Michael Schuh | 10dd1e0 | 2018-01-20 13:19:44 -0800 | [diff] [blame^] | 1 | #!/usr/bin/python3 |
| 2 | |
| 3 | # This code was used to select the gear ratio for the intake. |
| 4 | # Run it from the command line and it displays the time required |
| 5 | # to rotate the intake 180 degrees. |
| 6 | # |
| 7 | # Michael Schuh |
| 8 | # January 20, 2018 |
| 9 | |
| 10 | import math |
| 11 | import numpy |
| 12 | import scipy.integrate |
| 13 | |
| 14 | # apt-get install python-scipy python3-scipy python-numpy python3-numpy |
| 15 | |
| 16 | pi = math.pi |
| 17 | pi2 = 2.0*pi |
| 18 | rad_to_deg = 180.0/pi |
| 19 | inches_to_meters = 0.0254 |
| 20 | lbs_to_kg = 1.0/2.2 |
| 21 | newton_to_lbf = 0.224809 |
| 22 | newton_meters_to_ft_lbs = 0.73756 |
| 23 | run_count = 0 |
| 24 | theta_travel = 0.0 |
| 25 | |
| 26 | def to_deg(angle): |
| 27 | return (angle*rad_to_deg) |
| 28 | |
| 29 | def to_rad(angle): |
| 30 | return (angle/rad_to_deg) |
| 31 | |
| 32 | def to_rotations(angle): |
| 33 | return (angle/pi2) |
| 34 | |
| 35 | def time_derivative(x, t, voltage, c1, c2, c3): |
| 36 | global run_count |
| 37 | theta, omega = x |
| 38 | dxdt = [omega, -c1*omega + c3*math.sin(theta) + c2*voltage] |
| 39 | run_count = run_count + 1 |
| 40 | |
| 41 | #print ('dxdt = ',dxdt,' repr(dxdt) = ', repr(dxdt)) |
| 42 | return dxdt |
| 43 | |
| 44 | def get_distal_angle(theta_proximal): |
| 45 | # For the proximal angle = -50 degrees, the distal angle is -180 degrees |
| 46 | # For the proximal angle = 10 degrees, the distal angle is -90 degrees |
| 47 | distal_angle = to_rad(-180.0 - (-50.0-to_deg(theta_proximal))*(180.0-90.0)/(50.0+10.0)) |
| 48 | return distal_angle |
| 49 | |
| 50 | |
| 51 | def get_180_degree_time(c1,c2,c3,voltage,gear_ratio,motor_free_speed): |
| 52 | #print ("# step time theta angular_speed angular_acceleration theta angular_speed motor_speed motor_speed_fraction") |
| 53 | #print ("# (sec) (rad) (rad/sec) (rad/sec^2) (rotations) (rotations/sec) (rpm) (fraction)") |
| 54 | global run_count |
| 55 | global theta_travel |
| 56 | |
| 57 | if ( True ): |
| 58 | # Gravity is assisting the motion. |
| 59 | theta_start = 0.0 |
| 60 | theta_target = pi |
| 61 | elif ( False ): |
| 62 | # Gravity is assisting the motion. |
| 63 | theta_start = 0.0 |
| 64 | theta_target = -pi |
| 65 | elif ( False ): |
| 66 | # Gravity is slowing the motion. |
| 67 | theta_start = pi |
| 68 | theta_target = 0.0 |
| 69 | elif ( False ): |
| 70 | # Gravity is slowing the motion. |
| 71 | theta_start = -pi |
| 72 | theta_target = 0.0 |
| 73 | elif ( False ): |
| 74 | # This is for the proximal arm motion. |
| 75 | theta_start = to_rad(-50.0) |
| 76 | theta_target = to_rad(10.0) |
| 77 | |
| 78 | theta_half = 0.5*(theta_start + theta_target) |
| 79 | if (theta_start > theta_target): |
| 80 | voltage = -voltage |
| 81 | theta = theta_start |
| 82 | theta_travel = theta_start - theta_target |
| 83 | if ( run_count == 0 ): |
| 84 | print ("# Theta Start = %.2f radians End = %.2f Theta travel %.2f Theta half = %.2f Voltage = %.2f" % (theta_start,theta_target,theta_travel,theta_half, voltage)) |
| 85 | print ("# Theta Start = %.2f degrees End = %.2f Theta travel %.2f Theta half = %.2f Voltage = %.2f" % (to_deg(theta_start),to_deg(theta_target),to_deg(theta_travel),to_deg(theta_half), voltage)) |
| 86 | omega = 0.0 |
| 87 | time = 0.0 |
| 88 | delta_time = 0.01 # time step in seconds |
| 89 | for step in range(1, 5000): |
| 90 | t = numpy.array([time, time + delta_time]) |
| 91 | time = time + delta_time |
| 92 | x = [theta, omega] |
| 93 | angular_acceleration = -c1*omega + c2*voltage |
| 94 | x_n_plus_1 = scipy.integrate.odeint(time_derivative,x,t,args=(voltage,c1,c2,c3)) |
| 95 | #print ('x_n_plus_1 = ',x_n_plus_1) |
| 96 | #print ('repr(x_n_plus_1) = ',repr(x_n_plus_1)) |
| 97 | theta, omega = x_n_plus_1[1] |
| 98 | #theta= x_n_plus_1[0] |
| 99 | #omega = x_n_plus_1[1] |
| 100 | if ( False ): |
| 101 | print ("%4d %8.4f %8.2f %8.4f %8.4f %8.3f %8.3f %8.3f %8.3f" % \ |
| 102 | (step, time, theta, omega, angular_acceleration, to_rotations(theta), \ |
| 103 | to_rotations(omega), omega*gear_ratio*60.0/pi2, omega*gear_ratio/motor_free_speed )) |
| 104 | if (theta_start < theta_target): |
| 105 | # Angle is increasing through the motion. |
| 106 | if (theta > theta_half): |
| 107 | break |
| 108 | else: |
| 109 | # Angle is decreasing through the motion. |
| 110 | if (theta < theta_half): |
| 111 | break |
| 112 | |
| 113 | #print ("# step time theta angular_speed angular_acceleration theta angular_speed motor_speed motor_speed_fraction") |
| 114 | #print ("# (sec) (rad) (rad/sec) (rad/sec^2) (rotations) (rotations/sec) (rpm) (fraction)") |
| 115 | #print ("# Total time for 1/2 rotation of arm is %0.2f" % (time*2)) |
| 116 | return (2.0*time) |
| 117 | |
| 118 | def main(): |
| 119 | gravity = 9.8 # m/sec^2 Gravity Constant |
| 120 | gravity = 0.0 # m/sec^2 Gravity Constant - Use 0.0 for the intake. It is horizontal. |
| 121 | voltage_nominal = 12 # Volts |
| 122 | |
| 123 | # Vex 775 Pro motor specs from http://banebots.com/p/M2-RS550-120 |
| 124 | motor_name = "Vex 775 Pro motor specs from http://banebots.com/p/M2-RS550-120" |
| 125 | current_stall = 134 # amps stall current |
| 126 | current_no_load = 0.7 # amps no load current |
| 127 | torque_stall = 710/1000.0 # N-m Stall Torque |
| 128 | speed_no_load_rpm = 18730 # RPM no load speed |
| 129 | |
| 130 | if ( True ): |
| 131 | # Bag motor from https://www.vexrobotics.com/217-3351.html |
| 132 | motor_name = "Bag motor from https://www.vexrobotics.com/217-3351.html" |
| 133 | current_stall = 53.0 # amps stall current |
| 134 | current_no_load = 1.8 # amps no load current |
| 135 | torque_stall = 0.4 # N-m Stall Torque |
| 136 | speed_no_load_rpm = 13180.0 # RPM no load speed |
| 137 | |
| 138 | if ( False ): |
| 139 | # Mini CIM motor from https://www.vexrobotics.com/217-3371.html |
| 140 | motor_name = "Mini CIM motor from https://www.vexrobotics.com/217-3371.html" |
| 141 | current_stall = 89.0 # amps stall current |
| 142 | current_no_load = 3.0 # amps no load current |
| 143 | torque_stall = 1.4 # N-m Stall Torque |
| 144 | speed_no_load_rpm = 5840.0 # RPM no load speed |
| 145 | |
| 146 | # How many motors are we using? |
| 147 | num_motors = 1 |
| 148 | |
| 149 | # Motor values |
| 150 | print ("# Motor: %s" % (motor_name)) |
| 151 | print ("# Number of motors: %d" % (num_motors)) |
| 152 | print ("# Stall torque: %.1f n-m" % (torque_stall)) |
| 153 | print ("# Stall current: %.1f amps" % (current_stall)) |
| 154 | print ("# No load current: %.1f amps" % (current_no_load)) |
| 155 | print ("# No load speed: %.0f rpm" % (speed_no_load_rpm)) |
| 156 | |
| 157 | # Constants from motor values |
| 158 | resistance_motor = voltage_nominal/current_stall |
| 159 | speed_no_load_rps = speed_no_load_rpm/60.0 # Revolutions per second no load speed |
| 160 | speed_no_load = speed_no_load_rps*2.0*pi |
| 161 | Kt = num_motors*torque_stall/current_stall # N-m/A torque constant |
| 162 | Kv_rpm = speed_no_load_rpm /(voltage_nominal - resistance_motor*current_no_load) # rpm/V |
| 163 | Kv = Kv_rpm*2.0*pi/60.0 # rpm/V |
| 164 | |
| 165 | # Robot Geometry and physics |
| 166 | length_proximal_arm = inches_to_meters*47.34 # m Length of arm connected to the robot base |
| 167 | length_distal_arm = inches_to_meters*44.0 # m Length of arm that holds the cube |
| 168 | length_intake_arm = inches_to_meters*9.0 # m Length of intake arm from the pivot point to where the big roller contacts a cube. |
| 169 | mass_cube = 6.0*lbs_to_kg # Weight of the cube in Kgrams |
| 170 | mass_proximal_arm = 5.5*lbs_to_kg # Weight of proximal arm |
| 171 | mass_distal_arm = 3.5*lbs_to_kg # Weight of distal arm |
| 172 | mass_distal = mass_cube + mass_distal_arm |
| 173 | mass_proximal = mass_proximal_arm + mass_distal |
| 174 | radius_to_proximal_arm_cg = 22.0*inches_to_meters # m Length from arm pivot point to arm CG |
| 175 | radius_to_distal_arm_cg = 10.0*inches_to_meters # m Length from arm pivot point to arm CG |
| 176 | |
| 177 | radius_to_distal_cg = ( length_distal_arm*mass_cube + radius_to_distal_arm_cg*mass_distal_arm)/mass_distal |
| 178 | radius_to_proximal_cg = ( length_proximal_arm*mass_distal + radius_to_proximal_arm_cg*mass_proximal_arm)/mass_proximal |
| 179 | J_cube = length_distal_arm*length_distal_arm*mass_cube |
| 180 | # Kg m^2 Moment of inertia of the proximal arm |
| 181 | J_proximal_arm = radius_to_proximal_arm_cg*radius_to_proximal_arm_cg*mass_distal_arm |
| 182 | # Kg m^2 Moment of inertia distal arm and cube at end of proximal arm. |
| 183 | J_distal_arm_and_cube_at_end_of_proximal_arm = length_proximal_arm*length_proximal_arm*mass_distal |
| 184 | J_distal_arm = radius_to_distal_arm_cg*radius_to_distal_arm_cg*mass_distal_arm # Kg m^2 Moment of inertia of the distal arm |
| 185 | J = J_distal_arm_and_cube_at_end_of_proximal_arm + J_proximal_arm # Moment of inertia of the arm with the cube on the end |
| 186 | # Intake claw |
| 187 | J_intake = 0.295 # Kg m^2 Moment of inertia of intake |
| 188 | J = J_intake |
| 189 | |
| 190 | gear_ratio = 140.0 # Guess at the gear ratio |
| 191 | gear_ratio = 100.0 # Guess at the gear ratio |
| 192 | gear_ratio = 90.0 # Guess at the gear ratio |
| 193 | |
| 194 | error_margine = 1.0 |
| 195 | voltage = 10.0 # voltage for the motor. Assuming a loaded robot so not using 12 V. |
| 196 | # It might make sense to use a lower motor frees peed when the voltage is not a full 12 Volts. |
| 197 | # motor_free_speed = Kv*voltage |
| 198 | motor_free_speed = speed_no_load |
| 199 | |
| 200 | print ("# Kt = %f N-m/A\n# Kv_rpm = %f rpm/V\n# Kv = %f radians/V" % (Kt, Kv_rpm, Kv)) |
| 201 | print ("# %.2f Ohms Resistance of the motor " % (resistance_motor)) |
| 202 | print ("# %.2f kg Cube weight" % (mass_cube)) |
| 203 | print ("# %.2f kg Proximal Arm mass" % (mass_proximal_arm)) |
| 204 | print ("# %.2f kg Distal Arm mass" % (mass_distal_arm)) |
| 205 | print ("# %.2f kg Distal Arm and Cube weight" % (mass_distal)) |
| 206 | print ("# %.2f m Length from distal arm pivot point to arm CG" % (radius_to_distal_arm_cg)) |
| 207 | print ("# %.2f m Length from distal arm pivot point to arm and cube cg" % (radius_to_distal_cg)) |
| 208 | print ("# %.2f kg-m^2 Moment of inertia of the cube about the arm pivot point" % (J_cube)) |
| 209 | print ("# %.2f m Length from proximal arm pivot point to arm CG" % (radius_to_proximal_arm_cg)) |
| 210 | print ("# %.2f m Length from proximal arm pivot point to arm and cube cg" % (radius_to_proximal_cg)) |
| 211 | print ("# %.2f m Proximal arm length" % (length_proximal_arm)) |
| 212 | print ("# %.2f m Distal arm length" % (length_distal_arm)) |
| 213 | |
| 214 | print ("# %.2f kg-m^2 Moment of inertia of the intake about the intake pivot point" % (J_intake)) |
| 215 | print ("# %.2f kg-m^2 Moment of inertia of the distal arm about the arm pivot point" % (J_distal_arm)) |
| 216 | print ("# %.2f kg-m^2 Moment of inertia of the proximal arm about the arm pivot point" % (J_proximal_arm)) |
| 217 | print ("# %.2f kg-m^2 Moment of inertia of the distal arm and cube mass about the proximal arm pivot point" % (J_distal_arm_and_cube_at_end_of_proximal_arm)) |
| 218 | print ("# %.2f kg-m^2 Moment of inertia of the intake the intake pivot point (J value used in simulation)" % (J)) |
| 219 | print ("# %d Number of motors" % (num_motors)) |
| 220 | |
| 221 | print ("# %.2f V Motor voltage" % (voltage)) |
| 222 | for gear_ratio in range(60, 241, 10): |
| 223 | c1 = Kt*gear_ratio*gear_ratio/(Kv*resistance_motor*J) |
| 224 | c2 = gear_ratio*Kt/(J*resistance_motor) |
| 225 | c3 = radius_to_proximal_cg*mass_proximal*gravity/J |
| 226 | |
| 227 | if ( False ): |
| 228 | print ("# %.8f 1/sec C1 constant" % (c1)) |
| 229 | print ("# %.2f 1/sec C2 constant" % (c2)) |
| 230 | print ("# %.2f 1/(V sec^2) C3 constant" % (c3)) |
| 231 | print ("# %.2f RPM Free speed at motor voltage" % (voltage*Kv_rpm)) |
| 232 | |
| 233 | torque_90_degrees = radius_to_distal_cg*mass_distal*gravity |
| 234 | voltage_90_degrees = resistance_motor*torque_90_degrees/(gear_ratio*Kt) |
| 235 | torque_peak = gear_ratio*num_motors*torque_stall |
| 236 | torque_peak_ft_lbs = torque_peak * newton_meters_to_ft_lbs |
| 237 | normal_force = torque_peak/length_intake_arm |
| 238 | normal_force_lbf = newton_to_lbf*normal_force |
| 239 | time_required = get_180_degree_time(c1,c2,c3,voltage,gear_ratio,motor_free_speed) |
| 240 | print ("Time for %.1f degrees for gear ratio %3.0f is %.2f seconds. Peak (stall) torque %3.0f nm %3.0f ft-lb Normal force at intake end %3.0f N %2.0f lbf" % \ |
| 241 | (to_deg(theta_travel),gear_ratio,time_required, |
| 242 | torque_peak,torque_peak_ft_lbs,normal_force,normal_force_lbf)) |
| 243 | |
| 244 | if __name__ == '__main__': |
| 245 | main() |