Austin Schuh | 34cb531 | 2016-07-09 21:55:41 -0700 | [diff] [blame] | 1 | \documentclass[a4paper,12pt]{article} |
| 2 | \usepackage{amsmath} |
| 3 | \begin{document} |
| 4 | |
| 5 | % From http://www.eecs.tufts.edu/~khan/Courses/Spring2013/EE194/Lecs/Lec9and10.pdf |
| 6 | % and http://www.cs.unc.edu/~wens/WAFR2014-Sun.pdf |
| 7 | % (which references http://maeresearch.ucsd.edu/skelton/publications/weiwei_ilqg_CDC43.pdf) |
| 8 | % and http://arl.cs.utah.edu/pubs/ISRR2013.pdf |
| 9 | |
| 10 | \section{Backwards Pass} |
| 11 | |
| 12 | Let's start with some definitions for the standard LQR controller. |
| 13 | $c_t(\boldsymbol{x}, \boldsymbol{u})$ is the cost for the iteration $t$ given that we are at $\boldsymbol{x}$ and are going to apply $\boldsymbol{u}$ for one cycle. |
| 14 | $v_t(\boldsymbol{x})$ is the optimal cost-to-go for the starting point $\boldsymbol{x}$ at step $t$. |
| 15 | $v_N(\boldsymbol{x})$ may be defined to be a different final cost from $v_t(\boldsymbol{x})$ if need be, where $N$ is the horizon. |
| 16 | |
| 17 | $$\begin{array}{rcl} |
| 18 | c_t(\boldsymbol{x}, \boldsymbol{u}) &=& |
| 19 | \frac{1}{2} |
| 20 | \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix}^T |
| 21 | \begin{bmatrix} Q_t & P_t^T \\ P_t & R_t \end{bmatrix} |
| 22 | \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix} + |
| 23 | \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix}^T |
| 24 | \begin{bmatrix} \boldsymbol{q}_t \\ \boldsymbol{r}_t \end{bmatrix} + |
| 25 | q_t \\ |
| 26 | v_{t + 1}(\boldsymbol{x}) &=& |
| 27 | \frac{1}{2} \boldsymbol{x}^T S_{t + 1} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{s}_{t + 1} + s_{t + 1} \\ |
| 28 | |
| 29 | g_t(\boldsymbol{x}_t, \boldsymbol{u}_t) = \boldsymbol{x}_{t + 1}(\boldsymbol{u}_t) &=& |
| 30 | A_{t} \boldsymbol{x}_t + B_t \boldsymbol{u}_t + \boldsymbol{c}_{t} \\ |
| 31 | |
| 32 | v_{t}(\boldsymbol{x}_t, \boldsymbol{u}_t) &=& |
| 33 | v_{t+1}(\boldsymbol{x}_{t+1}) + |
| 34 | c_t(\boldsymbol{x}_t, \boldsymbol{u}_t) \\\ |
| 35 | &=& |
| 36 | v_{t+1}(g_t(\boldsymbol{x}_{t}, \boldsymbol{u}_t)) + |
| 37 | c_t(\boldsymbol{x}_t, \boldsymbol{u}_t) |
| 38 | \\ |
| 39 | \end{array}$$ |
| 40 | |
| 41 | Now, let's calculate $v_t(\boldsymbol{x})$ given $v_{t+1}(\boldsymbol{x})$ and the step cost from $c_t(\boldsymbol{x})$. |
| 42 | This tells us the cost of applying $\boldsymbol{u}$ starting from $\boldsymbol{x}$. |
| 43 | We will then optimize over all $\boldsymbol{u}$ to find the optimal next state and cost for that state. |
| 44 | This lets us then use dynamic programing methods to work out the optimal $\boldsymbol{x}$ and $\boldsymbol{u}$ at each timestep. |
| 45 | |
| 46 | We want to get a quadratic solution of the form |
| 47 | $$v_{t}(\boldsymbol{x}) = |
| 48 | \frac{1}{2} \boldsymbol{x}^T S_{t} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{s}_{t} + s_{t}$$ for each step. |
| 49 | |
| 50 | $$\begin{array}{rcl} |
| 51 | v_{t}(\boldsymbol{x}, \boldsymbol{u}) &=& |
| 52 | \frac{1}{2} \left( A_{t}\boldsymbol{x} + B_{t}\boldsymbol{u} + \boldsymbol{c}_{t}\right)^T |
| 53 | S_{t + 1} |
| 54 | \left( A_{t}\boldsymbol{x} + B_{t}\boldsymbol{u} + \boldsymbol{c}_{t}\right) + |
| 55 | \left( A_{t}\boldsymbol{x} + B_{t}\boldsymbol{u} + \boldsymbol{c}_{t}\right)^T \boldsymbol{s}_{t + 1} + |
| 56 | s_{t + 1} + \\ && |
| 57 | \frac{1}{2} |
| 58 | \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix}^T |
| 59 | \begin{bmatrix} Q_{t} & P_{t}^T \\ P_{t} & R_{t} \end{bmatrix} |
| 60 | \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix} + |
| 61 | \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix}^T |
| 62 | \begin{bmatrix} \boldsymbol{q}_{t} \\ \boldsymbol{r}_{t} \end{bmatrix} + |
| 63 | q_{t} |
| 64 | \\ |
| 65 | &=& |
| 66 | \frac{1}{2} \left( |
| 67 | \boldsymbol{x}^T A_{t}^T S_{t + 1} A_{t} \boldsymbol{x} + |
| 68 | \boldsymbol{u}^T B_{t}^T S_{t + 1} A_{t} \boldsymbol{x} + |
| 69 | \boldsymbol{c}_t^T S_{t + 1} A_{t} \boldsymbol{x} + \right. \\ && |
| 70 | \left. \boldsymbol{x}^T A_{t}^T S_{t + 1} B_{t} \boldsymbol{u} + |
| 71 | \boldsymbol{u}^T B_{t}^T S_{t + 1} B_{t} \boldsymbol{u} + |
| 72 | \boldsymbol{c}_t^T S_{t + 1} B_{t} \boldsymbol{u} + \right. \\ && |
| 73 | \left. \boldsymbol{x}^T A_{t}^T S_{t + 1} \boldsymbol{c}_t + |
| 74 | \boldsymbol{u}^T B_{t}^T S_{t + 1} \boldsymbol{c}_t + |
| 75 | \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t |
| 76 | \right) + \\ && |
| 77 | \boldsymbol{x}^T A_{t}^T \boldsymbol{s}_{t + 1} + |
| 78 | \boldsymbol{u}^T B_{t}^T \boldsymbol{s}_{t + 1} + |
| 79 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + |
| 80 | s_{t + 1} + \\ && |
| 81 | \frac{1}{2} \left(\boldsymbol{x}^T Q_t \boldsymbol{x} + \boldsymbol{u}^T P_t \boldsymbol{x} + \boldsymbol{x}^T P_t^T \boldsymbol{u} + \boldsymbol{u}^T R_t \boldsymbol{u} \right) + \boldsymbol{x}^T \boldsymbol{q}_t + \boldsymbol{u}^T \boldsymbol{r}_t + q_t |
| 82 | \\ |
| 83 | &=& |
| 84 | \frac{1}{2} \left( |
| 85 | \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} A_{t} + Q_t \right) \boldsymbol{x} + |
| 86 | \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} A_{t} + P_t \right) \boldsymbol{x} \right. + \\ && |
| 87 | \left. \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) \boldsymbol{u} + |
| 88 | \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) \boldsymbol{u} \right) + \\ && |
| 89 | \boldsymbol{x}^T \left(A_{t}^T \boldsymbol{s}_{t + 1} + |
| 90 | \boldsymbol{q}_t \right)+ |
| 91 | |
| 92 | \boldsymbol{u}^T \left( B_{t}^T \boldsymbol{s}_{t + 1} + |
| 93 | \boldsymbol{r}_t \right) + |
| 94 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + |
| 95 | q_t + \\ && |
| 96 | \frac{1}{2} \left( \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t + |
| 97 | \boldsymbol{x}^T A_{t}^T S_{t + 1} \boldsymbol{c}_t + |
| 98 | \boldsymbol{u}^T B_{t}^T S_{t + 1} \boldsymbol{c}_t + |
| 99 | \boldsymbol{c}_t^T S_{t + 1} B_{t} \boldsymbol{u} + |
| 100 | \boldsymbol{c}_t^T S_{t + 1} A_{t} \boldsymbol{x} \right) |
| 101 | \end{array}$$ |
| 102 | |
| 103 | Now, let's find the optimal $\boldsymbol{u}$. Do this by evaluating $\frac{\partial}{\partial \boldsymbol{u}} v_t(\boldsymbol{x}, \boldsymbol{u}) = 0$. |
| 104 | |
| 105 | $$\begin{array}{rcl} |
| 106 | \frac{\partial}{\partial \boldsymbol{u}} v_{t}(\boldsymbol{x}, \boldsymbol{u}) &=& \frac{1}{2} \left( 2 \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) + 2 \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) + 2 \boldsymbol{c}_t^T S_{t + 1} B_{t} \right) + \\&&\boldsymbol{s}_{t + 1}^T B_{t} + \boldsymbol{r}_t^T \\ |
| 107 | |
| 108 | \frac{\partial}{\partial \boldsymbol{u}} v_{t}(\boldsymbol{x}, \boldsymbol{u}) &=& \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) + \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) + \boldsymbol{c}_t^T S_{t + 1} B_{t} + \boldsymbol{s}_{t + 1}^T B_{t} + \boldsymbol{r}_t^T \\ |
| 109 | 0 &=& \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) + \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) + \boldsymbol{c}_t^T S_{t + 1} B_{t} + \boldsymbol{s}_{t + 1}^T B_{t} + \boldsymbol{r}_t^T |
| 110 | \end{array}$$ |
| 111 | $$\begin{array}{rcl} |
| 112 | \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) &=& - \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) - \boldsymbol{c}_t^T S_{t + 1} B_{t} - \boldsymbol{s}_{t + 1}^T B_{t} - \boldsymbol{r}_t^T \\ |
| 113 | \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) \boldsymbol{u} &=& - \left( B_{t}^T S_{t + 1} A_{t} + P_t \right) \boldsymbol{x} - B_t^T S_{t + 1} \boldsymbol{c}_t - B_{t}^T \boldsymbol{s}_{t + 1}- \boldsymbol{r}_t \\ |
| 114 | \boldsymbol{u} &=& - \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) ^{-1} \left( \left( B_{t}^T S_{t + 1} A_{t} + P_t \right) \boldsymbol{x} + B_t^T S_{t + 1} \boldsymbol{c}_t + B_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{r}_t \right) |
| 115 | \end{array}$$ |
| 116 | |
| 117 | This gives us the optimal $\boldsymbol{u}$. There are some substitutions defined here from the 2013 paper which make it easier to read. |
| 118 | Note: the 2014 paper uses different letters for these same quantities\dots |
| 119 | \\ |
| 120 | $$\begin{array}{rcl} |
| 121 | C_t &=& B^T_t S_{t + 1} A_t + P_t \\ |
| 122 | E_t &=& B_{t}^T S_{t + 1} B_{t} + R_t \\ |
| 123 | L_t &=& - E_t ^{-1} C_t \\ |
| 124 | |
| 125 | \boldsymbol{e}_t &=& B_t^T S_{t + 1} \boldsymbol{c}_t + B_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{r}_t \\ |
| 126 | \boldsymbol{l}_t &=& - E^{-1}_t \boldsymbol{e}_t \\ |
| 127 | |
| 128 | D_t &=& A_t^T S_{t + 1} A_t + Q_t \\ |
| 129 | \boldsymbol{d}_t &=& A_t^T S_{t + 1} \boldsymbol{c}_t + A_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{q}_t |
| 130 | \\ |
| 131 | \boldsymbol{u} &=& L_t \boldsymbol{x} + \boldsymbol{l}_t |
| 132 | \end{array}$$ |
| 133 | |
| 134 | With these, we can simplify $\boldsymbol{u}$ a bit and make it look like the 2014 paper has it. |
| 135 | |
| 136 | $$\begin{array}{rcl} |
| 137 | \boldsymbol{u} &=& -E_t^{-1} \left( C_t \boldsymbol{x} + \boldsymbol{e}_t \right) \\ |
| 138 | \boldsymbol{u} &=& -E_t^{-1} C_t \boldsymbol{x} - E_t^{-1} \boldsymbol{e}_t |
| 139 | \end{array}$$ |
| 140 | |
| 141 | For reference, here are some equivalences between the symbols used in the 2013 |
| 142 | paper (the ones we use) and the 2014 paper. |
| 143 | TODO(Brian): Figure out where the ones in the 2014 paper are defined instead of |
| 144 | guessing by pattern-matching. |
| 145 | \\ \begin{tabular}{ | r | l | } |
| 146 | \hline |
| 147 | 2013 paper (ours) & 2014 paper \\ |
| 148 | \hline |
| 149 | $C_t$ & $E_t$ \\ |
| 150 | $D_t$ & $C_t$ \\ |
| 151 | $\boldsymbol{d}_t$ & $\boldsymbol{c}_t$ \\ |
| 152 | $E_t$ & $D_t$ \\ |
| 153 | $\boldsymbol{e}_t$ & $\boldsymbol{d}_t$ \\ |
| 154 | \hline |
| 155 | \end{tabular} \\ |
| 156 | |
| 157 | Now, let's solve for the new cost function. |
| 158 | |
| 159 | $$\begin{array}{rcl} |
| 160 | v_{t}(\boldsymbol{x}, \boldsymbol{u}) &=& |
| 161 | \frac{1}{2} \left( |
| 162 | \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} A_{t} + Q_t \right) \boldsymbol{x} + |
| 163 | \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} A_{t} + P_t \right) \boldsymbol{x} \right. + \\ && |
| 164 | \left. \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) \boldsymbol{u} + |
| 165 | \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) \boldsymbol{u} \right) + \\ && |
| 166 | \boldsymbol{x}^T \left(A_{t}^T \boldsymbol{s}_{t + 1} + |
| 167 | \boldsymbol{q}_t \right)+ |
| 168 | |
| 169 | \boldsymbol{u}^T \left( B_{t}^T \boldsymbol{s}_{t + 1} + |
| 170 | \boldsymbol{r}_t \right) + |
| 171 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + |
| 172 | q_t + \\ && |
| 173 | \frac{1}{2} \left( \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t + |
| 174 | \boldsymbol{x}^T A_{t}^T S_{t + 1} \boldsymbol{c}_t + |
| 175 | \boldsymbol{u}^T B_{t}^T S_{t + 1} \boldsymbol{c}_t + |
| 176 | \boldsymbol{c}_t^T S_{t + 1} B_{t} \boldsymbol{u} + |
| 177 | \boldsymbol{c}_t^T S_{t + 1} A_{t} \boldsymbol{x} \right) |
| 178 | \\ |
| 179 | &=& |
| 180 | \frac{1}{2} \left( |
| 181 | \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} A_{t} + Q_t \right) \boldsymbol{x} + |
| 182 | \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} A_{t} + P_t \right) \boldsymbol{x} \right. + \\ && |
| 183 | \left. \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) \boldsymbol{u} + |
| 184 | \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) \boldsymbol{u} \right) + \\ && |
| 185 | |
| 186 | \boldsymbol{x}^T \left(A_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{q}_t + |
| 187 | \frac{1}{2} A_{t}^T S_{t + 1} \boldsymbol{c}_t \right) + \\ && |
| 188 | |
| 189 | \boldsymbol{u}^T \left( B_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{r}_t + |
| 190 | \frac{1}{2} B_{t}^T S_{t + 1} \boldsymbol{c}_t \right) + \\ && |
| 191 | |
| 192 | \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \left( A_t \boldsymbol{x} + |
| 193 | B_t \boldsymbol{u} + \boldsymbol{c}_t \right) + \\ && |
| 194 | |
| 195 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t |
| 196 | \\ |
| 197 | &=& |
| 198 | \frac{1}{2} \left( |
| 199 | \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} A_{t} + Q_t \right) \boldsymbol{x} + |
| 200 | \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} A_{t} + P_t \right) \boldsymbol{x} \right. + \\ && |
| 201 | \left. \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) \boldsymbol{u} + |
| 202 | \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) \boldsymbol{u} \right) + \\ && |
| 203 | |
| 204 | \boldsymbol{x}^T \left(A_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{q}_t + |
| 205 | A_{t}^T S_{t + 1} \boldsymbol{c}_t \right) + \\ && |
| 206 | |
| 207 | \boldsymbol{u}^T \left( B_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{r}_t + |
| 208 | B_{t}^T S_{t + 1} \boldsymbol{c}_t \right) + \\ && |
| 209 | |
| 210 | \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t + |
| 211 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t |
| 212 | \\ |
| 213 | &=& |
| 214 | \frac{1}{2} \left( |
| 215 | \boldsymbol{x}^T D_t \boldsymbol{x} + |
| 216 | \boldsymbol{u}^T C_t \boldsymbol{x} + |
| 217 | \boldsymbol{x}^T C_t^T \boldsymbol{u} + |
| 218 | \boldsymbol{u}^T E_t \boldsymbol{u} \right) + \\ && |
| 219 | |
| 220 | \boldsymbol{x}^T \boldsymbol{d}_t + |
| 221 | \boldsymbol{u}^T \boldsymbol{e}_t + \\ && |
| 222 | |
| 223 | \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t + |
| 224 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t |
| 225 | \\ |
| 226 | &=& |
| 227 | \frac{1}{2} \left( |
| 228 | \boldsymbol{x}^T D_t \boldsymbol{x} + |
| 229 | \left( L_t \boldsymbol{x} + \boldsymbol{l}_t \right)^T C_t \boldsymbol{x} \right. + \\ && |
| 230 | \left. \boldsymbol{x}^T C_t^T \left( L_t \boldsymbol{x} + \boldsymbol{l}_t \right) + |
| 231 | \left( L_t \boldsymbol{x} + \boldsymbol{l}_t \right)^T E_t \left( L_t \boldsymbol{x} + \boldsymbol{l}_t \right) \right) + \\ && |
| 232 | |
| 233 | \boldsymbol{x}^T \boldsymbol{d}_t + |
| 234 | \left( L_t \boldsymbol{x} + \boldsymbol{l}_t \right)^T \boldsymbol{e}_t + \\&& |
| 235 | |
| 236 | \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t + |
| 237 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t |
| 238 | \\ |
| 239 | &=& |
| 240 | \frac{1}{2} \left( |
| 241 | \boldsymbol{x}^T D_t \boldsymbol{x} + \right. |
| 242 | \boldsymbol{x}^T L_t^T C_t \boldsymbol{x} + \boldsymbol{l}_t^T C_t \boldsymbol{x} + \\ && |
| 243 | |
| 244 | \left. \boldsymbol{x}^T C_t^T L_t \boldsymbol{x} + \boldsymbol{x}^T C_t^T \boldsymbol{l}_t + |
| 245 | |
| 246 | \boldsymbol{x}^T L_t^T E_t L_t \boldsymbol{x} + |
| 247 | \boldsymbol{l}_t^T E_t L_t \boldsymbol{x} + |
| 248 | \boldsymbol{x}^T L_t^T E_t \boldsymbol{l}_t + |
| 249 | \boldsymbol{l}_t^T E_t \boldsymbol{l}_t \right) + \\&& |
| 250 | |
| 251 | \boldsymbol{x}^T \boldsymbol{d}_t + |
| 252 | \boldsymbol{x}^T L_t^T \boldsymbol{e}_t + \boldsymbol{l}^T_t \boldsymbol{e}_t + \\&& |
| 253 | |
| 254 | \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t + |
| 255 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t |
| 256 | \\ |
| 257 | &=& |
| 258 | \frac{1}{2} |
| 259 | \boldsymbol{x}^T \left( |
| 260 | D_t + |
| 261 | L_t^T C_t + |
| 262 | C_t^T L_t + |
| 263 | L_t^T E_t L_t |
| 264 | \right) \boldsymbol{x} + \\ && |
| 265 | |
| 266 | \boldsymbol{x}^T \left( |
| 267 | \frac{1}{2} \left( C_t^T \boldsymbol{l}_t + |
| 268 | L_t^T E_t \boldsymbol{l}_t \right) + |
| 269 | \boldsymbol{d}_t + |
| 270 | L_t^T \boldsymbol{e}_t \right) + |
| 271 | \frac{1}{2} \left( \boldsymbol{l}_t^T E_t L_t + \boldsymbol{l}_t^T C_t \right) \boldsymbol{x} + \\ && |
| 272 | |
| 273 | \frac{1}{2} \boldsymbol{l}_t^T E_t \boldsymbol{l}_t + |
| 274 | \boldsymbol{l}^T_t \boldsymbol{e}_t + |
| 275 | |
| 276 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t + |
| 277 | \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t |
| 278 | \\ |
| 279 | &=& |
| 280 | \frac{1}{2} |
| 281 | \boldsymbol{x}^T \left( |
| 282 | D_t + |
| 283 | L_t^T C_t + |
| 284 | C_t^T L_t + |
| 285 | L_t^T E_t L_t |
| 286 | \right) \boldsymbol{x} + \\ && |
| 287 | |
| 288 | \boldsymbol{x}^T \left( |
| 289 | C_t^T \boldsymbol{l}_t + |
| 290 | L_t^T E_t \boldsymbol{l}_t + |
| 291 | \boldsymbol{d}_t + |
| 292 | L_t^T \boldsymbol{e}_t \right) + \\ && |
| 293 | |
| 294 | \frac{1}{2} \boldsymbol{l}_t^T E_t \boldsymbol{l}_t + |
| 295 | \boldsymbol{l}^T_t \boldsymbol{e}_t + |
| 296 | |
| 297 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t + |
| 298 | \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t |
| 299 | \end{array}$$ |
| 300 | |
| 301 | Ok, let's now pull out the 3 variables of interest and do further simplification. |
| 302 | |
| 303 | $$\begin{array}{rcl} |
| 304 | v_{t}(\boldsymbol{x}) &=& |
| 305 | \frac{1}{2} \boldsymbol{x}^T S_{t} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{s}_{t} + s_{t} \\ |
| 306 | S_t &=& |
| 307 | D_t + |
| 308 | L_t^T C_t + |
| 309 | C_t^T L_t + |
| 310 | L_t^T E_t L_t \\ |
| 311 | &=& |
| 312 | D_t - |
| 313 | C_t^T E_t^{-1} C_t - |
| 314 | C_t^T E_t^{-1} C_t + |
| 315 | C_t^T E_t^{-1} C_t \\ |
| 316 | &=& D_t - C_t^T E_t^{-1} C_t |
| 317 | \\ |
| 318 | \boldsymbol{s}_t &=& |
| 319 | \left( C_t^T + L_t^T E_t \right) \boldsymbol{l}_t + |
| 320 | \boldsymbol{d}_t + |
| 321 | L_t^T \boldsymbol{e}_t \\ |
| 322 | |
| 323 | &=& |
| 324 | \left( C_t^T - C_t^T E_t^{-1} E_t \right) \boldsymbol{l}_t + |
| 325 | \boldsymbol{d}_t - |
| 326 | C_t^T E_t^{-1} \boldsymbol{e}_t \\ |
| 327 | &=& \boldsymbol{d}_t - C_t^T E_t^{-1} \boldsymbol{e}_t |
| 328 | \\ |
| 329 | s_t &=& |
| 330 | \frac{1}{2} \boldsymbol{l}_t^T E_t \boldsymbol{l}_t + |
| 331 | \boldsymbol{l}^T_t \boldsymbol{e}_t + |
| 332 | |
| 333 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t + |
| 334 | \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t |
| 335 | \\ |
| 336 | &=& |
| 337 | \frac{1}{2} \boldsymbol{e}_t^T E_t^{-1} E_t E_t^{-1} \boldsymbol{e}_t - |
| 338 | \boldsymbol{e}_t^T E_t^{-1} \boldsymbol{e}_t + |
| 339 | |
| 340 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t + |
| 341 | |
| 342 | \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t |
| 343 | \\ |
| 344 | &=& |
| 345 | q_t - \frac{1}{2} \boldsymbol{e}_t^T E_t^{-1} \boldsymbol{e}_t + |
| 346 | |
| 347 | \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t + |
| 348 | \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} |
| 349 | \end{array}$$ |
| 350 | |
| 351 | For better or worse, everything but the constant term matches both the 2013 |
| 352 | paper (which has no constant term) and the 2014 paper. |
| 353 | The constant term does not match the 2014 paper, but we're pretty sure it's |
| 354 | correct (extended\_lqr\_derivation.py verifies what we have). |
| 355 | The 2014 paper has this for the constant term instead: |
| 356 | $$\begin{array}{rcl} |
| 357 | s_t &=& |
| 358 | q_t - \frac{1}{2} \boldsymbol{e}_t^T E_t^{-1} \boldsymbol{e}_t |
| 359 | \end{array}$$ |
| 360 | |
| 361 | \section{Forwards Pass} |
| 362 | |
| 363 | Let's define the forwards pass to build the cost-to-come function. |
| 364 | We must use the same cycle cost, $c_t(\boldsymbol{x}, \boldsymbol{u})$, as the backwards pass. |
| 365 | The initial cost $v_0(\boldsymbol{x})$ needs to evaluate to $0$ at $\boldsymbol{x}_0$ since |
| 366 | there is no cost needed to get from $\boldsymbol{x}_0$ to $\boldsymbol{x}_0$. |
| 367 | |
| 368 | $$\begin{array}{rcl} |
| 369 | \bar v_{t}(\boldsymbol{x}) &=& |
| 370 | \frac{1}{2} \boldsymbol{x}^T \bar S_{t} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{\bar s}_{t} + \bar s_{t} \\ |
| 371 | |
| 372 | \bar g_t(\boldsymbol{x}_{t + 1}, \boldsymbol{u}) = \boldsymbol{x}_{t}(\boldsymbol{u}) &=& |
| 373 | \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t} \\ |
| 374 | |
| 375 | \bar c_{t + 1}(\boldsymbol{x}_{t+1}, \boldsymbol{u}) &=& c_t(\bar g_{t}(\boldsymbol{x}_{t + 1}, \boldsymbol{u}), \boldsymbol{u}) \\ |
| 376 | |
| 377 | \bar v_{t + 1}(\boldsymbol{x}_{t+1}, \boldsymbol{u}) &=& |
| 378 | \bar v_{t}(\boldsymbol{x}_{t}) + |
| 379 | \bar c_t(\boldsymbol{x}_{t + 1}, \boldsymbol{u}_t) |
| 380 | \\ |
| 381 | &=& |
| 382 | \bar v_{t}(\bar g_t(\boldsymbol{x}_{t + 1}, \boldsymbol{u})) + |
| 383 | c_t(\bar g_{t}(\boldsymbol{x}_{t + 1}, \boldsymbol{u}), \boldsymbol{u}) \\ |
| 384 | \\ |
| 385 | \end{array}$$ |
| 386 | |
| 387 | It is important to note that the optimal $\boldsymbol{u}$ used to get from $\boldsymbol{x}_t$ to $\boldsymbol{x}_{t+1}$ |
| 388 | when evaluating $g_t(\boldsymbol{x}, \boldsymbol{u})$ is the same optimal $\boldsymbol{u}$ |
| 389 | used to get from $\boldsymbol{x}_{t+1}$ to $\boldsymbol{x}_t$ when evaluating $\bar g_{t}(\boldsymbol{x}_{t + 1}, \boldsymbol{u})$. |
| 390 | Conveniently, this means that the $\boldsymbol{u}_t$, $L_t$, and $\boldsymbol{l}_t$ calculated in both the forwards and backwards passes is the same. |
| 391 | |
| 392 | Like before, we want to get a quadratic solution of the form |
| 393 | $$\bar v_{t + 1}(\boldsymbol{x}_{t+1}) = |
| 394 | \frac{1}{2} \boldsymbol{x}_{t+1}^T \bar S_{t + 1} \boldsymbol{x}_{t+1} + \boldsymbol{x}_{t+1}^T \boldsymbol{\bar s}_{t + 1} + \bar s_{t + 1}$$ for each step. |
| 395 | |
| 396 | $$\begin{array}{rcl} |
| 397 | \bar v_{t + 1}(\boldsymbol{x}_{t+1}, \boldsymbol{u}) &=& |
| 398 | \frac{1}{2} \left(\bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T |
| 399 | \bar S_{t} |
| 400 | \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) + \\ && |
| 401 | \left(\bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) ^T \boldsymbol{\bar s}_{t} + \bar s_{t} + \\&& |
| 402 | \frac{1}{2} |
| 403 | \begin{bmatrix} \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) \\ \boldsymbol{u} \end{bmatrix}^T |
| 404 | \begin{bmatrix} Q_t & P_t^T \\ P_t & R_t \end{bmatrix} |
| 405 | \begin{bmatrix} \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) \\ \boldsymbol{u} \end{bmatrix} + \\&& |
| 406 | \begin{bmatrix} \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) \\ \boldsymbol{u} \end{bmatrix}^T |
| 407 | \begin{bmatrix} \boldsymbol{q}_t \\ \boldsymbol{r}_t \end{bmatrix} + |
| 408 | q_t \\ |
| 409 | |
| 410 | &=& |
| 411 | \frac{1}{2} \left(\bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T |
| 412 | \bar S_{t} |
| 413 | \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) + \\ && |
| 414 | \left(\bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) ^T \boldsymbol{\bar s}_{t} + \bar s_{t} + \\&& |
| 415 | |
| 416 | \frac{1}{2} \left( |
| 417 | \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T Q_t \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) + \right. \\&& |
| 418 | \boldsymbol{u}^T P_t \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) + \\&& |
| 419 | \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T P_t^T \boldsymbol{u} + \\&& |
| 420 | \left. \boldsymbol{u}^T R_t \boldsymbol{u} \right) + \\&& |
| 421 | |
| 422 | \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T \boldsymbol{q}_t + \boldsymbol{u}^T \boldsymbol{r}_t + q_t \\ |
| 423 | |
| 424 | &=& |
| 425 | \frac{1}{2} \left(\bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T |
| 426 | \left( \bar S_{t} + Q_t \right) |
| 427 | \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) + \\ && |
| 428 | \left(\bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) ^T \boldsymbol{\bar s}_{t} + \bar s_{t} + \\&& |
| 429 | |
| 430 | \frac{1}{2} \left( |
| 431 | \boldsymbol{u}^T P_t \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) \right. + \\&& |
| 432 | \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T P_t^T \boldsymbol{u} + \\&& |
| 433 | \left. \boldsymbol{u}^T R_t \boldsymbol{u} \right) + \\&& |
| 434 | |
| 435 | \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T \boldsymbol{q}_t + \boldsymbol{u}^T \boldsymbol{r}_t + q_t \\ |
| 436 | |
| 437 | &=& \frac{1}{2} \left( |
| 438 | \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1} + |
| 439 | \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \bar B_t \boldsymbol{u} + |
| 440 | \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + \right. \\&& |
| 441 | \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1} + |
| 442 | \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t \boldsymbol{u} + |
| 443 | \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + \\&& |
| 444 | \left. \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1} + |
| 445 | \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar B_t \boldsymbol{u} + |
| 446 | \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t \right) + \\&& |
| 447 | |
| 448 | \boldsymbol{x}_{t + 1}^T \bar A_t^T \boldsymbol{\bar s}_t + |
| 449 | \boldsymbol{u}^T \bar B_t^T \boldsymbol{\bar s}_t + |
| 450 | \boldsymbol{\bar c}_t^T \boldsymbol{\bar s}_t + |
| 451 | |
| 452 | \bar s_t + \\ && |
| 453 | |
| 454 | \frac{1}{2} \left( \boldsymbol{u}^T P_t \bar A_{t} \boldsymbol{x}_{t + 1} + |
| 455 | \boldsymbol{u}^T P_t \bar B_{t} \boldsymbol{u} + |
| 456 | \boldsymbol{u}^T P_t \boldsymbol{\bar c}_{t} \right) + \\&& |
| 457 | \frac{1}{2} \left( \boldsymbol{x}_{t+1}^T \bar A^T_t P_t^T \boldsymbol{u} + |
| 458 | \boldsymbol{u}^T \bar B^T_{t} P_t^T \boldsymbol{u} + |
| 459 | \boldsymbol{\bar c}_t^T P^T_t \boldsymbol{u} \right) + \\&& |
| 460 | |
| 461 | \frac{1}{2} \boldsymbol{u}^T R_t \boldsymbol{u} + \\&& |
| 462 | |
| 463 | \boldsymbol{x}^T_{t + 1} \bar A^T_t \boldsymbol{q}_t + |
| 464 | \boldsymbol{u}^T \bar B^T_t \boldsymbol{q}_t + |
| 465 | \boldsymbol{\bar c}_t^T \boldsymbol{q}_t + |
| 466 | |
| 467 | \boldsymbol{u}^T \boldsymbol{r}_t + q_t |
| 468 | \end{array}$$ |
| 469 | |
| 470 | Now, let's find the optimal $\boldsymbol{u}$. |
| 471 | Do this by evaluating |
| 472 | $\frac{\partial}{\partial \boldsymbol{u}} \bar v_t(\boldsymbol{x}, \boldsymbol{u}) = 0$. |
| 473 | |
| 474 | $$\begin{array}{rcl} |
| 475 | \frac{\partial}{\partial \boldsymbol{u}} \bar v_{t + 1}(\boldsymbol{x}_{t+1}, \boldsymbol{u}) |
| 476 | &=& \frac{1}{2} \left( |
| 477 | \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \bar B_t + |
| 478 | |
| 479 | \left(\bar B_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1}\right)^T + \right. \\&& |
| 480 | |
| 481 | 2 \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t + |
| 482 | \left( \bar B_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t \right)^T + \\&& |
| 483 | \left. \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar B_t \right) + \\&& |
| 484 | \boldsymbol{\bar s}_t ^T \bar B_t + \\&& |
| 485 | |
| 486 | \frac{1}{2} \left( P_t \bar A_{t} \boldsymbol{x}_{t + 1}\right) ^T + |
| 487 | \frac{1}{2} \boldsymbol{x}_{t+1}^T \bar A^T_t P_t^T + \\&& |
| 488 | |
| 489 | \frac{1}{2} \boldsymbol{u}^T \left( P_t \bar B_{t} + \bar B_t^T P_t^T \right) + |
| 490 | \frac{1}{2} \boldsymbol{u}^T \left( \bar B^T_{t} P_t^T + P_t \bar B_t \right) + \\&& |
| 491 | \frac{1}{2} \left( P_t \boldsymbol{\bar c}_{t} \right)^T + |
| 492 | \frac{1}{2} \boldsymbol{\bar c}^T_{t} P_t^T + |
| 493 | |
| 494 | \boldsymbol{u}^T R_t + \\&& |
| 495 | |
| 496 | \left(\bar B^T_t \boldsymbol{q}_t\right)^T + |
| 497 | |
| 498 | \boldsymbol{r}_t^T \\ |
| 499 | |
| 500 | &=& |
| 501 | \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \bar B_t + |
| 502 | \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t + |
| 503 | |
| 504 | \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar B_t + \\&& |
| 505 | |
| 506 | \boldsymbol{\bar s}_t ^T \bar B_t + \\&& |
| 507 | |
| 508 | \boldsymbol{x}_{t+1}^T \bar A^T_t P_t^T + \\&& |
| 509 | |
| 510 | \boldsymbol{u}^T \left( \bar B^T_{t} P_t^T + P_t \bar B_t \right) + \\&& |
| 511 | \boldsymbol{\bar c}^T_{t} P_t^T + |
| 512 | |
| 513 | \boldsymbol{u}^T R_t + \\&& |
| 514 | |
| 515 | \boldsymbol{q}_t^T \bar B_t + |
| 516 | \boldsymbol{r}_t^T \\ |
| 517 | 0 &=& |
| 518 | \boldsymbol{x}_{t + 1}^T \left( \bar A_t^T \left( \bar S_t + Q_t \right) \bar B_t + \bar A^T_t P_t^T \right) + \\&& |
| 519 | |
| 520 | \boldsymbol{u}^T \left( |
| 521 | \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t + |
| 522 | \bar B^T_{t} P_t^T + P_t \bar B_t + R_t |
| 523 | \right) + \\&& |
| 524 | |
| 525 | \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar B_t + |
| 526 | \boldsymbol{\bar s}_t^T \bar B_t + |
| 527 | \boldsymbol{\bar c}^T_{t} P_t^T + |
| 528 | \boldsymbol{q}_t^T \bar B_t + |
| 529 | \boldsymbol{r}_t^T \\ |
| 530 | \end{array}$$ |
| 531 | |
| 532 | $$\begin{array}{rcl} |
| 533 | \boldsymbol{u}^T \left( |
| 534 | \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t + |
| 535 | \bar B^T_{t} P_t^T + P_t \bar B_t + R_t |
| 536 | \right) |
| 537 | &=& |
| 538 | - \boldsymbol{x}_{t + 1}^T \left( \bar A_t^T \left( \bar S_t + Q_t \right) \bar B_t + \bar A^T_t P_t^T \right) - \\&& |
| 539 | |
| 540 | |
| 541 | \left( \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar B_t + |
| 542 | \boldsymbol{\bar s}_t^T \bar B_t + |
| 543 | \boldsymbol{\bar c}^T_{t} P_t^T + |
| 544 | \boldsymbol{q}_t^T \bar B_t + |
| 545 | \boldsymbol{r}_t^T \right) \\ |
| 546 | |
| 547 | \left( |
| 548 | \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t + |
| 549 | \bar B^T_{t} P_t^T + P_t \bar B_t + R_t |
| 550 | \right) \boldsymbol{u} |
| 551 | &=& |
| 552 | - \left( \bar B_t^T \left( \bar S_t + Q_t \right) \bar A_t + P_t \bar A_t \right) \boldsymbol{x}_{t + 1} - \\&& |
| 553 | |
| 554 | \left( \bar B_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + |
| 555 | \bar B_t^T \boldsymbol{\bar s}_t + |
| 556 | P_t \boldsymbol{\bar c}_{t} + |
| 557 | \bar B_t^T \boldsymbol{q}_t + |
| 558 | \boldsymbol{r}_t \right) \\ |
| 559 | \end{array}$$ |
| 560 | |
| 561 | Some substitutions to use for simplifying: |
| 562 | |
| 563 | $$\begin{array}{rcl} |
| 564 | \bar C_t &=& \bar B_t^T \left( \bar S_t + Q_t \right) \bar A_t + P_t \bar A_t \\ |
| 565 | \bar E_t &=& |
| 566 | \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t + |
| 567 | \bar B^T_{t} P_t^T + P_t \bar B_t + R_t \\ |
| 568 | \bar L_t &=& - \bar E_t^{-1} \bar C_t \\ |
| 569 | |
| 570 | \boldsymbol{\bar e}_t &=& |
| 571 | \bar B_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + |
| 572 | \bar B_t^T \boldsymbol{\bar s}_t + |
| 573 | P_t \boldsymbol{\bar c}_{t} + |
| 574 | \bar B_t^T \boldsymbol{q}_t + |
| 575 | \boldsymbol{r}_t \\ |
| 576 | \boldsymbol{\bar l}_t &=& - \bar E_t^{-1} \boldsymbol{\bar e}_t \\ |
| 577 | |
| 578 | \bar D_t &=& \bar A_t^T \left( \bar S_t + Q_t \right) \bar A_t \\ |
| 579 | \boldsymbol{\bar d}_t &=& |
| 580 | \bar A_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + |
| 581 | \bar A_t^T \left( \boldsymbol{\bar s}_t + \boldsymbol{q}_t \right) \\ |
| 582 | |
| 583 | \boldsymbol{u} &=& - \bar E_t^{-1} \bar C_t \boldsymbol{x}_{t + 1} - \bar E_t^{-1} \boldsymbol{\bar e}_t \\ |
| 584 | \boldsymbol{u} &=& \bar L_t \boldsymbol{x}_{t + 1} + \boldsymbol{\bar l}_t \\ |
| 585 | |
| 586 | \bar E_t \boldsymbol{u} &=& -\bar C_t \boldsymbol{x}_{t + 1} - \boldsymbol{\bar e}_t |
| 587 | \end{array}$$ |
| 588 | |
| 589 | Now, let's solve for the new cost function. |
| 590 | |
| 591 | $$\begin{array}{rcl} |
| 592 | \bar v_{t + 1}(\boldsymbol{x}_{t+1}, \boldsymbol{u}) |
| 593 | &=& \frac{1}{2} \left( |
| 594 | \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1} + |
| 595 | \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \bar B_t \boldsymbol{u} + |
| 596 | \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + \right. \\&& |
| 597 | \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1} + |
| 598 | \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t \boldsymbol{u} + |
| 599 | \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + \\&& |
| 600 | \left. \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1} + |
| 601 | \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar B_t \boldsymbol{u} + |
| 602 | \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t \right) + \\&& |
| 603 | |
| 604 | \boldsymbol{x}_{t + 1}^T \bar A_t^T \boldsymbol{\bar s}_t + |
| 605 | \boldsymbol{u}^T \bar B_t^T \boldsymbol{\bar s}_t + |
| 606 | \boldsymbol{\bar c}_t^T \boldsymbol{\bar s}_t + |
| 607 | |
| 608 | \bar s_t + \\ && |
| 609 | |
| 610 | \frac{1}{2} \left( \boldsymbol{u}^T P_t \bar A_{t} \boldsymbol{x}_{t + 1} + |
| 611 | \boldsymbol{u}^T P_t \bar B_{t} \boldsymbol{u} + |
| 612 | \boldsymbol{u}^T P_t \boldsymbol{\bar c}_{t} \right) + \\&& |
| 613 | \frac{1}{2} \left( \boldsymbol{x}_{t+1}^T \bar A^T_t P_t^T \boldsymbol{u} + |
| 614 | \boldsymbol{u}^T \bar B^T_{t} P_t^T \boldsymbol{u} + |
| 615 | \boldsymbol{\bar c}_t^T P^T_t \boldsymbol{u} \right) + \\&& |
| 616 | |
| 617 | \frac{1}{2} \boldsymbol{u}^T R_t \boldsymbol{u} + \\&& |
| 618 | |
| 619 | \boldsymbol{x}^T_{t + 1} \bar A^T_t \boldsymbol{q}_t + |
| 620 | \boldsymbol{u}^T \bar B^T_t \boldsymbol{q}_t + |
| 621 | \boldsymbol{\bar c}_t^T \boldsymbol{q}_t + |
| 622 | |
| 623 | \boldsymbol{u}^T \boldsymbol{r}_t + q_t \\ |
| 624 | |
| 625 | \bar v_{t + 1}(\boldsymbol{x}_{t+1}, \boldsymbol{u}) |
| 626 | &=& \frac{1}{2} \left( |
| 627 | \boldsymbol{x}_{t + 1}^T \bar D_t \boldsymbol{x}_{t + 1} + |
| 628 | \boldsymbol{x}_{t + 1}^T \bar C_t^T \boldsymbol{u} + |
| 629 | \boldsymbol{u}^T \bar C_t \boldsymbol{x}_{t + 1} + |
| 630 | \boldsymbol{u}^T \bar E_t \boldsymbol{u} \right) + \\&& |
| 631 | |
| 632 | \boldsymbol{x}_{t + 1}^T \boldsymbol{\bar d}_t + |
| 633 | |
| 634 | \boldsymbol{u}^T \boldsymbol{\bar e}_t + \\&& |
| 635 | |
| 636 | \frac{1}{2} \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + |
| 637 | \boldsymbol{\bar c}_t^T \boldsymbol{\bar s}_t + \boldsymbol{\bar c}_t^T \boldsymbol{q}_t + \bar s_t + q_t \\ |
| 638 | |
| 639 | \bar v_{t + 1}(\boldsymbol{x}_{t+1}) |
| 640 | &=& \frac{1}{2} \left( |
| 641 | \boldsymbol{x}_{t + 1}^T \bar D_t \boldsymbol{x}_{t + 1} + \right. \\ && |
| 642 | \boldsymbol{x}_{t + 1}^T \bar C_t^T \left( -\bar E_t^{-1} \bar C_t \boldsymbol{x}_{t + 1} - \bar E_t^{-1} \boldsymbol{\bar e}_t \right) + \\&& |
| 643 | \left( -\bar E_t^{-1} \bar C_t \boldsymbol{x}_{t + 1} - \bar E_t^{-1} \boldsymbol{\bar e}_t \right)^T \bar C_t \boldsymbol{x}_{t + 1} + \\&& |
| 644 | \left. \left( -\bar E_t^{-1} \bar C_t \boldsymbol{x}_{t + 1} - \bar E_t^{-1} \boldsymbol{\bar e}_t \right)^T \bar E_t \left( -\bar E_t^{-1} \bar C_t \boldsymbol{x}_{t + 1} - \bar E_t^{-1} \boldsymbol{\bar e}_t \right) \right) + \\&& |
| 645 | |
| 646 | \boldsymbol{x}_{t + 1}^T \boldsymbol{\bar d}_t + |
| 647 | |
| 648 | \left( -\bar E_t^{-1} \bar C_t \boldsymbol{x}_{t + 1} - \bar E_t^{-1} \boldsymbol{\bar e}_t \right)^T \boldsymbol{\bar e}_t + \\&& |
| 649 | |
| 650 | \frac{1}{2} \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + |
| 651 | \boldsymbol{\bar c}_t^T \boldsymbol{\bar s}_t + \boldsymbol{\bar c}_t^T \boldsymbol{q}_t + \bar s_t + q_t \\ |
| 652 | |
| 653 | \bar v_{t + 1}(\boldsymbol{x}_{t+1}) |
| 654 | &=& \frac{1}{2} |
| 655 | \boldsymbol{x}_{t + 1}^T \left(\bar D_t - \bar C_t^T \bar E_t^{-1} \bar C_t \right) \boldsymbol{x}_{t + 1} + \\ && |
| 656 | |
| 657 | \boldsymbol{x}_{t + 1}^T \left(\boldsymbol{\bar d}_t |
| 658 | - \bar C_t^T \bar E_t^{-1} \boldsymbol{\bar e}_t \right)\\&& |
| 659 | |
| 660 | - \frac{1}{2} \boldsymbol{\bar e}_t^T \bar E_t^{-1} \boldsymbol{\bar e}_t + |
| 661 | \frac{1}{2} \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + |
| 662 | \boldsymbol{\bar c}_t^T \boldsymbol{\bar s}_t + \boldsymbol{\bar c}_t^T \boldsymbol{q}_t + \bar s_t + q_t \\ |
| 663 | \end{array}$$ |
| 664 | |
| 665 | Ok, let's now pull out the 3 variables of interest and do further simplification. |
| 666 | |
| 667 | $$\begin{array}{rcl} |
| 668 | \bar v_{t + 1}(\boldsymbol{x}_{t+1}) &=& \frac{1}{2} \boldsymbol{x}_{t + 1}^T \bar S_{t + 1} \boldsymbol{x}_{t + 1} + \boldsymbol{x}_{t + 1}^T \boldsymbol{\bar s}_{t + 1} + \bar s_{t+1} \\ |
| 669 | \bar S_{t + 1} &=& \bar D_t - \bar C_t^T \bar E_t^{-1} \bar C_t \\ |
| 670 | \boldsymbol{\bar s}_{t + 1} &=& |
| 671 | \left(\boldsymbol{\bar d}_t - \bar C_t^T \bar E_t^{-1} \boldsymbol{\bar e}_t \right)\\ |
| 672 | |
| 673 | \bar s_{t+1} &=& |
| 674 | - \frac{1}{2} \boldsymbol{\bar e}_t^T \bar E_t^{-1} \boldsymbol{\bar e}_t + |
| 675 | \frac{1}{2} \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + |
| 676 | \boldsymbol{\bar c}_t^T \boldsymbol{\bar s}_t + \boldsymbol{\bar c}_t^T \boldsymbol{q}_t + \bar s_t + q_t \\ |
| 677 | \end{array}$$ |
| 678 | |
| 679 | \newpage |
| 680 | \section{Detailed work for a few transformations} |
| 681 | |
| 682 | $$\begin{array}{l} |
| 683 | \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix}^T |
| 684 | \begin{bmatrix} Q_{t} & P_{t}^T \\ P_{t} & R_{t} \end{bmatrix} |
| 685 | \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix} \\ |
| 686 | |
| 687 | \begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{bmatrix} |
| 688 | \left[\begin{array}{cc|cc} |
| 689 | Q_{t11} & Q_{t12} & P_{t11} & P_{t21} \\ |
| 690 | Q_{t21} & Q_{t22} & P_{t12} & P_{t22} \\ |
| 691 | \hline |
| 692 | P_{t11} & P_{t12} & R_{t11} & R_{t12} \\ |
| 693 | P_{t21} & P_{t22} & R_{t21} & R_{t22} \\ |
| 694 | \end{array}\right] |
| 695 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} |
| 696 | \\ |
| 697 | \begin{bmatrix} |
| 698 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot |
| 699 | \begin{bmatrix} Q_{t11} \\ Q_{t21} \\ P_{t11} \\ P_{t21} \end{bmatrix} & |
| 700 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot |
| 701 | \begin{bmatrix} Q_{t12} \\ Q_{t22} \\ P_{t12} \\ P_{t22} \end{bmatrix} & |
| 702 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot |
| 703 | \begin{bmatrix} P_{t11} \\ P_{t12} \\ R_{t11} \\ R_{t21} \end{bmatrix} & |
| 704 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot |
| 705 | \begin{bmatrix} P_{t21} \\ P_{t22} \\ R_{t12} \\ R_{t22} \end{bmatrix} & |
| 706 | \end{bmatrix} |
| 707 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} |
| 708 | \\ |
| 709 | \begin{bmatrix} |
| 710 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot |
| 711 | \begin{bmatrix} Q_{t11} \\ Q_{t21} \end{bmatrix} |
| 712 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot |
| 713 | \begin{bmatrix} Q_{t12} \\ Q_{t22} \end{bmatrix} |
| 714 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot |
| 715 | \begin{bmatrix} P_{t11} \\ P_{t12} \end{bmatrix} |
| 716 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot |
| 717 | \begin{bmatrix} P_{t21} \\ P_{t22} \end{bmatrix} |
| 718 | \end{bmatrix} |
| 719 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} + \\ \quad |
| 720 | \begin{bmatrix} |
| 721 | \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot |
| 722 | \begin{bmatrix} P_{t11} \\ P_{t21} \end{bmatrix} & |
| 723 | \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot |
| 724 | \begin{bmatrix} P_{t12} \\ P_{t22} \end{bmatrix} & |
| 725 | \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot |
| 726 | \begin{bmatrix} R_{t11} \\ R_{t21} \end{bmatrix} & |
| 727 | \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot |
| 728 | \begin{bmatrix} R_{t12} \\ R_{t22} \end{bmatrix} & |
| 729 | \end{bmatrix} |
| 730 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} |
| 731 | \\ |
| 732 | \begin{bmatrix} \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot |
| 733 | \begin{bmatrix} Q_{t11} \\ Q_{t21} \end{bmatrix} & |
| 734 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot |
| 735 | \begin{bmatrix} Q_{t12} \\ Q_{t22} \end{bmatrix}\end{bmatrix} |
| 736 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} + |
| 737 | \begin{bmatrix} \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot |
| 738 | \begin{bmatrix} P_{t11} \\ P_{t12} \end{bmatrix} & |
| 739 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot |
| 740 | \begin{bmatrix} P_{t21} \\ P_{t22} \end{bmatrix}\end{bmatrix} |
| 741 | \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} + \\ \quad |
| 742 | \begin{bmatrix} \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot |
| 743 | \begin{bmatrix} P_{t11} \\ P_{t21} \end{bmatrix} & |
| 744 | \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot |
| 745 | \begin{bmatrix} P_{t12} \\ P_{t22} \end{bmatrix}\end{bmatrix} |
| 746 | \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} + |
| 747 | \begin{bmatrix} \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot |
| 748 | \begin{bmatrix} R_{t11} \\ R_{t21} \end{bmatrix} & |
| 749 | \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot |
| 750 | \begin{bmatrix} R_{t12} \\ R_{t22} \end{bmatrix}\end{bmatrix} |
| 751 | \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} |
| 752 | \\ |
| 753 | \boldsymbol{x}^T Q_t \boldsymbol{x} + \boldsymbol{u}^T P_t \boldsymbol{x} + \boldsymbol{x}^T P_t^T \boldsymbol{u} + \boldsymbol{u}^T R_t \boldsymbol{u} |
| 754 | \end{array}$$ |
| 755 | \\ \\ |
| 756 | $$\begin{array}{l} |
| 757 | \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix}^T |
| 758 | \begin{bmatrix} \boldsymbol{q}_{t} \\ \boldsymbol{r}_{t} \end{bmatrix} |
| 759 | \\ |
| 760 | \begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{bmatrix} |
| 761 | \begin{bmatrix} \boldsymbol{q}_{t1} \\ \boldsymbol{q}_{t2} \\ \boldsymbol{r}_{t1} \\ \boldsymbol{r}_{t1} \end{bmatrix} |
| 762 | \\ |
| 763 | \boldsymbol{x}^T \boldsymbol{q}_t + \boldsymbol{u}^T \boldsymbol{r}_t |
| 764 | \end{array}$$ |
| 765 | |
| 766 | \end{document} |