Austin Schuh | 16ce3c7 | 2018-01-28 16:17:08 -0800 | [diff] [blame^] | 1 | /************************************************************************************************** |
| 2 | * * |
| 3 | * This file is part of HPMPC. * |
| 4 | * * |
| 5 | * HPMPC -- Library for High-Performance implementation of solvers for MPC. * |
| 6 | * Copyright (C) 2014-2015 by Technical University of Denmark. All rights reserved. * |
| 7 | * * |
| 8 | * HPMPC is free software; you can redistribute it and/or * |
| 9 | * modify it under the terms of the GNU Lesser General Public * |
| 10 | * License as published by the Free Software Foundation; either * |
| 11 | * version 2.1 of the License, or (at your option) any later version. * |
| 12 | * * |
| 13 | * HPMPC is distributed in the hope that it will be useful, * |
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * |
| 16 | * See the GNU Lesser General Public License for more details. * |
| 17 | * * |
| 18 | * You should have received a copy of the GNU Lesser General Public * |
| 19 | * License along with HPMPC; if not, write to the Free Software * |
| 20 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * |
| 21 | * * |
| 22 | * Author: Gianluca Frison, giaf (at) dtu.dk * |
| 23 | * * |
| 24 | **************************************************************************************************/ |
| 25 | |
| 26 | #include <stdio.h> |
| 27 | #include <stdlib.h> |
| 28 | #include <math.h> |
| 29 | |
| 30 | #include <blasfeo_s_aux_ext_dep.h> |
| 31 | |
| 32 | |
| 33 | |
| 34 | // matrix-vector multiplication |
| 35 | void sgemv_n_3l(int m, int n, float *A, int lda , float *x, float *z) |
| 36 | { |
| 37 | |
| 38 | int ii, jj; |
| 39 | |
| 40 | for(ii=0; ii<m; ii++) |
| 41 | { |
| 42 | z[ii] = 0.0; |
| 43 | for(jj=0; jj<n; jj++) |
| 44 | { |
| 45 | z[ii] += A[ii+lda*jj] * x[jj]; |
| 46 | } |
| 47 | } |
| 48 | |
| 49 | return; |
| 50 | |
| 51 | } |
| 52 | |
| 53 | |
| 54 | // matrix-matrix multiplication |
| 55 | void sgemm_nn_3l(int m, int n, int k, float *A, int lda , float *B, int ldb, float *C, int ldc) |
| 56 | { |
| 57 | |
| 58 | int ii, jj, kk; |
| 59 | |
| 60 | for(jj=0; jj<n; jj++) |
| 61 | { |
| 62 | for(ii=0; ii<m; ii++) |
| 63 | { |
| 64 | C[ii+ldc*jj] = 0; |
| 65 | for(kk=0; kk<k; kk++) |
| 66 | { |
| 67 | C[ii+ldc*jj] += A[ii+lda*kk] * B[kk+ldb*jj]; |
| 68 | } |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | return; |
| 73 | |
| 74 | } |
| 75 | |
| 76 | |
| 77 | void saxpy_3l(int n, float da, float *dx, float *dy) |
| 78 | { |
| 79 | int i; |
| 80 | for(i=0; i<n; i++) |
| 81 | { |
| 82 | dy[i] += da*dx[i]; |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | |
| 87 | |
| 88 | void sscal_3l(int n, float da, float *dx) |
| 89 | { |
| 90 | int i; |
| 91 | for(i=0; i<n; i++) |
| 92 | { |
| 93 | dx[i] *= da; |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | |
| 98 | |
| 99 | /************************************************ |
| 100 | Routine that copies a matrix |
| 101 | ************************************************/ |
| 102 | void smcopy(int row, int col, float *A, int lda, float *B, int ldb) |
| 103 | { |
| 104 | int i, j; |
| 105 | for(j=0; j<col; j++) |
| 106 | { |
| 107 | for(i=0; i<row; i++) |
| 108 | { |
| 109 | B[i+j*ldb] = A[i+j*lda]; |
| 110 | } |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | |
| 115 | |
| 116 | int idamax_3l(int n, float *x) |
| 117 | { |
| 118 | |
| 119 | if(n<=0) |
| 120 | return 0; |
| 121 | if(n==1) |
| 122 | return 0; |
| 123 | |
| 124 | float dabs; |
| 125 | float dmax = (x[0]>0 ? x[0] : -x[0]); |
| 126 | int idmax = 0; |
| 127 | int jj; |
| 128 | for(jj=1; jj<n; jj++) |
| 129 | { |
| 130 | dabs = (x[jj]>0 ? x[jj] : -x[jj]); |
| 131 | if(dabs>dmax) |
| 132 | { |
| 133 | dmax = dabs; |
| 134 | idmax = jj; |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | return idmax; |
| 139 | |
| 140 | } |
| 141 | |
| 142 | |
| 143 | |
| 144 | void sswap_3l(int n, float *x, int incx, float *y, int incy) |
| 145 | { |
| 146 | |
| 147 | if(n<=0) |
| 148 | return; |
| 149 | |
| 150 | float temp; |
| 151 | int jj; |
| 152 | for(jj=0; jj<n; jj++) |
| 153 | { |
| 154 | temp = x[0]; |
| 155 | x[0] = y[0]; |
| 156 | y[0] = temp; |
| 157 | x += incx; |
| 158 | y += incy; |
| 159 | } |
| 160 | |
| 161 | } |
| 162 | |
| 163 | |
| 164 | |
| 165 | void sger_3l(int m, int n, float alpha, float *x, int incx, float *y, int incy, float *A, int lda) |
| 166 | { |
| 167 | |
| 168 | if(m==0 || n==0 || alpha==0.0) |
| 169 | return; |
| 170 | |
| 171 | int i, j; |
| 172 | float *px, *py, temp; |
| 173 | |
| 174 | py = y; |
| 175 | for(j=0; j<n; j++) |
| 176 | { |
| 177 | temp = alpha * py[0]; |
| 178 | px = x; |
| 179 | for(i=0; i<m; i++) |
| 180 | { |
| 181 | A[i+lda*j] += px[0] * temp; |
| 182 | px += incx; |
| 183 | } |
| 184 | py += incy; |
| 185 | } |
| 186 | |
| 187 | return; |
| 188 | |
| 189 | } |
| 190 | |
| 191 | |
| 192 | |
| 193 | void sgetf2_3l(int m, int n, float *A, int lda, int *ipiv, int *info) |
| 194 | { |
| 195 | |
| 196 | if(m<=0 || n<=0) |
| 197 | return; |
| 198 | |
| 199 | int i, j, jp; |
| 200 | |
| 201 | float Ajj; |
| 202 | |
| 203 | int size_min = ( m<n ? m : n ); |
| 204 | |
| 205 | for(j=0; j<size_min; j++) |
| 206 | // find the pivot and test for singularity |
| 207 | { |
| 208 | jp = j + idamax_3l(m-j, &A[j+lda*j]); |
| 209 | ipiv[j] = jp; |
| 210 | if( A[jp+lda*j]!=0) |
| 211 | { |
| 212 | // apply the interchange to columns 0:n-1 |
| 213 | if(jp!=j) |
| 214 | { |
| 215 | sswap_3l(n, &A[j], lda, &A[jp], lda); |
| 216 | } |
| 217 | // compute elements j+1:m-1 of j-th column |
| 218 | if(j<m-1) |
| 219 | { |
| 220 | Ajj = A[j+lda*j]; |
| 221 | if( ( Ajj>0 ? Ajj : -Ajj ) >= 2.22e-16 ) |
| 222 | { |
| 223 | sscal_3l(m-j-1, 1.0/Ajj, &A[j+1+lda*j]); |
| 224 | } |
| 225 | else |
| 226 | { |
| 227 | for(i=j+1; i<m; i++) |
| 228 | { |
| 229 | A[i+lda*j] /= Ajj; |
| 230 | } |
| 231 | } |
| 232 | } |
| 233 | } |
| 234 | else if(*info==0) |
| 235 | { |
| 236 | *info = j+1; |
| 237 | } |
| 238 | |
| 239 | if( j < size_min ) |
| 240 | { |
| 241 | // update trailing submatrix |
| 242 | sger_3l(m-j-1, n-j-1, -1.0, &A[j+1+lda*j], 1, &A[j+lda*(j+1)], lda, &A[j+1+lda*(j+1)], lda); |
| 243 | } |
| 244 | |
| 245 | } |
| 246 | |
| 247 | return; |
| 248 | |
| 249 | } |
| 250 | |
| 251 | |
| 252 | |
| 253 | void slaswp_3l(int n, float *A, int lda, int k1, int k2, int *ipiv) |
| 254 | { |
| 255 | |
| 256 | int i, j, k, ix, ix0, i1, i2, n32, ip; |
| 257 | float temp; |
| 258 | |
| 259 | ix0 = k1; |
| 260 | i1 = k1; |
| 261 | i2 = k2; |
| 262 | |
| 263 | n32 = (n/32)*32; |
| 264 | if(n32!=0) |
| 265 | { |
| 266 | for(j=0; j<n32; j+=32) |
| 267 | { |
| 268 | ix = ix0; |
| 269 | for(i=i1; i<i2; i++) |
| 270 | { |
| 271 | ip = ipiv[ix]; |
| 272 | if(ip!=i) |
| 273 | { |
| 274 | for(k=j; k<j+32; k++) |
| 275 | { |
| 276 | temp = A[i+lda*k]; |
| 277 | A[i+lda*k] = A[ip+lda*k]; |
| 278 | A[ip+lda*k] = temp; |
| 279 | } |
| 280 | } |
| 281 | ix++; |
| 282 | } |
| 283 | } |
| 284 | } |
| 285 | if(n32!=n) |
| 286 | { |
| 287 | ix = ix0; |
| 288 | for(i=i1; i<i2; i++) |
| 289 | { |
| 290 | ip = ipiv[ix]; |
| 291 | if(ip!=i) |
| 292 | { |
| 293 | for(k=n32; k<n; k++) |
| 294 | { |
| 295 | temp = A[i+lda*k]; |
| 296 | A[i+lda*k] = A[ip+lda*k]; |
| 297 | A[ip+lda*k] = temp; |
| 298 | } |
| 299 | } |
| 300 | ix++; |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | return; |
| 305 | |
| 306 | } |
| 307 | |
| 308 | |
| 309 | |
| 310 | // left lower no-transp unit |
| 311 | void strsm_l_l_n_u_3l(int m, int n, float *A, int lda, float *B, int ldb) |
| 312 | { |
| 313 | |
| 314 | if(m==0 || n==0) |
| 315 | return; |
| 316 | |
| 317 | int i, j, k; |
| 318 | |
| 319 | for(j=0; j<n; j++) |
| 320 | { |
| 321 | for(k=0; k<m; k++) |
| 322 | { |
| 323 | for(i=k+1; i<m; i++) |
| 324 | { |
| 325 | B[i+ldb*j] -= B[k+ldb*j] * A[i+lda*k]; |
| 326 | } |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | return; |
| 331 | |
| 332 | } |
| 333 | |
| 334 | |
| 335 | |
| 336 | // left upper no-transp non-unit |
| 337 | void strsm_l_u_n_n_3l(int m, int n, float *A, int lda, float *B, int ldb) |
| 338 | { |
| 339 | |
| 340 | if(m==0 || n==0) |
| 341 | return; |
| 342 | |
| 343 | int i, j, k; |
| 344 | |
| 345 | for(j=0; j<n; j++) |
| 346 | { |
| 347 | for(k=m-1; k>=0; k--) |
| 348 | { |
| 349 | B[k+ldb*j] /= A[k+lda*k]; |
| 350 | for(i=0; i<k; i++) |
| 351 | { |
| 352 | B[i+ldb*j] -= B[k+ldb*j] * A[i+lda*k]; |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | return; |
| 358 | |
| 359 | } |
| 360 | |
| 361 | |
| 362 | |
| 363 | void sgetrs_3l(int n, int nrhs, float *A, int lda, int *ipiv, float *B, int ldb, int *info) |
| 364 | { |
| 365 | |
| 366 | if(n==0 || nrhs==0) |
| 367 | return; |
| 368 | |
| 369 | // solve A * X = B |
| 370 | |
| 371 | // apply row interchanges to the rhs |
| 372 | slaswp_3l(nrhs, B, ldb, 0, n, ipiv); |
| 373 | |
| 374 | // solve L*X = B, overwriting B with X |
| 375 | strsm_l_l_n_u_3l(n, nrhs, A, lda, B, ldb); |
| 376 | |
| 377 | // solve U*X = B, overwriting B with X |
| 378 | strsm_l_u_n_n_3l(n, nrhs, A, lda, B, ldb); |
| 379 | |
| 380 | return; |
| 381 | |
| 382 | } |
| 383 | |
| 384 | |
| 385 | |
| 386 | void sgesv_3l(int n, int nrhs, float *A, int lda, int *ipiv, float *B, int ldb, int *info) |
| 387 | { |
| 388 | |
| 389 | // compute the LU factorization of A |
| 390 | sgetf2_3l(n, n, A, lda, ipiv, info); |
| 391 | |
| 392 | if(*info==0) |
| 393 | { |
| 394 | // solve the system A*X = B, overwriting B with X |
| 395 | sgetrs_3l(n, nrhs, A, lda, ipiv, B, ldb, info); |
| 396 | } |
| 397 | |
| 398 | return; |
| 399 | |
| 400 | } |
| 401 | |
| 402 | |
| 403 | |
| 404 | /* one norm of a matrix */ |
| 405 | float onenorm(int row, int col, float *ptrA) |
| 406 | { |
| 407 | float max, temp; |
| 408 | int i, j; |
| 409 | temp = 0; |
| 410 | for(j=0; j<col; j++) |
| 411 | { |
| 412 | temp = fabs(*(ptrA+j*row)); |
| 413 | for(i=1; i<row; i++) |
| 414 | { |
| 415 | temp += fabs(*(ptrA+j*row+i)); |
| 416 | } |
| 417 | if(j==0) max = temp; |
| 418 | else if(max>temp) temp = max; |
| 419 | } |
| 420 | return temp; |
| 421 | } |
| 422 | |
| 423 | |
| 424 | |
| 425 | /* computes the Pade approximation of degree m of the matrix A */ |
| 426 | void padeapprox(int m, int row, float *A) |
| 427 | { |
| 428 | int row2 = row*row; |
| 429 | /* int i1 = 1;*/ |
| 430 | /* float d0 = 0;*/ |
| 431 | /* float d1 = 1;*/ |
| 432 | /* float dm1 = -1;*/ |
| 433 | |
| 434 | int ii; |
| 435 | |
| 436 | float *U = malloc(row*row*sizeof(float)); |
| 437 | float *V = malloc(row*row*sizeof(float)); |
| 438 | |
| 439 | if(m==3) |
| 440 | { |
| 441 | float c[] = {120, 60, 12, 1}; |
| 442 | float *A0 = malloc(row*row*sizeof(float)); for(ii=0; ii<row2; ii++) A0[ii] = 0.0; for(ii=0; ii<row; ii++) A0[ii*(row+1)] = 1.0; |
| 443 | float *A2 = malloc(row*row*sizeof(float)); |
| 444 | // char ta = 'n'; float alpha = 1; float beta = 0; |
| 445 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, A, &row, &beta, A2, &row); |
| 446 | sgemm_nn_3l(row, row, row, A, row, A, row, A2, row); |
| 447 | float *temp = malloc(row*row*sizeof(float)); |
| 448 | // sscal_(&row2, &d0, temp, &i1); |
| 449 | sscal_3l(row2, 0, temp); |
| 450 | // saxpy_(&row2, &c[3], A2, &i1, temp, &i1); |
| 451 | saxpy_3l(row2, c[3], A2, temp); |
| 452 | // saxpy_(&row2, &c[1], A0, &i1, temp, &i1); |
| 453 | saxpy_3l(row2, c[1], A0, temp); |
| 454 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, temp, &row, &beta, U, &row); |
| 455 | sgemm_nn_3l(row, row, row, A, row, temp, row, U, row); |
| 456 | // sscal_(&row2, &d0, V, &i1); |
| 457 | sscal_3l(row2, 0, V); |
| 458 | // saxpy_(&row2, &c[2], A2, &i1, V, &i1); |
| 459 | saxpy_3l(row2, c[2], A2, V); |
| 460 | // saxpy_(&row2, &c[0], A0, &i1, V, &i1); |
| 461 | saxpy_3l(row2, c[0], A0, V); |
| 462 | free(A0); |
| 463 | free(A2); |
| 464 | free(temp); |
| 465 | } |
| 466 | else if(m==5) |
| 467 | { |
| 468 | float c[] = {30240, 15120, 3360, 420, 30, 1}; |
| 469 | float *A0 = malloc(row*row*sizeof(float)); for(ii=0; ii<row2; ii++) A0[ii] = 0.0; for(ii=0; ii<row; ii++) A0[ii*(row+1)] = 1.0; |
| 470 | float *A2 = malloc(row*row*sizeof(float)); |
| 471 | float *A4 = malloc(row*row*sizeof(float)); |
| 472 | // char ta = 'n'; float alpha = 1; float beta = 0; |
| 473 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, A, &row, &beta, A2, &row); |
| 474 | sgemm_nn_3l(row, row, row, A, row, A, row, A2, row); |
| 475 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A2, &row, A2, &row, &beta, A4, &row); |
| 476 | sgemm_nn_3l(row, row, row, A2, row, A2, row, A4, row); |
| 477 | smcopy(row, row, A4, row, V, row); |
| 478 | float *temp = malloc(row*row*sizeof(float)); |
| 479 | smcopy(row, row, A4, row, temp, row); |
| 480 | // saxpy_(&row2, &c[3], A2, &i1, temp, &i1); |
| 481 | saxpy_3l(row2, c[3], A2, temp); |
| 482 | // saxpy_(&row2, &c[1], A0, &i1, temp, &i1); |
| 483 | saxpy_3l(row2, c[1], A0, temp); |
| 484 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, temp, &row, &beta, U, &row); |
| 485 | sgemm_nn_3l(row, row, row, A, row, temp, row, U, row); |
| 486 | // sscal_(&row2, &c[4], V, &i1); |
| 487 | sscal_3l(row2, c[4], V); |
| 488 | // saxpy_(&row2, &c[2], A2, &i1, V, &i1); |
| 489 | saxpy_3l(row2, c[2], A2, V); |
| 490 | // saxpy_(&row2, &c[0], A0, &i1, V, &i1); |
| 491 | saxpy_3l(row2, c[0], A0, V); |
| 492 | free(A0); |
| 493 | free(A2); |
| 494 | free(A4); |
| 495 | free(temp); |
| 496 | } |
| 497 | else if(m==7) |
| 498 | { |
| 499 | float c[] = {17297280, 8648640, 1995840, 277200, 25200, 1512, 56, 1}; |
| 500 | float *A0 = malloc(row*row*sizeof(float)); for(ii=0; ii<row2; ii++) A0[ii] = 0.0; for(ii=0; ii<row; ii++) A0[ii*(row+1)] = 1.0; |
| 501 | float *A2 = malloc(row*row*sizeof(float)); |
| 502 | float *A4 = malloc(row*row*sizeof(float)); |
| 503 | float *A6 = malloc(row*row*sizeof(float)); |
| 504 | // char ta = 'n'; float alpha = 1; float beta = 1; |
| 505 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, A, &row, &beta, A2, &row); |
| 506 | sgemm_nn_3l(row, row, row, A, row, A, row, A2, row); |
| 507 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A2, &row, A2, &row, &beta, A4, &row); |
| 508 | sgemm_nn_3l(row, row, row, A2, row, A2, row, A4, row); |
| 509 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A4, &row, A2, &row, &beta, A6, &row); |
| 510 | sgemm_nn_3l(row, row, row, A4, row, A2, row, A6, row); |
| 511 | float *temp = malloc(row*row*sizeof(float)); |
| 512 | // sscal_(&row2, &d0, temp, &i1); |
| 513 | sscal_3l(row2, 0, temp); |
| 514 | // saxpy_(&row2, &c[3], A2, &i1, temp, &i1); |
| 515 | saxpy_3l(row2, c[3], A2, temp); |
| 516 | // saxpy_(&row2, &c[1], A0, &i1, temp, &i1); |
| 517 | saxpy_3l(row2, c[1], A0, temp); |
| 518 | // saxpy_(&row2, &c[5], A4, &i1, temp, &i1); |
| 519 | saxpy_3l(row2, c[5], A4, temp); |
| 520 | // saxpy_(&row2, &c[7], A6, &i1, temp, &i1); |
| 521 | saxpy_3l(row2, c[7], A6, temp); |
| 522 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, temp, &row, &beta, U, &row); |
| 523 | sgemm_nn_3l(row, row, row, A, row, temp, row, U, row); |
| 524 | // sscal_(&row2, &d0, V, &i1); |
| 525 | sscal_3l(row2, 0, V); |
| 526 | // saxpy_(&row2, &c[2], A2, &i1, V, &i1); |
| 527 | saxpy_3l(row2, c[2], A2, V); |
| 528 | // saxpy_(&row2, &c[0], A0, &i1, V, &i1); |
| 529 | saxpy_3l(row2, c[0], A0, V); |
| 530 | // saxpy_(&row2, &c[4], A4, &i1, V, &i1); |
| 531 | saxpy_3l(row2, c[4], A4, V); |
| 532 | // saxpy_(&row2, &c[6], A6, &i1, V, &i1); |
| 533 | saxpy_3l(row2, c[6], A6, V); |
| 534 | free(A0); |
| 535 | free(A2); |
| 536 | free(A4); |
| 537 | free(A6); |
| 538 | free(temp); |
| 539 | } |
| 540 | else if(m==9) |
| 541 | { |
| 542 | float c[] = {17643225600, 8821612800, 2075673600, 302702400, 30270240, 2162160, 110880, 3960, 90, 1}; |
| 543 | float *A0 = malloc(row*row*sizeof(float)); for(ii=0; ii<row2; ii++) A0[ii] = 0.0; for(ii=0; ii<row; ii++) A0[ii*(row+1)] = 1.0; |
| 544 | float *A2 = malloc(row*row*sizeof(float)); |
| 545 | float *A4 = malloc(row*row*sizeof(float)); |
| 546 | float *A6 = malloc(row*row*sizeof(float)); |
| 547 | float *A8 = malloc(row*row*sizeof(float)); |
| 548 | // char ta = 'n'; float alpha = 1; float beta = 0; |
| 549 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, A, &row, &beta, A2, &row); |
| 550 | sgemm_nn_3l(row, row, row, A, row, A, row, A2, row); |
| 551 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A2, &row, A2, &row, &beta, A4, &row); |
| 552 | sgemm_nn_3l(row, row, row, A2, row, A2, row, A4, row); |
| 553 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A4, &row, A2, &row, &beta, A6, &row); |
| 554 | sgemm_nn_3l(row, row, row, A4, row, A2, row, A6, row); |
| 555 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A6, &row, A2, &row, &beta, A8, &row); |
| 556 | sgemm_nn_3l(row, row, row, A6, row, A2, row, A8, row); |
| 557 | smcopy(row, row, A8, row, V, row); |
| 558 | float *temp = malloc(row*row*sizeof(float)); |
| 559 | smcopy(row, row, A8, row, temp, row); |
| 560 | // saxpy_(&row2, &c[3], A2, &i1, temp, &i1); |
| 561 | saxpy_3l(row2, c[3], A2, temp); |
| 562 | // saxpy_(&row2, &c[1], A0, &i1, temp, &i1); |
| 563 | saxpy_3l(row2, c[1], A0, temp); |
| 564 | // saxpy_(&row2, &c[5], A4, &i1, temp, &i1); |
| 565 | saxpy_3l(row2, c[5], A4, temp); |
| 566 | // saxpy_(&row2, &c[7], A6, &i1, temp, &i1); |
| 567 | saxpy_3l(row2, c[7], A6, temp); |
| 568 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, temp, &row, &beta, U, &row); |
| 569 | sgemm_nn_3l(row, row, row, A, row, temp, row, U, row); |
| 570 | // sscal_(&row2, &c[8], V, &i1); |
| 571 | sscal_3l(row2, c[8], V); |
| 572 | // saxpy_(&row2, &c[2], A2, &i1, V, &i1); |
| 573 | saxpy_3l(row2, c[2], A2, V); |
| 574 | // saxpy_(&row2, &c[0], A0, &i1, V, &i1); |
| 575 | saxpy_3l(row2, c[0], A0, V); |
| 576 | // saxpy_(&row2, &c[4], A4, &i1, V, &i1); |
| 577 | saxpy_3l(row2, c[4], A4, V); |
| 578 | // saxpy_(&row2, &c[6], A6, &i1, V, &i1); |
| 579 | saxpy_3l(row2, c[6], A6, V); |
| 580 | free(A0); |
| 581 | free(A2); |
| 582 | free(A4); |
| 583 | free(A6); |
| 584 | free(A8); |
| 585 | free(temp); |
| 586 | } |
| 587 | else if(m==13) // tested |
| 588 | { |
| 589 | float c[] = {64764752532480000, 32382376266240000, 7771770303897600, 1187353796428800, 129060195264000, 10559470521600, 670442572800, 33522128640, 1323241920, 40840800, 960960, 16380, 182, 1}; |
| 590 | float *A0 = malloc(row*row*sizeof(float)); for(ii=0; ii<row2; ii++) A0[ii] = 0.0; for(ii=0; ii<row; ii++) A0[ii*(row+1)] = 1.0; |
| 591 | float *A2 = malloc(row*row*sizeof(float)); |
| 592 | float *A4 = malloc(row*row*sizeof(float)); |
| 593 | float *A6 = malloc(row*row*sizeof(float)); |
| 594 | // char ta = 'n'; float alpha = 1; float beta = 0; |
| 595 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, A, &row, &beta, A2, &row); |
| 596 | sgemm_nn_3l(row, row, row, A, row, A, row, A2, row); |
| 597 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A2, &row, A2, &row, &beta, A4, &row); |
| 598 | sgemm_nn_3l(row, row, row, A2, row, A2, row, A4, row); |
| 599 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A4, &row, A2, &row, &beta, A6, &row); |
| 600 | sgemm_nn_3l(row, row, row, A4, row, A2, row, A6, row); |
| 601 | smcopy(row, row, A2, row, U, row); |
| 602 | float *temp = malloc(row*row*sizeof(float)); |
| 603 | // sscal_(&row2, &c[9], U, &i1); |
| 604 | sscal_3l(row2, c[9], U); |
| 605 | // saxpy_(&row2, &c[11], A4, &i1, U, &i1); |
| 606 | saxpy_3l(row2, c[11], A4, U); |
| 607 | // saxpy_(&row2, &c[13], A6, &i1, U, &i1); |
| 608 | saxpy_3l(row2, c[13], A6, U); |
| 609 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A6, &row, U, &row, &beta, temp, &row); |
| 610 | sgemm_nn_3l(row, row, row, A6, row, U, row, temp, row); |
| 611 | // saxpy_(&row2, &c[7], A6, &i1, temp, &i1); |
| 612 | saxpy_3l(row2, c[7], A6, temp); |
| 613 | // saxpy_(&row2, &c[5], A4, &i1, temp, &i1); |
| 614 | saxpy_3l(row2, c[5], A4, temp); |
| 615 | // saxpy_(&row2, &c[3], A2, &i1, temp, &i1); |
| 616 | saxpy_3l(row2, c[3], A2, temp); |
| 617 | // saxpy_(&row2, &c[1], A0, &i1, temp, &i1); |
| 618 | saxpy_3l(row2, c[1], A0, temp); |
| 619 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, temp, &row, &beta, U, &row); |
| 620 | sgemm_nn_3l(row, row, row, A, row, temp, row, U, row); |
| 621 | smcopy(row, row, A2, row, temp, row); |
| 622 | // sscal_(&row2, &c[8], V, &i1); |
| 623 | sscal_3l(row2, c[8], V); |
| 624 | // saxpy_(&row2, &c[12], A6, &i1, temp, &i1); |
| 625 | saxpy_3l(row2, c[12], A6, temp); |
| 626 | // saxpy_(&row2, &c[10], A4, &i1, temp, &i1); |
| 627 | saxpy_3l(row2, c[10], A4, temp); |
| 628 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A6, &row, temp, &row, &beta, V, &row); |
| 629 | sgemm_nn_3l(row, row, row, A6, row, temp, row, V, row); |
| 630 | // saxpy_(&row2, &c[6], A6, &i1, V, &i1); |
| 631 | saxpy_3l(row2, c[6], A6, V); |
| 632 | // saxpy_(&row2, &c[4], A4, &i1, V, &i1); |
| 633 | saxpy_3l(row2, c[4], A4, V); |
| 634 | // saxpy_(&row2, &c[2], A2, &i1, V, &i1); |
| 635 | saxpy_3l(row2, c[2], A2, V); |
| 636 | // saxpy_(&row2, &c[0], A0, &i1, V, &i1); |
| 637 | saxpy_3l(row2, c[0], A0, V); |
| 638 | free(A0); |
| 639 | free(A2); |
| 640 | free(A4); |
| 641 | free(A6); |
| 642 | free(temp); |
| 643 | } |
| 644 | else |
| 645 | { |
| 646 | printf("%s\n", "Wrong Pade approximatin degree"); |
| 647 | exit(1); |
| 648 | } |
| 649 | float *D = malloc(row*row*sizeof(float)); |
| 650 | // dcopy_(&row2, V, &i1, A, &i1); |
| 651 | smcopy(row, row, V, row, A, row); |
| 652 | // saxpy_(&row2, &d1, U, &i1, A, &i1); |
| 653 | saxpy_3l(row2, 1.0, U, A); |
| 654 | // dcopy_(&row2, V, &i1, D, &i1); |
| 655 | smcopy(row, row, V, row, D, row); |
| 656 | // saxpy_(&row2, &dm1, U, &i1, D, &i1); |
| 657 | saxpy_3l(row2, -1.0, U, D); |
| 658 | int *ipiv = (int *) malloc(row*sizeof(int)); |
| 659 | int info = 0; |
| 660 | // dgesv_(&row, &row, D, &row, ipiv, A, &row, &info); |
| 661 | sgesv_3l(row, row, D, row, ipiv, A, row, &info); |
| 662 | free(ipiv); |
| 663 | free(D); |
| 664 | free(U); |
| 665 | free(V); |
| 666 | } |
| 667 | |
| 668 | |
| 669 | |
| 670 | void expm(int row, float *A) |
| 671 | { |
| 672 | |
| 673 | int i; |
| 674 | |
| 675 | int m_vals[] = {3, 5, 7, 9, 13}; |
| 676 | float theta[] = {0.01495585217958292, 0.2539398330063230, 0.9504178996162932, 2.097847961257068, 5.371920351148152}; |
| 677 | int lentheta = 5; |
| 678 | |
| 679 | float normA = onenorm(row, row, A); |
| 680 | |
| 681 | if(normA<=theta[4]) |
| 682 | { |
| 683 | for(i=0; i<lentheta; i++) |
| 684 | { |
| 685 | if(normA<=theta[i]) |
| 686 | { |
| 687 | padeapprox(m_vals[i], row, A); |
| 688 | break; |
| 689 | } |
| 690 | } |
| 691 | } |
| 692 | else |
| 693 | { |
| 694 | int s; |
| 695 | float t = frexp(normA/(theta[4]), &s); |
| 696 | s = s - (t==0.5); |
| 697 | t = pow(2,-s); |
| 698 | int row2 = row*row; |
| 699 | /* int i1 = 1;*/ |
| 700 | // sscal_(&row2, &t, A, &i1); |
| 701 | sscal_3l(row2, t, A); |
| 702 | padeapprox(m_vals[4], row, A); |
| 703 | float *temp = malloc(row*row*sizeof(float)); |
| 704 | // char ta = 'n'; float alpha = 1; float beta = 0; |
| 705 | for(i=0; i<s; i++) |
| 706 | { |
| 707 | // sgemm_(&ta, &ta, &row, &row, &row, &alpha, A, &row, A, &row, &beta, temp, &row); |
| 708 | sgemm_nn_3l(row, row, row, A, row, A, row, temp, row); |
| 709 | smcopy(row, row, temp, row, A, row); |
| 710 | } |
| 711 | free(temp); |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | |