
| 412 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 413 | template<typename RhsType, typename DstType> |
| 414 | EIGEN_DEVICE_FUNC |
| 415 | void _solve_impl(const RhsType &rhs, DstType &dst) const; |
| 416 | |
| 417 | template<bool Conjugate, typename RhsType, typename DstType> |
| 418 | EIGEN_DEVICE_FUNC |
| 419 | void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; |
| 420 | #endif |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 421 | |
| 422 | protected: |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 423 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 424 | static void check_template_parameters() |
| 425 | { |
| 426 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
| 427 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 428 | |
| 429 | void computeInPlace(); |
| 430 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 431 | MatrixType m_lu; |
| 432 | PermutationPType m_p; |
| 433 | PermutationQType m_q; |
| 434 | IntColVectorType m_rowsTranspositions; |
| 435 | IntRowVectorType m_colsTranspositions; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 436 | Index m_nonzero_pivots; |
| 437 | RealScalar m_l1_norm; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 438 | RealScalar m_maxpivot, m_prescribedThreshold; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 439 | signed char m_det_pq; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 440 | bool m_isInitialized, m_usePrescribedThreshold; |
| 441 | }; |
| 442 | |
| 443 | template<typename MatrixType> |
| 444 | FullPivLU<MatrixType>::FullPivLU() |
| 445 | : m_isInitialized(false), m_usePrescribedThreshold(false) |
| 446 | { |
| 447 | } |
| 448 | |
| 449 | template<typename MatrixType> |
| 450 | FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols) |
| 451 | : m_lu(rows, cols), |
| 452 | m_p(rows), |
| 453 | m_q(cols), |
| 454 | m_rowsTranspositions(rows), |
| 455 | m_colsTranspositions(cols), |
| 456 | m_isInitialized(false), |
| 457 | m_usePrescribedThreshold(false) |
| 458 | { |
| 459 | } |
| 460 | |
| 461 | template<typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 462 | template<typename InputType> |
| 463 | FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 464 | : m_lu(matrix.rows(), matrix.cols()), |
| 465 | m_p(matrix.rows()), |
| 466 | m_q(matrix.cols()), |
| 467 | m_rowsTranspositions(matrix.rows()), |
| 468 | m_colsTranspositions(matrix.cols()), |
| 469 | m_isInitialized(false), |
| 470 | m_usePrescribedThreshold(false) |
| 471 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 472 | compute(matrix.derived()); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 473 | } |
| 474 | |
| 475 | template<typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 476 | template<typename InputType> |
| 477 | FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix) |
| 478 | : m_lu(matrix.derived()), |
| 479 | m_p(matrix.rows()), |
| 480 | m_q(matrix.cols()), |
| 481 | m_rowsTranspositions(matrix.rows()), |
| 482 | m_colsTranspositions(matrix.cols()), |
| 483 | m_isInitialized(false), |
| 484 | m_usePrescribedThreshold(false) |
| 485 | { |
| 486 | computeInPlace(); |
| 487 | } |
| 488 | |
| 489 | template<typename MatrixType> |
| 490 | void FullPivLU<MatrixType>::computeInPlace() |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 491 | { |
| 492 | check_template_parameters(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 493 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 494 | // the permutations are stored as int indices, so just to be sure: |
| 495 | eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest()); |
| 496 | |
| 497 | m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); |
| 498 | |
| 499 | const Index size = m_lu.diagonalSize(); |
| 500 | const Index rows = m_lu.rows(); |
| 501 | const Index cols = m_lu.cols(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 502 | |
| 503 | // will store the transpositions, before we accumulate them at the end. |
| 504 | // can't accumulate on-the-fly because that will be done in reverse order for the rows. |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 505 | m_rowsTranspositions.resize(m_lu.rows()); |
| 506 | m_colsTranspositions.resize(m_lu.cols()); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 507 | Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i |
| 508 | |
| 509 | m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) |
| 510 | m_maxpivot = RealScalar(0); |
| 511 | |
| 512 | for(Index k = 0; k < size; ++k) |
| 513 | { |
| 514 | // First, we need to find the pivot. |
| 515 | |
| 516 | // biggest coefficient in the remaining bottom-right corner (starting at row k, col k) |
| 517 | Index row_of_biggest_in_corner, col_of_biggest_in_corner; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 518 | typedef internal::scalar_score_coeff_op<Scalar> Scoring; |
| 519 | typedef typename Scoring::result_type Score; |
| 520 | Score biggest_in_corner; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 521 | biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 522 | .unaryExpr(Scoring()) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 523 | .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); |
| 524 | row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner, |
| 525 | col_of_biggest_in_corner += k; // need to add k to them. |
| 526 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 527 | if(biggest_in_corner==Score(0)) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 528 | { |
| 529 | // before exiting, make sure to initialize the still uninitialized transpositions |
| 530 | // in a sane state without destroying what we already have. |
| 531 | m_nonzero_pivots = k; |
| 532 | for(Index i = k; i < size; ++i) |
| 533 | { |
| 534 | m_rowsTranspositions.coeffRef(i) = i; |
| 535 | m_colsTranspositions.coeffRef(i) = i; |
| 536 | } |
| 537 | break; |
| 538 | } |
| 539 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 540 | RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner); |
| 541 | if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 542 | |
| 543 | // Now that we've found the pivot, we need to apply the row/col swaps to |
| 544 | // bring it to the location (k,k). |
| 545 | |
| 546 | m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner; |
| 547 | m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner; |
| 548 | if(k != row_of_biggest_in_corner) { |
| 549 | m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner)); |
| 550 | ++number_of_transpositions; |
| 551 | } |
| 552 | if(k != col_of_biggest_in_corner) { |
| 553 | m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner)); |
| 554 | ++number_of_transpositions; |
| 555 | } |
| 556 | |
| 557 | // Now that the pivot is at the right location, we update the remaining |
| 558 | // bottom-right corner by Gaussian elimination. |
| 559 | |
| 560 | if(k<rows-1) |
| 561 | m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k); |
| 562 | if(k<size-1) |
| 563 | m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1); |
| 564 | } |
| 565 | |
| 566 | // the main loop is over, we still have to accumulate the transpositions to find the |
| 567 | // permutations P and Q |
| 568 | |
| 569 | m_p.setIdentity(rows); |
| 570 | for(Index k = size-1; k >= 0; --k) |
| 571 | m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k)); |
| 572 | |
| 573 | m_q.setIdentity(cols); |
| 574 | for(Index k = 0; k < size; ++k) |
| 575 | m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); |
| 576 | |
| 577 | m_det_pq = (number_of_transpositions%2) ? -1 : 1; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 578 | |
| 579 | m_isInitialized = true; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 580 | } |
| 581 | |
| 582 | template<typename MatrixType> |
| 583 | typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const |
| 584 | { |
| 585 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 586 | eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!"); |
| 587 | return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod()); |
| 588 | } |
| 589 | |
| 590 | /** \returns the matrix represented by the decomposition, |
| 591 | * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$. |
| 592 | * This function is provided for debug purposes. */ |
| 593 | template<typename MatrixType> |
| 594 | MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const |
| 595 | { |
| 596 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 597 | const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols()); |
| 598 | // LU |
| 599 | MatrixType res(m_lu.rows(),m_lu.cols()); |
| 600 | // FIXME the .toDenseMatrix() should not be needed... |
| 601 | res = m_lu.leftCols(smalldim) |
| 602 | .template triangularView<UnitLower>().toDenseMatrix() |
| 603 | * m_lu.topRows(smalldim) |
| 604 | .template triangularView<Upper>().toDenseMatrix(); |
| 605 | |
| 606 | // P^{-1}(LU) |
| 607 | res = m_p.inverse() * res; |
| 608 | |
| 609 | // (P^{-1}LU)Q^{-1} |
| 610 | res = res * m_q.inverse(); |
| 611 | |
| 612 | return res; |
| 613 | } |
| 614 | |
| 615 | /********* Implementation of kernel() **************************************************/ |
| 616 | |
| 617 | namespace internal { |
| 618 | template<typename _MatrixType> |
| 619 | struct kernel_retval<FullPivLU<_MatrixType> > |
| 620 | : kernel_retval_base<FullPivLU<_MatrixType> > |
| 621 | { |
| 622 | EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>) |
| 623 | |
| 624 | enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( |
| 625 | MatrixType::MaxColsAtCompileTime, |
| 626 | MatrixType::MaxRowsAtCompileTime) |
| 627 | }; |
| 628 | |
| 629 | template<typename Dest> void evalTo(Dest& dst) const |
| 630 | { |
| 631 | using std::abs; |
| 632 | const Index cols = dec().matrixLU().cols(), dimker = cols - rank(); |
| 633 | if(dimker == 0) |
| 634 | { |
| 635 | // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's |
| 636 | // avoid crashing/asserting as that depends on floating point calculations. Let's |
| 637 | // just return a single column vector filled with zeros. |
| 638 | dst.setZero(); |
| 639 | return; |
| 640 | } |
| 641 | |
| 642 | /* Let us use the following lemma: |
| 643 | * |
| 644 | * Lemma: If the matrix A has the LU decomposition PAQ = LU, |
| 645 | * then Ker A = Q(Ker U). |
| 646 | * |
| 647 | * Proof: trivial: just keep in mind that P, Q, L are invertible. |
| 648 | */ |
| 649 | |
| 650 | /* Thus, all we need to do is to compute Ker U, and then apply Q. |
| 651 | * |
| 652 | * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end. |
| 653 | * Thus, the diagonal of U ends with exactly |
| 654 | * dimKer zero's. Let us use that to construct dimKer linearly |
| 655 | * independent vectors in Ker U. |
| 656 | */ |
| 657 | |
| 658 | Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); |
| 659 | RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); |
| 660 | Index p = 0; |
| 661 | for(Index i = 0; i < dec().nonzeroPivots(); ++i) |
| 662 | if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) |
| 663 | pivots.coeffRef(p++) = i; |
| 664 | eigen_internal_assert(p == rank()); |
| 665 | |
| 666 | // we construct a temporaty trapezoid matrix m, by taking the U matrix and |
| 667 | // permuting the rows and cols to bring the nonnegligible pivots to the top of |
| 668 | // the main diagonal. We need that to be able to apply our triangular solvers. |
| 669 | // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified |
| 670 | Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options, |
| 671 | MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime> |
| 672 | m(dec().matrixLU().block(0, 0, rank(), cols)); |
| 673 | for(Index i = 0; i < rank(); ++i) |
| 674 | { |
| 675 | if(i) m.row(i).head(i).setZero(); |
| 676 | m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i); |
| 677 | } |
| 678 | m.block(0, 0, rank(), rank()); |
| 679 | m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero(); |
| 680 | for(Index i = 0; i < rank(); ++i) |
| 681 | m.col(i).swap(m.col(pivots.coeff(i))); |
| 682 | |
| 683 | // ok, we have our trapezoid matrix, we can apply the triangular solver. |
| 684 | // notice that the math behind this suggests that we should apply this to the |
| 685 | // negative of the RHS, but for performance we just put the negative sign elsewhere, see below. |
| 686 | m.topLeftCorner(rank(), rank()) |
| 687 | .template triangularView<Upper>().solveInPlace( |
| 688 | m.topRightCorner(rank(), dimker) |
| 689 | ); |
| 690 | |
| 691 | // now we must undo the column permutation that we had applied! |
| 692 | for(Index i = rank()-1; i >= 0; --i) |
| 693 | m.col(i).swap(m.col(pivots.coeff(i))); |
| 694 | |
| 695 | // see the negative sign in the next line, that's what we were talking about above. |
| 696 | for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker); |
| 697 | for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero(); |
| 698 | for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1); |
| 699 | } |
| 700 | }; |
| 701 | |
| 702 | /***** Implementation of image() *****************************************************/ |
| 703 | |
| 704 | template<typename _MatrixType> |
| 705 | struct image_retval<FullPivLU<_MatrixType> > |
| 706 | : image_retval_base<FullPivLU<_MatrixType> > |
| 707 | { |
| 708 | EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>) |
| 709 | |
| 710 | enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( |
| 711 | MatrixType::MaxColsAtCompileTime, |
| 712 | MatrixType::MaxRowsAtCompileTime) |
| 713 | }; |
| 714 | |
| 715 | template<typename Dest> void evalTo(Dest& dst) const |
| 716 | { |
| 717 | using std::abs; |
| 718 | if(rank() == 0) |
| 719 | { |
| 720 | // The Image is just {0}, so it doesn't have a basis properly speaking, but let's |
| 721 | // avoid crashing/asserting as that depends on floating point calculations. Let's |
| 722 | // just return a single column vector filled with zeros. |
| 723 | dst.setZero(); |
| 724 | return; |
| 725 | } |
| 726 | |
| 727 | Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); |
| 728 | RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); |
| 729 | Index p = 0; |
| 730 | for(Index i = 0; i < dec().nonzeroPivots(); ++i) |
| 731 | if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) |
| 732 | pivots.coeffRef(p++) = i; |
| 733 | eigen_internal_assert(p == rank()); |
| 734 | |
| 735 | for(Index i = 0; i < rank(); ++i) |
| 736 | dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i))); |
| 737 | } |
| 738 | }; |
| 739 | |
| 740 | /***** Implementation of solve() *****************************************************/ |
| 741 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 742 | } // end namespace internal |
| 743 | |
| 744 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 745 | template<typename _MatrixType> |
| 746 | template<typename RhsType, typename DstType> |
| 747 | void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 748 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 749 | /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. |
| 750 | * So we proceed as follows: |
| 751 | * Step 1: compute c = P * rhs. |
| 752 | * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. |
| 753 | * Step 3: replace c by the solution x to Ux = c. May or may not exist. |
| 754 | * Step 4: result = Q * c; |
| 755 | */ |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 756 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 757 | const Index rows = this->rows(), |
| 758 | cols = this->cols(), |
| 759 | nonzero_pivots = this->rank(); |
| 760 | eigen_assert(rhs.rows() == rows); |
| 761 | const Index smalldim = (std::min)(rows, cols); |
| 762 | |
| 763 | if(nonzero_pivots == 0) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 764 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 765 | dst.setZero(); |
| 766 | return; |
| 767 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 768 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 769 | typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 770 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 771 | // Step 1 |
| 772 | c = permutationP() * rhs; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 773 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 774 | // Step 2 |
| 775 | m_lu.topLeftCorner(smalldim,smalldim) |
| 776 | .template triangularView<UnitLower>() |
| 777 | .solveInPlace(c.topRows(smalldim)); |
| 778 | if(rows>cols) |
| 779 | c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 780 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 781 | // Step 3 |
| 782 | m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) |
| 783 | .template triangularView<Upper>() |
| 784 | .solveInPlace(c.topRows(nonzero_pivots)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 785 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 786 | // Step 4 |
| 787 | for(Index i = 0; i < nonzero_pivots; ++i) |
| 788 | dst.row(permutationQ().indices().coeff(i)) = c.row(i); |
| 789 | for(Index i = nonzero_pivots; i < m_lu.cols(); ++i) |
| 790 | dst.row(permutationQ().indices().coeff(i)).setZero(); |
| 791 | } |
| 792 | |
| 793 | template<typename _MatrixType> |
| 794 | template<bool Conjugate, typename RhsType, typename DstType> |
| 795 | void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const |
| 796 | { |
| 797 | /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}, |
| 798 | * and since permutations are real and unitary, we can write this |
| 799 | * as A^T = Q U^T L^T P, |
| 800 | * So we proceed as follows: |
| 801 | * Step 1: compute c = Q^T rhs. |
| 802 | * Step 2: replace c by the solution x to U^T x = c. May or may not exist. |
| 803 | * Step 3: replace c by the solution x to L^T x = c. |
| 804 | * Step 4: result = P^T c. |
| 805 | * If Conjugate is true, replace "^T" by "^*" above. |
| 806 | */ |
| 807 | |
| 808 | const Index rows = this->rows(), cols = this->cols(), |
| 809 | nonzero_pivots = this->rank(); |
| 810 | eigen_assert(rhs.rows() == cols); |
| 811 | const Index smalldim = (std::min)(rows, cols); |
| 812 | |
| 813 | if(nonzero_pivots == 0) |
| 814 | { |
| 815 | dst.setZero(); |
| 816 | return; |
| 817 | } |
| 818 | |
| 819 | typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); |
| 820 | |
| 821 | // Step 1 |
| 822 | c = permutationQ().inverse() * rhs; |
| 823 | |
| 824 | if (Conjugate) { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 825 | // Step 2 |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 826 | m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 827 | .template triangularView<Upper>() |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 828 | .adjoint() |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 829 | .solveInPlace(c.topRows(nonzero_pivots)); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 830 | // Step 3 |
| 831 | m_lu.topLeftCorner(smalldim, smalldim) |
| 832 | .template triangularView<UnitLower>() |
| 833 | .adjoint() |
| 834 | .solveInPlace(c.topRows(smalldim)); |
| 835 | } else { |
| 836 | // Step 2 |
| 837 | m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) |
| 838 | .template triangularView<Upper>() |
| 839 | .transpose() |
| 840 | .solveInPlace(c.topRows(nonzero_pivots)); |
| 841 | // Step 3 |
| 842 | m_lu.topLeftCorner(smalldim, smalldim) |
| 843 | .template triangularView<UnitLower>() |
| 844 | .transpose() |
| 845 | .solveInPlace(c.topRows(smalldim)); |
| 846 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 847 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 848 | // Step 4 |
| 849 | PermutationPType invp = permutationP().inverse().eval(); |
| 850 | for(Index i = 0; i < smalldim; ++i) |
| 851 | dst.row(invp.indices().coeff(i)) = c.row(i); |
| 852 | for(Index i = smalldim; i < rows; ++i) |
| 853 | dst.row(invp.indices().coeff(i)).setZero(); |
| 854 | } |
| 855 | |
| 856 | #endif |
| 857 | |
| 858 | namespace internal { |
| 859 | |
| 860 | |
| 861 | /***** Implementation of inverse() *****************************************************/ |
| 862 | template<typename DstXprType, typename MatrixType> |
| 863 | struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense> |
| 864 | { |
| 865 | typedef FullPivLU<MatrixType> LuType; |
| 866 | typedef Inverse<LuType> SrcXprType; |
| 867 | static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &) |
| 868 | { |
| 869 | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 870 | } |
| 871 | }; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 872 | } // end namespace internal |
| 873 | |
| 874 | /******* MatrixBase methods *****************************************************************/ |
| 875 | |
| 876 | /** \lu_module |
| 877 | * |
| 878 | * \return the full-pivoting LU decomposition of \c *this. |
| 879 | * |
| 880 | * \sa class FullPivLU |
| 881 | */ |
| 882 | template<typename Derived> |
| 883 | inline const FullPivLU<typename MatrixBase<Derived>::PlainObject> |
| 884 | MatrixBase<Derived>::fullPivLu() const |
| 885 | { |
| 886 | return FullPivLU<PlainObject>(eval()); |
| 887 | } |
| 888 | |
| 889 | } // end namespace Eigen |
| 890 | |
| 891 | #endif // EIGEN_LU_H |