blob: 7f38919f778528dfe29e67ff11dc4282733f159f [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Claire Maurice
5// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12#ifndef EIGEN_COMPLEX_SCHUR_H
13#define EIGEN_COMPLEX_SCHUR_H
14
15#include "./HessenbergDecomposition.h"
16
17namespace Eigen {
18
19namespace internal {
20template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
21}
22
23/** \eigenvalues_module \ingroup Eigenvalues_Module
24 *
25 *
26 * \class ComplexSchur
27 *
28 * \brief Performs a complex Schur decomposition of a real or complex square matrix
29 *
30 * \tparam _MatrixType the type of the matrix of which we are
31 * computing the Schur decomposition; this is expected to be an
32 * instantiation of the Matrix class template.
33 *
34 * Given a real or complex square matrix A, this class computes the
35 * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
36 * complex matrix, and T is a complex upper triangular matrix. The
37 * diagonal of the matrix T corresponds to the eigenvalues of the
38 * matrix A.
39 *
40 * Call the function compute() to compute the Schur decomposition of
41 * a given matrix. Alternatively, you can use the
42 * ComplexSchur(const MatrixType&, bool) constructor which computes
43 * the Schur decomposition at construction time. Once the
44 * decomposition is computed, you can use the matrixU() and matrixT()
45 * functions to retrieve the matrices U and V in the decomposition.
46 *
47 * \note This code is inspired from Jampack
48 *
49 * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
50 */
51template<typename _MatrixType> class ComplexSchur
52{
53 public:
54 typedef _MatrixType MatrixType;
55 enum {
56 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
57 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
58 Options = MatrixType::Options,
59 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
60 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
61 };
62
63 /** \brief Scalar type for matrices of type \p _MatrixType. */
64 typedef typename MatrixType::Scalar Scalar;
65 typedef typename NumTraits<Scalar>::Real RealScalar;
Austin Schuh189376f2018-12-20 22:11:15 +110066 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
Brian Silverman72890c22015-09-19 14:37:37 -040067
68 /** \brief Complex scalar type for \p _MatrixType.
69 *
70 * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
71 * \c float or \c double) and just \c Scalar if #Scalar is
72 * complex.
73 */
74 typedef std::complex<RealScalar> ComplexScalar;
75
76 /** \brief Type for the matrices in the Schur decomposition.
77 *
78 * This is a square matrix with entries of type #ComplexScalar.
79 * The size is the same as the size of \p _MatrixType.
80 */
81 typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
82
83 /** \brief Default constructor.
84 *
85 * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
86 *
87 * The default constructor is useful in cases in which the user
88 * intends to perform decompositions via compute(). The \p size
89 * parameter is only used as a hint. It is not an error to give a
90 * wrong \p size, but it may impair performance.
91 *
92 * \sa compute() for an example.
93 */
Austin Schuh189376f2018-12-20 22:11:15 +110094 explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
Brian Silverman72890c22015-09-19 14:37:37 -040095 : m_matT(size,size),
96 m_matU(size,size),
97 m_hess(size),
98 m_isInitialized(false),
99 m_matUisUptodate(false),
100 m_maxIters(-1)
101 {}
102
103 /** \brief Constructor; computes Schur decomposition of given matrix.
104 *
105 * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
106 * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
107 *
108 * This constructor calls compute() to compute the Schur decomposition.
109 *
110 * \sa matrixT() and matrixU() for examples.
111 */
Austin Schuh189376f2018-12-20 22:11:15 +1100112 template<typename InputType>
113 explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true)
Brian Silverman72890c22015-09-19 14:37:37 -0400114 : m_matT(matrix.rows(),matrix.cols()),
115 m_matU(matrix.rows(),matrix.cols()),
116 m_hess(matrix.rows()),
117 m_isInitialized(false),
118 m_matUisUptodate(false),
119 m_maxIters(-1)
120 {
Austin Schuh189376f2018-12-20 22:11:15 +1100121 compute(matrix.derived(), computeU);
Brian Silverman72890c22015-09-19 14:37:37 -0400122 }
123
124 /** \brief Returns the unitary matrix in the Schur decomposition.
125 *
126 * \returns A const reference to the matrix U.
127 *
128 * It is assumed that either the constructor
129 * ComplexSchur(const MatrixType& matrix, bool computeU) or the
130 * member function compute(const MatrixType& matrix, bool computeU)
131 * has been called before to compute the Schur decomposition of a
132 * matrix, and that \p computeU was set to true (the default
133 * value).
134 *
135 * Example: \include ComplexSchur_matrixU.cpp
136 * Output: \verbinclude ComplexSchur_matrixU.out
137 */
138 const ComplexMatrixType& matrixU() const
139 {
140 eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
141 eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
142 return m_matU;
143 }
144
145 /** \brief Returns the triangular matrix in the Schur decomposition.
146 *
147 * \returns A const reference to the matrix T.
148 *
149 * It is assumed that either the constructor
150 * ComplexSchur(const MatrixType& matrix, bool computeU) or the
151 * member function compute(const MatrixType& matrix, bool computeU)
152 * has been called before to compute the Schur decomposition of a
153 * matrix.
154 *
155 * Note that this function returns a plain square matrix. If you want to reference
156 * only the upper triangular part, use:
157 * \code schur.matrixT().triangularView<Upper>() \endcode
158 *
159 * Example: \include ComplexSchur_matrixT.cpp
160 * Output: \verbinclude ComplexSchur_matrixT.out
161 */
162 const ComplexMatrixType& matrixT() const
163 {
164 eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
165 return m_matT;
166 }
167
168 /** \brief Computes Schur decomposition of given matrix.
169 *
170 * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
171 * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
172
173 * \returns Reference to \c *this
174 *
175 * The Schur decomposition is computed by first reducing the
176 * matrix to Hessenberg form using the class
177 * HessenbergDecomposition. The Hessenberg matrix is then reduced
178 * to triangular form by performing QR iterations with a single
179 * shift. The cost of computing the Schur decomposition depends
180 * on the number of iterations; as a rough guide, it may be taken
181 * on the number of iterations; as a rough guide, it may be taken
182 * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
183 * if \a computeU is false.
184 *
185 * Example: \include ComplexSchur_compute.cpp
186 * Output: \verbinclude ComplexSchur_compute.out
187 *
188 * \sa compute(const MatrixType&, bool, Index)
189 */
Austin Schuh189376f2018-12-20 22:11:15 +1100190 template<typename InputType>
191 ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
Brian Silverman72890c22015-09-19 14:37:37 -0400192
193 /** \brief Compute Schur decomposition from a given Hessenberg matrix
194 * \param[in] matrixH Matrix in Hessenberg form H
195 * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
196 * \param computeU Computes the matriX U of the Schur vectors
197 * \return Reference to \c *this
198 *
199 * This routine assumes that the matrix is already reduced in Hessenberg form matrixH
200 * using either the class HessenbergDecomposition or another mean.
201 * It computes the upper quasi-triangular matrix T of the Schur decomposition of H
202 * When computeU is true, this routine computes the matrix U such that
203 * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
204 *
205 * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
206 * is not available, the user should give an identity matrix (Q.setIdentity())
207 *
208 * \sa compute(const MatrixType&, bool)
209 */
210 template<typename HessMatrixType, typename OrthMatrixType>
211 ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true);
212
213 /** \brief Reports whether previous computation was successful.
214 *
215 * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
216 */
217 ComputationInfo info() const
218 {
219 eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
220 return m_info;
221 }
222
223 /** \brief Sets the maximum number of iterations allowed.
224 *
225 * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
226 * of the matrix.
227 */
228 ComplexSchur& setMaxIterations(Index maxIters)
229 {
230 m_maxIters = maxIters;
231 return *this;
232 }
233
234 /** \brief Returns the maximum number of iterations. */
235 Index getMaxIterations()
236 {
237 return m_maxIters;
238 }
239
240 /** \brief Maximum number of iterations per row.
241 *
242 * If not otherwise specified, the maximum number of iterations is this number times the size of the
243 * matrix. It is currently set to 30.
244 */
245 static const int m_maxIterationsPerRow = 30;
246
247 protected:
248 ComplexMatrixType m_matT, m_matU;
249 HessenbergDecomposition<MatrixType> m_hess;
250 ComputationInfo m_info;
251 bool m_isInitialized;
252 bool m_matUisUptodate;
253 Index m_maxIters;
254
255 private:
256 bool subdiagonalEntryIsNeglegible(Index i);
257 ComplexScalar computeShift(Index iu, Index iter);
258 void reduceToTriangularForm(bool computeU);
259 friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
260};
261
262/** If m_matT(i+1,i) is neglegible in floating point arithmetic
263 * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
264 * return true, else return false. */
265template<typename MatrixType>
266inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
267{
268 RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
269 RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
270 if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
271 {
272 m_matT.coeffRef(i+1,i) = ComplexScalar(0);
273 return true;
274 }
275 return false;
276}
277
278
279/** Compute the shift in the current QR iteration. */
280template<typename MatrixType>
281typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
282{
283 using std::abs;
284 if (iter == 10 || iter == 20)
285 {
286 // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
287 return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
288 }
289
290 // compute the shift as one of the eigenvalues of t, the 2x2
291 // diagonal block on the bottom of the active submatrix
292 Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
293 RealScalar normt = t.cwiseAbs().sum();
294 t /= normt; // the normalization by sf is to avoid under/overflow
295
296 ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
297 ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
298 ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
299 ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
300 ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
301 ComplexScalar eival1 = (trace + disc) / RealScalar(2);
302 ComplexScalar eival2 = (trace - disc) / RealScalar(2);
303
304 if(numext::norm1(eival1) > numext::norm1(eival2))
305 eival2 = det / eival1;
306 else
307 eival1 = det / eival2;
308
309 // choose the eigenvalue closest to the bottom entry of the diagonal
310 if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
311 return normt * eival1;
312 else
313 return normt * eival2;
314}
315
316
317template<typename MatrixType>
Austin Schuh189376f2018-12-20 22:11:15 +1100318template<typename InputType>
319ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
Brian Silverman72890c22015-09-19 14:37:37 -0400320{
321 m_matUisUptodate = false;
322 eigen_assert(matrix.cols() == matrix.rows());
323
324 if(matrix.cols() == 1)
325 {
Austin Schuh189376f2018-12-20 22:11:15 +1100326 m_matT = matrix.derived().template cast<ComplexScalar>();
Brian Silverman72890c22015-09-19 14:37:37 -0400327 if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
328 m_info = Success;
329 m_isInitialized = true;
330 m_matUisUptodate = computeU;
331 return *this;
332 }
333
Austin Schuh189376f2018-12-20 22:11:15 +1100334 internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU);
Brian Silverman72890c22015-09-19 14:37:37 -0400335 computeFromHessenberg(m_matT, m_matU, computeU);
336 return *this;
337}
338
339template<typename MatrixType>
340template<typename HessMatrixType, typename OrthMatrixType>
341ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
342{
343 m_matT = matrixH;
344 if(computeU)
345 m_matU = matrixQ;
346 reduceToTriangularForm(computeU);
347 return *this;
348}
349namespace internal {
350
351/* Reduce given matrix to Hessenberg form */
352template<typename MatrixType, bool IsComplex>
353struct complex_schur_reduce_to_hessenberg
354{
355 // this is the implementation for the case IsComplex = true
356 static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
357 {
358 _this.m_hess.compute(matrix);
359 _this.m_matT = _this.m_hess.matrixH();
360 if(computeU) _this.m_matU = _this.m_hess.matrixQ();
361 }
362};
363
364template<typename MatrixType>
365struct complex_schur_reduce_to_hessenberg<MatrixType, false>
366{
367 static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
368 {
369 typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
370
371 // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
372 _this.m_hess.compute(matrix);
373 _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
374 if(computeU)
375 {
376 // This may cause an allocation which seems to be avoidable
377 MatrixType Q = _this.m_hess.matrixQ();
378 _this.m_matU = Q.template cast<ComplexScalar>();
379 }
380 }
381};
382
383} // end namespace internal
384
385// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
386template<typename MatrixType>
387void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
388{
389 Index maxIters = m_maxIters;
390 if (maxIters == -1)
391 maxIters = m_maxIterationsPerRow * m_matT.rows();
392
393 // The matrix m_matT is divided in three parts.
394 // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
395 // Rows il,...,iu is the part we are working on (the active submatrix).
396 // Rows iu+1,...,end are already brought in triangular form.
397 Index iu = m_matT.cols() - 1;
398 Index il;
399 Index iter = 0; // number of iterations we are working on the (iu,iu) element
400 Index totalIter = 0; // number of iterations for whole matrix
401
402 while(true)
403 {
404 // find iu, the bottom row of the active submatrix
405 while(iu > 0)
406 {
407 if(!subdiagonalEntryIsNeglegible(iu-1)) break;
408 iter = 0;
409 --iu;
410 }
411
412 // if iu is zero then we are done; the whole matrix is triangularized
413 if(iu==0) break;
414
415 // if we spent too many iterations, we give up
416 iter++;
417 totalIter++;
418 if(totalIter > maxIters) break;
419
420 // find il, the top row of the active submatrix
421 il = iu-1;
422 while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
423 {
424 --il;
425 }
426
427 /* perform the QR step using Givens rotations. The first rotation
428 creates a bulge; the (il+2,il) element becomes nonzero. This
429 bulge is chased down to the bottom of the active submatrix. */
430
431 ComplexScalar shift = computeShift(iu, iter);
432 JacobiRotation<ComplexScalar> rot;
433 rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
434 m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
435 m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
436 if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
437
438 for(Index i=il+1 ; i<iu ; i++)
439 {
440 rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
441 m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
442 m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
443 m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
444 if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
445 }
446 }
447
448 if(totalIter <= maxIters)
449 m_info = Success;
450 else
451 m_info = NoConvergence;
452
453 m_isInitialized = true;
454 m_matUisUptodate = computeU;
455}
456
457} // end namespace Eigen
458
459#endif // EIGEN_COMPLEX_SCHUR_H