Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009 Claire Maurice |
| 5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 6 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 7 | // |
| 8 | // This Source Code Form is subject to the terms of the Mozilla |
| 9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 11 | |
| 12 | #ifndef EIGEN_COMPLEX_SCHUR_H |
| 13 | #define EIGEN_COMPLEX_SCHUR_H |
| 14 | |
| 15 | #include "./HessenbergDecomposition.h" |
| 16 | |
| 17 | namespace Eigen { |
| 18 | |
| 19 | namespace internal { |
| 20 | template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg; |
| 21 | } |
| 22 | |
| 23 | /** \eigenvalues_module \ingroup Eigenvalues_Module |
| 24 | * |
| 25 | * |
| 26 | * \class ComplexSchur |
| 27 | * |
| 28 | * \brief Performs a complex Schur decomposition of a real or complex square matrix |
| 29 | * |
| 30 | * \tparam _MatrixType the type of the matrix of which we are |
| 31 | * computing the Schur decomposition; this is expected to be an |
| 32 | * instantiation of the Matrix class template. |
| 33 | * |
| 34 | * Given a real or complex square matrix A, this class computes the |
| 35 | * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary |
| 36 | * complex matrix, and T is a complex upper triangular matrix. The |
| 37 | * diagonal of the matrix T corresponds to the eigenvalues of the |
| 38 | * matrix A. |
| 39 | * |
| 40 | * Call the function compute() to compute the Schur decomposition of |
| 41 | * a given matrix. Alternatively, you can use the |
| 42 | * ComplexSchur(const MatrixType&, bool) constructor which computes |
| 43 | * the Schur decomposition at construction time. Once the |
| 44 | * decomposition is computed, you can use the matrixU() and matrixT() |
| 45 | * functions to retrieve the matrices U and V in the decomposition. |
| 46 | * |
| 47 | * \note This code is inspired from Jampack |
| 48 | * |
| 49 | * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver |
| 50 | */ |
| 51 | template<typename _MatrixType> class ComplexSchur |
| 52 | { |
| 53 | public: |
| 54 | typedef _MatrixType MatrixType; |
| 55 | enum { |
| 56 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 57 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 58 | Options = MatrixType::Options, |
| 59 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 60 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| 61 | }; |
| 62 | |
| 63 | /** \brief Scalar type for matrices of type \p _MatrixType. */ |
| 64 | typedef typename MatrixType::Scalar Scalar; |
| 65 | typedef typename NumTraits<Scalar>::Real RealScalar; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 66 | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 67 | |
| 68 | /** \brief Complex scalar type for \p _MatrixType. |
| 69 | * |
| 70 | * This is \c std::complex<Scalar> if #Scalar is real (e.g., |
| 71 | * \c float or \c double) and just \c Scalar if #Scalar is |
| 72 | * complex. |
| 73 | */ |
| 74 | typedef std::complex<RealScalar> ComplexScalar; |
| 75 | |
| 76 | /** \brief Type for the matrices in the Schur decomposition. |
| 77 | * |
| 78 | * This is a square matrix with entries of type #ComplexScalar. |
| 79 | * The size is the same as the size of \p _MatrixType. |
| 80 | */ |
| 81 | typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType; |
| 82 | |
| 83 | /** \brief Default constructor. |
| 84 | * |
| 85 | * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. |
| 86 | * |
| 87 | * The default constructor is useful in cases in which the user |
| 88 | * intends to perform decompositions via compute(). The \p size |
| 89 | * parameter is only used as a hint. It is not an error to give a |
| 90 | * wrong \p size, but it may impair performance. |
| 91 | * |
| 92 | * \sa compute() for an example. |
| 93 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 94 | explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 95 | : m_matT(size,size), |
| 96 | m_matU(size,size), |
| 97 | m_hess(size), |
| 98 | m_isInitialized(false), |
| 99 | m_matUisUptodate(false), |
| 100 | m_maxIters(-1) |
| 101 | {} |
| 102 | |
| 103 | /** \brief Constructor; computes Schur decomposition of given matrix. |
| 104 | * |
| 105 | * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
| 106 | * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
| 107 | * |
| 108 | * This constructor calls compute() to compute the Schur decomposition. |
| 109 | * |
| 110 | * \sa matrixT() and matrixU() for examples. |
| 111 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 112 | template<typename InputType> |
| 113 | explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 114 | : m_matT(matrix.rows(),matrix.cols()), |
| 115 | m_matU(matrix.rows(),matrix.cols()), |
| 116 | m_hess(matrix.rows()), |
| 117 | m_isInitialized(false), |
| 118 | m_matUisUptodate(false), |
| 119 | m_maxIters(-1) |
| 120 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 121 | compute(matrix.derived(), computeU); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 122 | } |
| 123 | |
| 124 | /** \brief Returns the unitary matrix in the Schur decomposition. |
| 125 | * |
| 126 | * \returns A const reference to the matrix U. |
| 127 | * |
| 128 | * It is assumed that either the constructor |
| 129 | * ComplexSchur(const MatrixType& matrix, bool computeU) or the |
| 130 | * member function compute(const MatrixType& matrix, bool computeU) |
| 131 | * has been called before to compute the Schur decomposition of a |
| 132 | * matrix, and that \p computeU was set to true (the default |
| 133 | * value). |
| 134 | * |
| 135 | * Example: \include ComplexSchur_matrixU.cpp |
| 136 | * Output: \verbinclude ComplexSchur_matrixU.out |
| 137 | */ |
| 138 | const ComplexMatrixType& matrixU() const |
| 139 | { |
| 140 | eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); |
| 141 | eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition."); |
| 142 | return m_matU; |
| 143 | } |
| 144 | |
| 145 | /** \brief Returns the triangular matrix in the Schur decomposition. |
| 146 | * |
| 147 | * \returns A const reference to the matrix T. |
| 148 | * |
| 149 | * It is assumed that either the constructor |
| 150 | * ComplexSchur(const MatrixType& matrix, bool computeU) or the |
| 151 | * member function compute(const MatrixType& matrix, bool computeU) |
| 152 | * has been called before to compute the Schur decomposition of a |
| 153 | * matrix. |
| 154 | * |
| 155 | * Note that this function returns a plain square matrix. If you want to reference |
| 156 | * only the upper triangular part, use: |
| 157 | * \code schur.matrixT().triangularView<Upper>() \endcode |
| 158 | * |
| 159 | * Example: \include ComplexSchur_matrixT.cpp |
| 160 | * Output: \verbinclude ComplexSchur_matrixT.out |
| 161 | */ |
| 162 | const ComplexMatrixType& matrixT() const |
| 163 | { |
| 164 | eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); |
| 165 | return m_matT; |
| 166 | } |
| 167 | |
| 168 | /** \brief Computes Schur decomposition of given matrix. |
| 169 | * |
| 170 | * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
| 171 | * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
| 172 | |
| 173 | * \returns Reference to \c *this |
| 174 | * |
| 175 | * The Schur decomposition is computed by first reducing the |
| 176 | * matrix to Hessenberg form using the class |
| 177 | * HessenbergDecomposition. The Hessenberg matrix is then reduced |
| 178 | * to triangular form by performing QR iterations with a single |
| 179 | * shift. The cost of computing the Schur decomposition depends |
| 180 | * on the number of iterations; as a rough guide, it may be taken |
| 181 | * on the number of iterations; as a rough guide, it may be taken |
| 182 | * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops |
| 183 | * if \a computeU is false. |
| 184 | * |
| 185 | * Example: \include ComplexSchur_compute.cpp |
| 186 | * Output: \verbinclude ComplexSchur_compute.out |
| 187 | * |
| 188 | * \sa compute(const MatrixType&, bool, Index) |
| 189 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 190 | template<typename InputType> |
| 191 | ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 192 | |
| 193 | /** \brief Compute Schur decomposition from a given Hessenberg matrix |
| 194 | * \param[in] matrixH Matrix in Hessenberg form H |
| 195 | * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T |
| 196 | * \param computeU Computes the matriX U of the Schur vectors |
| 197 | * \return Reference to \c *this |
| 198 | * |
| 199 | * This routine assumes that the matrix is already reduced in Hessenberg form matrixH |
| 200 | * using either the class HessenbergDecomposition or another mean. |
| 201 | * It computes the upper quasi-triangular matrix T of the Schur decomposition of H |
| 202 | * When computeU is true, this routine computes the matrix U such that |
| 203 | * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix |
| 204 | * |
| 205 | * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix |
| 206 | * is not available, the user should give an identity matrix (Q.setIdentity()) |
| 207 | * |
| 208 | * \sa compute(const MatrixType&, bool) |
| 209 | */ |
| 210 | template<typename HessMatrixType, typename OrthMatrixType> |
| 211 | ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true); |
| 212 | |
| 213 | /** \brief Reports whether previous computation was successful. |
| 214 | * |
| 215 | * \returns \c Success if computation was succesful, \c NoConvergence otherwise. |
| 216 | */ |
| 217 | ComputationInfo info() const |
| 218 | { |
| 219 | eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); |
| 220 | return m_info; |
| 221 | } |
| 222 | |
| 223 | /** \brief Sets the maximum number of iterations allowed. |
| 224 | * |
| 225 | * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size |
| 226 | * of the matrix. |
| 227 | */ |
| 228 | ComplexSchur& setMaxIterations(Index maxIters) |
| 229 | { |
| 230 | m_maxIters = maxIters; |
| 231 | return *this; |
| 232 | } |
| 233 | |
| 234 | /** \brief Returns the maximum number of iterations. */ |
| 235 | Index getMaxIterations() |
| 236 | { |
| 237 | return m_maxIters; |
| 238 | } |
| 239 | |
| 240 | /** \brief Maximum number of iterations per row. |
| 241 | * |
| 242 | * If not otherwise specified, the maximum number of iterations is this number times the size of the |
| 243 | * matrix. It is currently set to 30. |
| 244 | */ |
| 245 | static const int m_maxIterationsPerRow = 30; |
| 246 | |
| 247 | protected: |
| 248 | ComplexMatrixType m_matT, m_matU; |
| 249 | HessenbergDecomposition<MatrixType> m_hess; |
| 250 | ComputationInfo m_info; |
| 251 | bool m_isInitialized; |
| 252 | bool m_matUisUptodate; |
| 253 | Index m_maxIters; |
| 254 | |
| 255 | private: |
| 256 | bool subdiagonalEntryIsNeglegible(Index i); |
| 257 | ComplexScalar computeShift(Index iu, Index iter); |
| 258 | void reduceToTriangularForm(bool computeU); |
| 259 | friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>; |
| 260 | }; |
| 261 | |
| 262 | /** If m_matT(i+1,i) is neglegible in floating point arithmetic |
| 263 | * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and |
| 264 | * return true, else return false. */ |
| 265 | template<typename MatrixType> |
| 266 | inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i) |
| 267 | { |
| 268 | RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1)); |
| 269 | RealScalar sd = numext::norm1(m_matT.coeff(i+1,i)); |
| 270 | if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon())) |
| 271 | { |
| 272 | m_matT.coeffRef(i+1,i) = ComplexScalar(0); |
| 273 | return true; |
| 274 | } |
| 275 | return false; |
| 276 | } |
| 277 | |
| 278 | |
| 279 | /** Compute the shift in the current QR iteration. */ |
| 280 | template<typename MatrixType> |
| 281 | typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter) |
| 282 | { |
| 283 | using std::abs; |
| 284 | if (iter == 10 || iter == 20) |
| 285 | { |
| 286 | // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f |
| 287 | return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2))); |
| 288 | } |
| 289 | |
| 290 | // compute the shift as one of the eigenvalues of t, the 2x2 |
| 291 | // diagonal block on the bottom of the active submatrix |
| 292 | Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1); |
| 293 | RealScalar normt = t.cwiseAbs().sum(); |
| 294 | t /= normt; // the normalization by sf is to avoid under/overflow |
| 295 | |
| 296 | ComplexScalar b = t.coeff(0,1) * t.coeff(1,0); |
| 297 | ComplexScalar c = t.coeff(0,0) - t.coeff(1,1); |
| 298 | ComplexScalar disc = sqrt(c*c + RealScalar(4)*b); |
| 299 | ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b; |
| 300 | ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1); |
| 301 | ComplexScalar eival1 = (trace + disc) / RealScalar(2); |
| 302 | ComplexScalar eival2 = (trace - disc) / RealScalar(2); |
| 303 | |
| 304 | if(numext::norm1(eival1) > numext::norm1(eival2)) |
| 305 | eival2 = det / eival1; |
| 306 | else |
| 307 | eival1 = det / eival2; |
| 308 | |
| 309 | // choose the eigenvalue closest to the bottom entry of the diagonal |
| 310 | if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1))) |
| 311 | return normt * eival1; |
| 312 | else |
| 313 | return normt * eival2; |
| 314 | } |
| 315 | |
| 316 | |
| 317 | template<typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 318 | template<typename InputType> |
| 319 | ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 320 | { |
| 321 | m_matUisUptodate = false; |
| 322 | eigen_assert(matrix.cols() == matrix.rows()); |
| 323 | |
| 324 | if(matrix.cols() == 1) |
| 325 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 326 | m_matT = matrix.derived().template cast<ComplexScalar>(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 327 | if(computeU) m_matU = ComplexMatrixType::Identity(1,1); |
| 328 | m_info = Success; |
| 329 | m_isInitialized = true; |
| 330 | m_matUisUptodate = computeU; |
| 331 | return *this; |
| 332 | } |
| 333 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 334 | internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 335 | computeFromHessenberg(m_matT, m_matU, computeU); |
| 336 | return *this; |
| 337 | } |
| 338 | |
| 339 | template<typename MatrixType> |
| 340 | template<typename HessMatrixType, typename OrthMatrixType> |
| 341 | ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) |
| 342 | { |
| 343 | m_matT = matrixH; |
| 344 | if(computeU) |
| 345 | m_matU = matrixQ; |
| 346 | reduceToTriangularForm(computeU); |
| 347 | return *this; |
| 348 | } |
| 349 | namespace internal { |
| 350 | |
| 351 | /* Reduce given matrix to Hessenberg form */ |
| 352 | template<typename MatrixType, bool IsComplex> |
| 353 | struct complex_schur_reduce_to_hessenberg |
| 354 | { |
| 355 | // this is the implementation for the case IsComplex = true |
| 356 | static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) |
| 357 | { |
| 358 | _this.m_hess.compute(matrix); |
| 359 | _this.m_matT = _this.m_hess.matrixH(); |
| 360 | if(computeU) _this.m_matU = _this.m_hess.matrixQ(); |
| 361 | } |
| 362 | }; |
| 363 | |
| 364 | template<typename MatrixType> |
| 365 | struct complex_schur_reduce_to_hessenberg<MatrixType, false> |
| 366 | { |
| 367 | static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) |
| 368 | { |
| 369 | typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar; |
| 370 | |
| 371 | // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar |
| 372 | _this.m_hess.compute(matrix); |
| 373 | _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>(); |
| 374 | if(computeU) |
| 375 | { |
| 376 | // This may cause an allocation which seems to be avoidable |
| 377 | MatrixType Q = _this.m_hess.matrixQ(); |
| 378 | _this.m_matU = Q.template cast<ComplexScalar>(); |
| 379 | } |
| 380 | } |
| 381 | }; |
| 382 | |
| 383 | } // end namespace internal |
| 384 | |
| 385 | // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration. |
| 386 | template<typename MatrixType> |
| 387 | void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU) |
| 388 | { |
| 389 | Index maxIters = m_maxIters; |
| 390 | if (maxIters == -1) |
| 391 | maxIters = m_maxIterationsPerRow * m_matT.rows(); |
| 392 | |
| 393 | // The matrix m_matT is divided in three parts. |
| 394 | // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. |
| 395 | // Rows il,...,iu is the part we are working on (the active submatrix). |
| 396 | // Rows iu+1,...,end are already brought in triangular form. |
| 397 | Index iu = m_matT.cols() - 1; |
| 398 | Index il; |
| 399 | Index iter = 0; // number of iterations we are working on the (iu,iu) element |
| 400 | Index totalIter = 0; // number of iterations for whole matrix |
| 401 | |
| 402 | while(true) |
| 403 | { |
| 404 | // find iu, the bottom row of the active submatrix |
| 405 | while(iu > 0) |
| 406 | { |
| 407 | if(!subdiagonalEntryIsNeglegible(iu-1)) break; |
| 408 | iter = 0; |
| 409 | --iu; |
| 410 | } |
| 411 | |
| 412 | // if iu is zero then we are done; the whole matrix is triangularized |
| 413 | if(iu==0) break; |
| 414 | |
| 415 | // if we spent too many iterations, we give up |
| 416 | iter++; |
| 417 | totalIter++; |
| 418 | if(totalIter > maxIters) break; |
| 419 | |
| 420 | // find il, the top row of the active submatrix |
| 421 | il = iu-1; |
| 422 | while(il > 0 && !subdiagonalEntryIsNeglegible(il-1)) |
| 423 | { |
| 424 | --il; |
| 425 | } |
| 426 | |
| 427 | /* perform the QR step using Givens rotations. The first rotation |
| 428 | creates a bulge; the (il+2,il) element becomes nonzero. This |
| 429 | bulge is chased down to the bottom of the active submatrix. */ |
| 430 | |
| 431 | ComplexScalar shift = computeShift(iu, iter); |
| 432 | JacobiRotation<ComplexScalar> rot; |
| 433 | rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il)); |
| 434 | m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint()); |
| 435 | m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot); |
| 436 | if(computeU) m_matU.applyOnTheRight(il, il+1, rot); |
| 437 | |
| 438 | for(Index i=il+1 ; i<iu ; i++) |
| 439 | { |
| 440 | rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1)); |
| 441 | m_matT.coeffRef(i+1,i-1) = ComplexScalar(0); |
| 442 | m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint()); |
| 443 | m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot); |
| 444 | if(computeU) m_matU.applyOnTheRight(i, i+1, rot); |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | if(totalIter <= maxIters) |
| 449 | m_info = Success; |
| 450 | else |
| 451 | m_info = NoConvergence; |
| 452 | |
| 453 | m_isInitialized = true; |
| 454 | m_matUisUptodate = computeU; |
| 455 | } |
| 456 | |
| 457 | } // end namespace Eigen |
| 458 | |
| 459 | #endif // EIGEN_COMPLEX_SCHUR_H |