Austin Schuh | f173eb8 | 2018-01-20 23:32:30 -0800 | [diff] [blame] | 1 | #!/usr/bin/python3 |
| 2 | |
| 3 | # This code was used to select the gear ratio for the intake. |
| 4 | # Run it from the command line and it displays the time required |
| 5 | # to rotate the intake 180 degrees. |
| 6 | # |
| 7 | # Michael Schuh |
| 8 | # January 20, 2018 |
| 9 | |
| 10 | import math |
| 11 | import numpy |
| 12 | import scipy.integrate |
| 13 | |
| 14 | pi = math.pi |
| 15 | pi2 = 2.0 * pi |
| 16 | rad_to_deg = 180.0 / pi |
| 17 | inches_to_meters = 0.0254 |
| 18 | lbs_to_kg = 1.0 / 2.2 |
| 19 | newton_to_lbf = 0.224809 |
| 20 | newton_meters_to_ft_lbs = 0.73756 |
| 21 | run_count = 0 |
| 22 | theta_travel = 0.0 |
| 23 | |
| 24 | def to_deg(angle): |
| 25 | return angle * rad_to_deg |
| 26 | |
| 27 | def to_rad(angle): |
| 28 | return angle / rad_to_deg |
| 29 | |
| 30 | def to_rotations(angle): |
| 31 | return angle / pi2 |
| 32 | |
| 33 | def time_derivative(x, t, voltage, c1, c2, c3): |
| 34 | global run_count |
| 35 | theta, omega = x |
| 36 | dxdt = [omega, -c1 * omega + c3 * math.sin(theta) + c2 * voltage] |
| 37 | run_count = run_count + 1 |
| 38 | |
| 39 | return dxdt |
| 40 | |
| 41 | def get_distal_angle(theta_proximal): |
| 42 | # For the proximal angle = -50 degrees, the distal angle is -180 degrees |
| 43 | # For the proximal angle = 10 degrees, the distal angle is -90 degrees |
| 44 | distal_angle = to_rad(-180.0 - (-50.0 - to_deg(theta_proximal)) * \ |
| 45 | (180.0 - 90.0) / (50.0 + 10.0)) |
| 46 | return distal_angle |
| 47 | |
| 48 | |
| 49 | def get_180_degree_time(c1, c2, c3, voltage, gear_ratio, motor_free_speed): |
| 50 | global run_count |
| 51 | global theta_travel |
| 52 | |
| 53 | if ( True ): |
| 54 | # Gravity is assisting the motion. |
| 55 | theta_start = 0.0 |
| 56 | theta_target = pi |
| 57 | elif ( False ): |
| 58 | # Gravity is assisting the motion. |
| 59 | theta_start = 0.0 |
| 60 | theta_target = -pi |
| 61 | elif ( False ): |
| 62 | # Gravity is slowing the motion. |
| 63 | theta_start = pi |
| 64 | theta_target = 0.0 |
| 65 | elif ( False ): |
| 66 | # Gravity is slowing the motion. |
| 67 | theta_start = -pi |
| 68 | theta_target = 0.0 |
| 69 | elif ( False ): |
| 70 | # This is for the proximal arm motion. |
| 71 | theta_start = to_rad(-50.0) |
| 72 | theta_target = to_rad(10.0) |
| 73 | |
| 74 | theta_half = 0.5 * (theta_start + theta_target) |
| 75 | if theta_start > theta_target: |
| 76 | voltage = -voltage |
| 77 | theta = theta_start |
| 78 | theta_travel = theta_start - theta_target |
| 79 | if run_count == 0: |
| 80 | print("# Theta Start = %.2f radians End = %.2f Theta travel %.2f " |
| 81 | "Theta half = %.2f Voltage = %.2f" % ( |
| 82 | theta_start, theta_target, theta_travel, theta_half, voltage)) |
| 83 | print("# Theta Start = %.2f degrees End = %.2f Theta travel %.2f " |
| 84 | "Theta half = %.2f Voltage = %.2f" % ( |
| 85 | to_deg(theta_start), to_deg(theta_target), to_deg(theta_travel), |
| 86 | to_deg(theta_half), voltage)) |
| 87 | omega = 0.0 |
| 88 | time = 0.0 |
| 89 | delta_time = 0.01 # time step in seconds |
| 90 | for step in range(1, 5000): |
| 91 | t = numpy.array([time, time + delta_time]) |
| 92 | time = time + delta_time |
| 93 | x = [theta, omega] |
| 94 | angular_acceleration = -c1 * omega + c2 * voltage |
| 95 | x_n_plus_1 = scipy.integrate.odeint(time_derivative, x, t, |
| 96 | args=(voltage, c1, c2, c3)) |
| 97 | theta, omega = x_n_plus_1[1] |
| 98 | |
| 99 | if ( False ): |
| 100 | print("%4d %8.4f %8.2f %8.4f %8.4f %8.3f " |
| 101 | "%8.3f %8.3f %8.3f" % ( |
| 102 | step, time, theta, omega, angular_acceleration, |
| 103 | to_rotations(theta), to_rotations(omega), |
| 104 | omega * gear_ratio * 60.0 / pi2, |
| 105 | omega * gear_ratio / motor_free_speed)) |
| 106 | if theta_start < theta_target: |
| 107 | # Angle is increasing through the motion. |
| 108 | if theta > theta_half: |
| 109 | break |
| 110 | else: |
| 111 | # Angle is decreasing through the motion. |
| 112 | if (theta < theta_half): |
| 113 | break |
| 114 | |
| 115 | return 2.0 * time |
| 116 | |
| 117 | def main(): |
| 118 | # m/sec^2 Gravity Constant |
| 119 | gravity = 9.8 |
| 120 | # m/sec^2 Gravity Constant - Use 0.0 for the intake. It is horizontal. |
| 121 | gravity = 0.0 |
| 122 | # Volts |
| 123 | voltage_nominal = 12 |
| 124 | |
| 125 | # Vex 775 Pro motor specs from http://banebots.com/p/M2-RS550-120 |
| 126 | motor_name = "Vex 775 Pro motor specs from http://banebots.com/p/M2-RS550-120" |
| 127 | current_stall = 134 # amps stall current |
| 128 | current_no_load = 0.7 # amps no load current |
| 129 | torque_stall = 710/1000.0 # N-m Stall Torque |
| 130 | speed_no_load_rpm = 18730 # RPM no load speed |
| 131 | |
| 132 | if ( True ): |
| 133 | # Bag motor from https://www.vexrobotics.com/217-3351.html |
| 134 | motor_name = "Bag motor from https://www.vexrobotics.com/217-3351.html" |
| 135 | current_stall = 53.0 # amps stall current |
| 136 | current_no_load = 1.8 # amps no load current |
| 137 | torque_stall = 0.4 # N-m Stall Torque |
| 138 | speed_no_load_rpm = 13180.0 # RPM no load speed |
| 139 | |
| 140 | if ( False ): |
| 141 | # Mini CIM motor from https://www.vexrobotics.com/217-3371.html |
| 142 | motor_name = "Mini CIM motor from https://www.vexrobotics.com/217-3371.html" |
| 143 | current_stall = 89.0 # amps stall current |
| 144 | current_no_load = 3.0 # amps no load current |
| 145 | torque_stall = 1.4 # N-m Stall Torque |
| 146 | speed_no_load_rpm = 5840.0 # RPM no load speed |
| 147 | |
| 148 | # How many motors are we using? |
| 149 | num_motors = 1 |
| 150 | |
| 151 | # Motor values |
| 152 | print("# Motor: %s" % (motor_name)) |
| 153 | print("# Number of motors: %d" % (num_motors)) |
| 154 | print("# Stall torque: %.1f n-m" % (torque_stall)) |
| 155 | print("# Stall current: %.1f amps" % (current_stall)) |
| 156 | print("# No load current: %.1f amps" % (current_no_load)) |
| 157 | print("# No load speed: %.0f rpm" % (speed_no_load_rpm)) |
| 158 | |
| 159 | # Constants from motor values |
| 160 | resistance_motor = voltage_nominal / current_stall |
| 161 | speed_no_load_rps = speed_no_load_rpm / 60.0 # Revolutions per second no load speed |
| 162 | speed_no_load = speed_no_load_rps * 2.0 * pi |
| 163 | Kt = num_motors * torque_stall / current_stall # N-m/A torque constant |
| 164 | Kv_rpm = speed_no_load_rpm / (voltage_nominal - |
| 165 | resistance_motor * current_no_load) # rpm/V |
| 166 | Kv = Kv_rpm * 2.0 * pi / 60.0 # rpm/V |
| 167 | |
| 168 | # Robot Geometry and physics |
| 169 | # m Length of arm connected to the robot base |
| 170 | length_proximal_arm = inches_to_meters * 47.34 |
| 171 | # m Length of arm that holds the cube |
| 172 | length_distal_arm = inches_to_meters * 44.0 |
| 173 | # m Length of intake arm from the pivot point to where the big roller contacts a cube. |
| 174 | length_intake_arm = inches_to_meters * 9.0 |
| 175 | mass_cube = 6.0 * lbs_to_kg # Weight of the cube in Kgrams |
| 176 | mass_proximal_arm = 5.5 * lbs_to_kg # Weight of proximal arm |
| 177 | mass_distal_arm = 3.5 * lbs_to_kg # Weight of distal arm |
| 178 | mass_distal = mass_cube + mass_distal_arm |
| 179 | mass_proximal = mass_proximal_arm + mass_distal |
| 180 | # m Length from arm pivot point to arm CG |
| 181 | radius_to_proximal_arm_cg = 22.0 * inches_to_meters |
| 182 | # m Length from arm pivot point to arm CG |
| 183 | radius_to_distal_arm_cg = 10.0 * inches_to_meters |
| 184 | |
| 185 | radius_to_distal_cg = (length_distal_arm * mass_cube + |
| 186 | radius_to_distal_arm_cg * mass_distal_arm) / \ |
| 187 | mass_distal |
| 188 | radius_to_proximal_cg = (length_proximal_arm * mass_distal + |
| 189 | radius_to_proximal_arm_cg * mass_proximal_arm) / \ |
| 190 | mass_proximal |
| 191 | J_cube = length_distal_arm * length_distal_arm*mass_cube |
| 192 | # Kg m^2 Moment of inertia of the proximal arm |
| 193 | J_proximal_arm = radius_to_proximal_arm_cg * radius_to_proximal_arm_cg * \ |
| 194 | mass_distal_arm |
| 195 | # Kg m^2 Moment of inertia distal arm and cube at end of proximal arm. |
| 196 | J_distal_arm_and_cube_at_end_of_proximal_arm = length_proximal_arm * \ |
| 197 | length_proximal_arm * mass_distal |
| 198 | # Kg m^2 Moment of inertia of the distal arm |
| 199 | J_distal_arm = radius_to_distal_arm_cg * radius_to_distal_arm_cg * mass_distal_arm |
| 200 | # Moment of inertia of the arm with the cube on the end |
| 201 | J = J_distal_arm_and_cube_at_end_of_proximal_arm + J_proximal_arm |
| 202 | # Intake claw |
| 203 | J_intake = 0.295 # Kg m^2 Moment of inertia of intake |
| 204 | J = J_intake |
| 205 | |
| 206 | gear_ratio = 140.0 # Guess at the gear ratio |
| 207 | gear_ratio = 100.0 # Guess at the gear ratio |
| 208 | gear_ratio = 90.0 # Guess at the gear ratio |
| 209 | |
| 210 | error_margine = 1.0 |
| 211 | voltage = 10.0 # voltage for the motor. Assuming a loaded robot so not using 12 V. |
| 212 | # It might make sense to use a lower motor frees peed when the voltage is not a full 12 Volts. |
| 213 | # motor_free_speed = Kv * voltage |
| 214 | motor_free_speed = speed_no_load |
| 215 | |
| 216 | print("# Kt = %f N-m/A\n# Kv_rpm = %f rpm/V\n# Kv = %f radians/V" % (Kt, Kv_rpm, Kv)) |
| 217 | print("# %.2f Ohms Resistance of the motor " % (resistance_motor)) |
| 218 | print("# %.2f kg Cube weight" % (mass_cube)) |
| 219 | print("# %.2f kg Proximal Arm mass" % (mass_proximal_arm)) |
| 220 | print("# %.2f kg Distal Arm mass" % (mass_distal_arm)) |
| 221 | print("# %.2f kg Distal Arm and Cube weight" % (mass_distal)) |
| 222 | print("# %.2f m Length from distal arm pivot point to arm CG" % ( |
| 223 | radius_to_distal_arm_cg)) |
| 224 | print("# %.2f m Length from distal arm pivot point to arm and cube cg" % ( |
| 225 | radius_to_distal_cg)) |
| 226 | print("# %.2f kg-m^2 Moment of inertia of the cube about the arm pivot point" % (J_cube)) |
| 227 | print("# %.2f m Length from proximal arm pivot point to arm CG" % (radius_to_proximal_arm_cg)) |
| 228 | print("# %.2f m Length from proximal arm pivot point to arm and cube cg" % ( |
| 229 | radius_to_proximal_cg)) |
| 230 | print("# %.2f m Proximal arm length" % (length_proximal_arm)) |
| 231 | print("# %.2f m Distal arm length" % (length_distal_arm)) |
| 232 | |
| 233 | print("# %.2f kg-m^2 Moment of inertia of the intake about the intake pivot point" % ( |
| 234 | J_intake)) |
| 235 | print("# %.2f kg-m^2 Moment of inertia of the distal arm about the arm pivot point" % ( |
| 236 | J_distal_arm)) |
| 237 | print("# %.2f kg-m^2 Moment of inertia of the proximal arm about the arm pivot point" % ( |
| 238 | J_proximal_arm)) |
| 239 | print("# %.2f kg-m^2 Moment of inertia of the distal arm and cube mass about " |
| 240 | "the proximal arm pivot point" % ( |
| 241 | J_distal_arm_and_cube_at_end_of_proximal_arm)) |
| 242 | print("# %.2f kg-m^2 Moment of inertia of the intake the intake pivot point " |
| 243 | "(J value used in simulation)" % (J)) |
| 244 | print("# %d Number of motors" % (num_motors)) |
| 245 | |
| 246 | print("# %.2f V Motor voltage" % (voltage)) |
| 247 | for gear_ratio in range(60, 241, 10): |
| 248 | c1 = Kt * gear_ratio * gear_ratio / (Kv * resistance_motor * J) |
| 249 | c2 = gear_ratio * Kt / (J * resistance_motor) |
| 250 | c3 = radius_to_proximal_cg * mass_proximal * gravity / J |
| 251 | |
| 252 | if ( False ): |
| 253 | print("# %.8f 1/sec C1 constant" % (c1)) |
| 254 | print("# %.2f 1/sec C2 constant" % (c2)) |
| 255 | print("# %.2f 1/(V sec^2) C3 constant" % (c3)) |
| 256 | print("# %.2f RPM Free speed at motor voltage" % (voltage * Kv_rpm)) |
| 257 | |
| 258 | torque_90_degrees = radius_to_distal_cg * mass_distal * gravity |
| 259 | voltage_90_degrees = resistance_motor * torque_90_degrees / (gear_ratio * Kt) |
| 260 | torque_peak = gear_ratio * num_motors * torque_stall |
| 261 | torque_peak_ft_lbs = torque_peak * newton_meters_to_ft_lbs |
| 262 | normal_force = torque_peak / length_intake_arm |
| 263 | normal_force_lbf = newton_to_lbf * normal_force |
| 264 | time_required = get_180_degree_time(c1, c2, c3, voltage, |
| 265 | gear_ratio, motor_free_speed) |
| 266 | print("Time for %.1f degrees for gear ratio %3.0f is %.2f seconds. " |
| 267 | "Peak (stall) torque %3.0f nm %3.0f ft-lb Normal force at intake " |
| 268 | "end %3.0f N %2.0f lbf" % \ |
| 269 | (to_deg(theta_travel), gear_ratio, time_required, |
| 270 | torque_peak, torque_peak_ft_lbs, normal_force, normal_force_lbf)) |
| 271 | |
| 272 | if __name__ == '__main__': |
| 273 | main() |