Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H |
| 11 | #define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | namespace internal { |
| 16 | |
| 17 | /** \internal Low-level conjugate gradient algorithm for least-square problems |
| 18 | * \param mat The matrix A |
| 19 | * \param rhs The right hand side vector b |
| 20 | * \param x On input and initial solution, on output the computed solution. |
| 21 | * \param precond A preconditioner being able to efficiently solve for an |
| 22 | * approximation of A'Ax=b (regardless of b) |
| 23 | * \param iters On input the max number of iteration, on output the number of performed iterations. |
| 24 | * \param tol_error On input the tolerance error, on output an estimation of the relative error. |
| 25 | */ |
| 26 | template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> |
| 27 | EIGEN_DONT_INLINE |
| 28 | void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, |
| 29 | const Preconditioner& precond, Index& iters, |
| 30 | typename Dest::RealScalar& tol_error) |
| 31 | { |
| 32 | using std::sqrt; |
| 33 | using std::abs; |
| 34 | typedef typename Dest::RealScalar RealScalar; |
| 35 | typedef typename Dest::Scalar Scalar; |
| 36 | typedef Matrix<Scalar,Dynamic,1> VectorType; |
| 37 | |
| 38 | RealScalar tol = tol_error; |
| 39 | Index maxIters = iters; |
| 40 | |
| 41 | Index m = mat.rows(), n = mat.cols(); |
| 42 | |
| 43 | VectorType residual = rhs - mat * x; |
| 44 | VectorType normal_residual = mat.adjoint() * residual; |
| 45 | |
| 46 | RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm(); |
| 47 | if(rhsNorm2 == 0) |
| 48 | { |
| 49 | x.setZero(); |
| 50 | iters = 0; |
| 51 | tol_error = 0; |
| 52 | return; |
| 53 | } |
| 54 | RealScalar threshold = tol*tol*rhsNorm2; |
| 55 | RealScalar residualNorm2 = normal_residual.squaredNorm(); |
| 56 | if (residualNorm2 < threshold) |
| 57 | { |
| 58 | iters = 0; |
| 59 | tol_error = sqrt(residualNorm2 / rhsNorm2); |
| 60 | return; |
| 61 | } |
| 62 | |
| 63 | VectorType p(n); |
| 64 | p = precond.solve(normal_residual); // initial search direction |
| 65 | |
| 66 | VectorType z(n), tmp(m); |
| 67 | RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM |
| 68 | Index i = 0; |
| 69 | while(i < maxIters) |
| 70 | { |
| 71 | tmp.noalias() = mat * p; |
| 72 | |
| 73 | Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir |
| 74 | x += alpha * p; // update solution |
| 75 | residual -= alpha * tmp; // update residual |
| 76 | normal_residual = mat.adjoint() * residual; // update residual of the normal equation |
| 77 | |
| 78 | residualNorm2 = normal_residual.squaredNorm(); |
| 79 | if(residualNorm2 < threshold) |
| 80 | break; |
| 81 | |
| 82 | z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual" |
| 83 | |
| 84 | RealScalar absOld = absNew; |
| 85 | absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r |
| 86 | RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction |
| 87 | p = z + beta * p; // update search direction |
| 88 | i++; |
| 89 | } |
| 90 | tol_error = sqrt(residualNorm2 / rhsNorm2); |
| 91 | iters = i; |
| 92 | } |
| 93 | |
| 94 | } |
| 95 | |
| 96 | template< typename _MatrixType, |
| 97 | typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> > |
| 98 | class LeastSquaresConjugateGradient; |
| 99 | |
| 100 | namespace internal { |
| 101 | |
| 102 | template< typename _MatrixType, typename _Preconditioner> |
| 103 | struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> > |
| 104 | { |
| 105 | typedef _MatrixType MatrixType; |
| 106 | typedef _Preconditioner Preconditioner; |
| 107 | }; |
| 108 | |
| 109 | } |
| 110 | |
| 111 | /** \ingroup IterativeLinearSolvers_Module |
| 112 | * \brief A conjugate gradient solver for sparse (or dense) least-square problems |
| 113 | * |
| 114 | * This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm. |
| 115 | * The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability. |
| 116 | * Otherwise, the SparseLU or SparseQR classes might be preferable. |
| 117 | * The matrix A and the vectors x and b can be either dense or sparse. |
| 118 | * |
| 119 | * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix. |
| 120 | * \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner |
| 121 | * |
| 122 | * \implsparsesolverconcept |
| 123 | * |
| 124 | * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() |
| 125 | * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations |
| 126 | * and NumTraits<Scalar>::epsilon() for the tolerance. |
| 127 | * |
| 128 | * This class can be used as the direct solver classes. Here is a typical usage example: |
| 129 | \code |
| 130 | int m=1000000, n = 10000; |
| 131 | VectorXd x(n), b(m); |
| 132 | SparseMatrix<double> A(m,n); |
| 133 | // fill A and b |
| 134 | LeastSquaresConjugateGradient<SparseMatrix<double> > lscg; |
| 135 | lscg.compute(A); |
| 136 | x = lscg.solve(b); |
| 137 | std::cout << "#iterations: " << lscg.iterations() << std::endl; |
| 138 | std::cout << "estimated error: " << lscg.error() << std::endl; |
| 139 | // update b, and solve again |
| 140 | x = lscg.solve(b); |
| 141 | \endcode |
| 142 | * |
| 143 | * By default the iterations start with x=0 as an initial guess of the solution. |
| 144 | * One can control the start using the solveWithGuess() method. |
| 145 | * |
| 146 | * \sa class ConjugateGradient, SparseLU, SparseQR |
| 147 | */ |
| 148 | template< typename _MatrixType, typename _Preconditioner> |
| 149 | class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> > |
| 150 | { |
| 151 | typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base; |
| 152 | using Base::matrix; |
| 153 | using Base::m_error; |
| 154 | using Base::m_iterations; |
| 155 | using Base::m_info; |
| 156 | using Base::m_isInitialized; |
| 157 | public: |
| 158 | typedef _MatrixType MatrixType; |
| 159 | typedef typename MatrixType::Scalar Scalar; |
| 160 | typedef typename MatrixType::RealScalar RealScalar; |
| 161 | typedef _Preconditioner Preconditioner; |
| 162 | |
| 163 | public: |
| 164 | |
| 165 | /** Default constructor. */ |
| 166 | LeastSquaresConjugateGradient() : Base() {} |
| 167 | |
| 168 | /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
| 169 | * |
| 170 | * This constructor is a shortcut for the default constructor followed |
| 171 | * by a call to compute(). |
| 172 | * |
| 173 | * \warning this class stores a reference to the matrix A as well as some |
| 174 | * precomputed values that depend on it. Therefore, if \a A is changed |
| 175 | * this class becomes invalid. Call compute() to update it with the new |
| 176 | * matrix A, or modify a copy of A. |
| 177 | */ |
| 178 | template<typename MatrixDerived> |
| 179 | explicit LeastSquaresConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {} |
| 180 | |
| 181 | ~LeastSquaresConjugateGradient() {} |
| 182 | |
| 183 | /** \internal */ |
| 184 | template<typename Rhs,typename Dest> |
| 185 | void _solve_with_guess_impl(const Rhs& b, Dest& x) const |
| 186 | { |
| 187 | m_iterations = Base::maxIterations(); |
| 188 | m_error = Base::m_tolerance; |
| 189 | |
| 190 | for(Index j=0; j<b.cols(); ++j) |
| 191 | { |
| 192 | m_iterations = Base::maxIterations(); |
| 193 | m_error = Base::m_tolerance; |
| 194 | |
| 195 | typename Dest::ColXpr xj(x,j); |
| 196 | internal::least_square_conjugate_gradient(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error); |
| 197 | } |
| 198 | |
| 199 | m_isInitialized = true; |
| 200 | m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; |
| 201 | } |
| 202 | |
| 203 | /** \internal */ |
| 204 | using Base::_solve_impl; |
| 205 | template<typename Rhs,typename Dest> |
| 206 | void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const |
| 207 | { |
| 208 | x.setZero(); |
| 209 | _solve_with_guess_impl(b.derived(),x); |
| 210 | } |
| 211 | |
| 212 | }; |
| 213 | |
| 214 | } // end namespace Eigen |
| 215 | |
| 216 | #endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H |