Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | #include <Eigen/QR> |
| 12 | |
| 13 | template<typename MatrixType> void householder(const MatrixType& m) |
| 14 | { |
| 15 | typedef typename MatrixType::Index Index; |
| 16 | static bool even = true; |
| 17 | even = !even; |
| 18 | /* this test covers the following files: |
| 19 | Householder.h |
| 20 | */ |
| 21 | Index rows = m.rows(); |
| 22 | Index cols = m.cols(); |
| 23 | |
| 24 | typedef typename MatrixType::Scalar Scalar; |
| 25 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 26 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| 27 | typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType; |
| 28 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| 29 | typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType; |
| 30 | typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType; |
| 31 | |
| 32 | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType; |
| 33 | |
| 34 | Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp((std::max)(rows,cols)); |
| 35 | Scalar* tmp = &_tmp.coeffRef(0,0); |
| 36 | |
| 37 | Scalar beta; |
| 38 | RealScalar alpha; |
| 39 | EssentialVectorType essential; |
| 40 | |
| 41 | VectorType v1 = VectorType::Random(rows), v2; |
| 42 | v2 = v1; |
| 43 | v1.makeHouseholder(essential, beta, alpha); |
| 44 | v1.applyHouseholderOnTheLeft(essential,beta,tmp); |
| 45 | VERIFY_IS_APPROX(v1.norm(), v2.norm()); |
| 46 | if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows-1).norm(), v1.norm()); |
| 47 | v1 = VectorType::Random(rows); |
| 48 | v2 = v1; |
| 49 | v1.applyHouseholderOnTheLeft(essential,beta,tmp); |
| 50 | VERIFY_IS_APPROX(v1.norm(), v2.norm()); |
| 51 | |
| 52 | MatrixType m1(rows, cols), |
| 53 | m2(rows, cols); |
| 54 | |
| 55 | v1 = VectorType::Random(rows); |
| 56 | if(even) v1.tail(rows-1).setZero(); |
| 57 | m1.colwise() = v1; |
| 58 | m2 = m1; |
| 59 | m1.col(0).makeHouseholder(essential, beta, alpha); |
| 60 | m1.applyHouseholderOnTheLeft(essential,beta,tmp); |
| 61 | VERIFY_IS_APPROX(m1.norm(), m2.norm()); |
| 62 | if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1,0,rows-1,cols).norm(), m1.norm()); |
| 63 | VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m1(0,0)), numext::real(m1(0,0))); |
| 64 | VERIFY_IS_APPROX(numext::real(m1(0,0)), alpha); |
| 65 | |
| 66 | v1 = VectorType::Random(rows); |
| 67 | if(even) v1.tail(rows-1).setZero(); |
| 68 | SquareMatrixType m3(rows,rows), m4(rows,rows); |
| 69 | m3.rowwise() = v1.transpose(); |
| 70 | m4 = m3; |
| 71 | m3.row(0).makeHouseholder(essential, beta, alpha); |
| 72 | m3.applyHouseholderOnTheRight(essential,beta,tmp); |
| 73 | VERIFY_IS_APPROX(m3.norm(), m4.norm()); |
| 74 | if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0,1,rows,rows-1).norm(), m3.norm()); |
| 75 | VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m3(0,0)), numext::real(m3(0,0))); |
| 76 | VERIFY_IS_APPROX(numext::real(m3(0,0)), alpha); |
| 77 | |
| 78 | // test householder sequence on the left with a shift |
| 79 | |
| 80 | Index shift = internal::random<Index>(0, std::max<Index>(rows-2,0)); |
| 81 | Index brows = rows - shift; |
| 82 | m1.setRandom(rows, cols); |
| 83 | HBlockMatrixType hbm = m1.block(shift,0,brows,cols); |
| 84 | HouseholderQR<HBlockMatrixType> qr(hbm); |
| 85 | m2 = m1; |
| 86 | m2.block(shift,0,brows,cols) = qr.matrixQR(); |
| 87 | HCoeffsVectorType hc = qr.hCoeffs().conjugate(); |
| 88 | HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc); |
| 89 | hseq.setLength(hc.size()).setShift(shift); |
| 90 | VERIFY(hseq.length() == hc.size()); |
| 91 | VERIFY(hseq.shift() == shift); |
| 92 | |
| 93 | MatrixType m5 = m2; |
| 94 | m5.block(shift,0,brows,cols).template triangularView<StrictlyLower>().setZero(); |
| 95 | VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly |
| 96 | m3 = hseq; |
| 97 | VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying |
| 98 | |
| 99 | SquareMatrixType hseq_mat = hseq; |
| 100 | SquareMatrixType hseq_mat_conj = hseq.conjugate(); |
| 101 | SquareMatrixType hseq_mat_adj = hseq.adjoint(); |
| 102 | SquareMatrixType hseq_mat_trans = hseq.transpose(); |
| 103 | SquareMatrixType m6 = SquareMatrixType::Random(rows, rows); |
| 104 | VERIFY_IS_APPROX(hseq_mat.adjoint(), hseq_mat_adj); |
| 105 | VERIFY_IS_APPROX(hseq_mat.conjugate(), hseq_mat_conj); |
| 106 | VERIFY_IS_APPROX(hseq_mat.transpose(), hseq_mat_trans); |
| 107 | VERIFY_IS_APPROX(hseq_mat * m6, hseq_mat * m6); |
| 108 | VERIFY_IS_APPROX(hseq_mat.adjoint() * m6, hseq_mat_adj * m6); |
| 109 | VERIFY_IS_APPROX(hseq_mat.conjugate() * m6, hseq_mat_conj * m6); |
| 110 | VERIFY_IS_APPROX(hseq_mat.transpose() * m6, hseq_mat_trans * m6); |
| 111 | VERIFY_IS_APPROX(m6 * hseq_mat, m6 * hseq_mat); |
| 112 | VERIFY_IS_APPROX(m6 * hseq_mat.adjoint(), m6 * hseq_mat_adj); |
| 113 | VERIFY_IS_APPROX(m6 * hseq_mat.conjugate(), m6 * hseq_mat_conj); |
| 114 | VERIFY_IS_APPROX(m6 * hseq_mat.transpose(), m6 * hseq_mat_trans); |
| 115 | |
| 116 | // test householder sequence on the right with a shift |
| 117 | |
| 118 | TMatrixType tm2 = m2.transpose(); |
| 119 | HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc); |
| 120 | rhseq.setLength(hc.size()).setShift(shift); |
| 121 | VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly |
| 122 | m3 = rhseq; |
| 123 | VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying |
| 124 | } |
| 125 | |
| 126 | void test_householder() |
| 127 | { |
| 128 | for(int i = 0; i < g_repeat; i++) { |
| 129 | CALL_SUBTEST_1( householder(Matrix<double,2,2>()) ); |
| 130 | CALL_SUBTEST_2( householder(Matrix<float,2,3>()) ); |
| 131 | CALL_SUBTEST_3( householder(Matrix<double,3,5>()) ); |
| 132 | CALL_SUBTEST_4( householder(Matrix<float,4,4>()) ); |
| 133 | CALL_SUBTEST_5( householder(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 134 | CALL_SUBTEST_6( householder(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 135 | CALL_SUBTEST_7( householder(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 136 | CALL_SUBTEST_8( householder(Matrix<double,1,1>()) ); |
| 137 | } |
| 138 | } |