Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1 | |
| 2 | #include "main.h" |
| 3 | |
| 4 | namespace Eigen { |
| 5 | |
| 6 | template<typename Lhs,typename Rhs> |
| 7 | const Product<Lhs,Rhs> |
| 8 | prod(const Lhs& lhs, const Rhs& rhs) |
| 9 | { |
| 10 | return Product<Lhs,Rhs>(lhs,rhs); |
| 11 | } |
| 12 | |
| 13 | template<typename Lhs,typename Rhs> |
| 14 | const Product<Lhs,Rhs,LazyProduct> |
| 15 | lazyprod(const Lhs& lhs, const Rhs& rhs) |
| 16 | { |
| 17 | return Product<Lhs,Rhs,LazyProduct>(lhs,rhs); |
| 18 | } |
| 19 | |
| 20 | template<typename DstXprType, typename SrcXprType> |
| 21 | EIGEN_STRONG_INLINE |
| 22 | DstXprType& copy_using_evaluator(const EigenBase<DstXprType> &dst, const SrcXprType &src) |
| 23 | { |
| 24 | call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>()); |
| 25 | return dst.const_cast_derived(); |
| 26 | } |
| 27 | |
| 28 | template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType> |
| 29 | EIGEN_STRONG_INLINE |
| 30 | const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, const SrcXprType &src) |
| 31 | { |
| 32 | call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>()); |
| 33 | return dst.expression(); |
| 34 | } |
| 35 | |
| 36 | template<typename DstXprType, typename SrcXprType> |
| 37 | EIGEN_STRONG_INLINE |
| 38 | DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType> &dst, const SrcXprType &src) |
| 39 | { |
| 40 | #ifdef EIGEN_NO_AUTOMATIC_RESIZING |
| 41 | eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size()) |
| 42 | : (dst.rows() == src.rows() && dst.cols() == src.cols()))) |
| 43 | && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); |
| 44 | #else |
| 45 | dst.const_cast_derived().resizeLike(src.derived()); |
| 46 | #endif |
| 47 | |
| 48 | call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>()); |
| 49 | return dst.const_cast_derived(); |
| 50 | } |
| 51 | |
| 52 | template<typename DstXprType, typename SrcXprType> |
| 53 | void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) |
| 54 | { |
| 55 | typedef typename DstXprType::Scalar Scalar; |
| 56 | call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::add_assign_op<Scalar,typename SrcXprType::Scalar>()); |
| 57 | } |
| 58 | |
| 59 | template<typename DstXprType, typename SrcXprType> |
| 60 | void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) |
| 61 | { |
| 62 | typedef typename DstXprType::Scalar Scalar; |
| 63 | call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::sub_assign_op<Scalar,typename SrcXprType::Scalar>()); |
| 64 | } |
| 65 | |
| 66 | template<typename DstXprType, typename SrcXprType> |
| 67 | void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) |
| 68 | { |
| 69 | typedef typename DstXprType::Scalar Scalar; |
| 70 | call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op<Scalar,typename SrcXprType::Scalar>()); |
| 71 | } |
| 72 | |
| 73 | template<typename DstXprType, typename SrcXprType> |
| 74 | void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) |
| 75 | { |
| 76 | typedef typename DstXprType::Scalar Scalar; |
| 77 | call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op<Scalar,typename SrcXprType::Scalar>()); |
| 78 | } |
| 79 | |
| 80 | template<typename DstXprType, typename SrcXprType> |
| 81 | void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src) |
| 82 | { |
| 83 | typedef typename DstXprType::Scalar Scalar; |
| 84 | call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>()); |
| 85 | } |
| 86 | |
| 87 | namespace internal { |
| 88 | template<typename Dst, template <typename> class StorageBase, typename Src, typename Func> |
| 89 | EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func) |
| 90 | { |
| 91 | call_assignment_no_alias(dst.expression(), src, func); |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | } |
| 96 | |
| 97 | template<typename XprType> long get_cost(const XprType& ) { return Eigen::internal::evaluator<XprType>::CoeffReadCost; } |
| 98 | |
| 99 | using namespace std; |
| 100 | |
| 101 | #define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval()); |
| 102 | #define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval()); |
| 103 | |
| 104 | void test_evaluators() |
| 105 | { |
| 106 | // Testing Matrix evaluator and Transpose |
| 107 | Vector2d v = Vector2d::Random(); |
| 108 | const Vector2d v_const(v); |
| 109 | Vector2d v2; |
| 110 | RowVector2d w; |
| 111 | |
| 112 | VERIFY_IS_APPROX_EVALUATOR(v2, v); |
| 113 | VERIFY_IS_APPROX_EVALUATOR(v2, v_const); |
| 114 | |
| 115 | // Testing Transpose |
| 116 | VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue |
| 117 | VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose()); |
| 118 | |
| 119 | copy_using_evaluator(w.transpose(), v); // Transpose as lvalue |
| 120 | VERIFY_IS_APPROX(w,v.transpose().eval()); |
| 121 | |
| 122 | copy_using_evaluator(w.transpose(), v_const); |
| 123 | VERIFY_IS_APPROX(w,v_const.transpose().eval()); |
| 124 | |
| 125 | // Testing Array evaluator |
| 126 | { |
| 127 | ArrayXXf a(2,3); |
| 128 | ArrayXXf b(3,2); |
| 129 | a << 1,2,3, 4,5,6; |
| 130 | const ArrayXXf a_const(a); |
| 131 | |
| 132 | VERIFY_IS_APPROX_EVALUATOR(b, a.transpose()); |
| 133 | |
| 134 | VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose()); |
| 135 | |
| 136 | // Testing CwiseNullaryOp evaluator |
| 137 | copy_using_evaluator(w, RowVector2d::Random()); |
| 138 | VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ... |
| 139 | |
| 140 | VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero()); |
| 141 | |
| 142 | VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3)); |
| 143 | |
| 144 | // mix CwiseNullaryOp and transpose |
| 145 | VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose()); |
| 146 | } |
| 147 | |
| 148 | { |
| 149 | // test product expressions |
| 150 | int s = internal::random<int>(1,100); |
| 151 | MatrixXf a(s,s), b(s,s), c(s,s), d(s,s); |
| 152 | a.setRandom(); |
| 153 | b.setRandom(); |
| 154 | c.setRandom(); |
| 155 | d.setRandom(); |
| 156 | VERIFY_IS_APPROX_EVALUATOR(d, (a + b)); |
| 157 | VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose()); |
| 158 | VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b), a*b); |
| 159 | VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b); |
| 160 | VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + c, a*b + c); |
| 161 | VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a,b), s * a*b); |
| 162 | VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose()); |
| 163 | VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c); |
| 164 | |
| 165 | // check that prod works even with aliasing present |
| 166 | c = a*a; |
| 167 | copy_using_evaluator(a, prod(a,a)); |
| 168 | VERIFY_IS_APPROX(a,c); |
| 169 | |
| 170 | // check compound assignment of products |
| 171 | d = c; |
| 172 | add_assign_using_evaluator(c.noalias(), prod(a,b)); |
| 173 | d.noalias() += a*b; |
| 174 | VERIFY_IS_APPROX(c, d); |
| 175 | |
| 176 | d = c; |
| 177 | subtract_assign_using_evaluator(c.noalias(), prod(a,b)); |
| 178 | d.noalias() -= a*b; |
| 179 | VERIFY_IS_APPROX(c, d); |
| 180 | } |
| 181 | |
| 182 | { |
| 183 | // test product with all possible sizes |
| 184 | int s = internal::random<int>(1,100); |
| 185 | Matrix<float, 1, 1> m11, res11; m11.setRandom(1,1); |
| 186 | Matrix<float, 1, 4> m14, res14; m14.setRandom(1,4); |
| 187 | Matrix<float, 1,Dynamic> m1X, res1X; m1X.setRandom(1,s); |
| 188 | Matrix<float, 4, 1> m41, res41; m41.setRandom(4,1); |
| 189 | Matrix<float, 4, 4> m44, res44; m44.setRandom(4,4); |
| 190 | Matrix<float, 4,Dynamic> m4X, res4X; m4X.setRandom(4,s); |
| 191 | Matrix<float,Dynamic, 1> mX1, resX1; mX1.setRandom(s,1); |
| 192 | Matrix<float,Dynamic, 4> mX4, resX4; mX4.setRandom(s,4); |
| 193 | Matrix<float,Dynamic,Dynamic> mXX, resXX; mXX.setRandom(s,s); |
| 194 | |
| 195 | VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11); |
| 196 | VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41); |
| 197 | VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1); |
| 198 | VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14); |
| 199 | VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44); |
| 200 | VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4); |
| 201 | VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X); |
| 202 | VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X); |
| 203 | VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX); |
| 204 | VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11); |
| 205 | VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41); |
| 206 | VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1); |
| 207 | VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14); |
| 208 | VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44); |
| 209 | VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4); |
| 210 | VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X); |
| 211 | VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X); |
| 212 | VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX); |
| 213 | VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11); |
| 214 | VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41); |
| 215 | VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1); |
| 216 | VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14); |
| 217 | VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44); |
| 218 | VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4); |
| 219 | VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X); |
| 220 | VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X); |
| 221 | VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX); |
| 222 | } |
| 223 | |
| 224 | { |
| 225 | ArrayXXf a(2,3); |
| 226 | ArrayXXf b(3,2); |
| 227 | a << 1,2,3, 4,5,6; |
| 228 | const ArrayXXf a_const(a); |
| 229 | |
| 230 | // this does not work because Random is eval-before-nested: |
| 231 | // copy_using_evaluator(w, Vector2d::Random().transpose()); |
| 232 | |
| 233 | // test CwiseUnaryOp |
| 234 | VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v); |
| 235 | VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose()); |
| 236 | VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose()); |
| 237 | VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose()); |
| 238 | |
| 239 | // test CwiseBinaryOp |
| 240 | VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones()); |
| 241 | VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3))); |
| 242 | |
| 243 | // dynamic matrices and arrays |
| 244 | MatrixXd mat1(6,6), mat2(6,6); |
| 245 | VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6)); |
| 246 | VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); |
| 247 | copy_using_evaluator(mat2.transpose(), mat1); |
| 248 | VERIFY_IS_APPROX(mat2.transpose(), mat1); |
| 249 | |
| 250 | ArrayXXd arr1(6,6), arr2(6,6); |
| 251 | VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0)); |
| 252 | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); |
| 253 | |
| 254 | // test automatic resizing |
| 255 | mat2.resize(3,3); |
| 256 | VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); |
| 257 | arr2.resize(9,9); |
| 258 | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); |
| 259 | |
| 260 | // test direct traversal |
| 261 | Matrix3f m3; |
| 262 | Array33f a3; |
| 263 | VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary |
| 264 | // TODO: find a way to test direct traversal with array |
| 265 | VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose |
| 266 | VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary |
| 267 | VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero()); // binary |
| 268 | VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2)); // block |
| 269 | |
| 270 | // test linear traversal |
| 271 | VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary |
| 272 | VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array |
| 273 | VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose |
| 274 | VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary |
| 275 | VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary |
| 276 | |
| 277 | // test inner vectorization |
| 278 | Matrix4f m4, m4src = Matrix4f::Random(); |
| 279 | Array44f a4, a4src = Matrix4f::Random(); |
| 280 | VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix |
| 281 | VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array |
| 282 | VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose |
| 283 | // TODO: find out why Matrix4f::Zero() does not allow inner vectorization |
| 284 | VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary |
| 285 | VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary |
| 286 | |
| 287 | // test linear vectorization |
| 288 | MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6); |
| 289 | ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6); |
| 290 | VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix |
| 291 | VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array |
| 292 | VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose |
| 293 | VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6)); // nullary |
| 294 | VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary |
| 295 | VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary |
| 296 | |
| 297 | // test blocks and slice vectorization |
| 298 | VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0))); |
| 299 | VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6)); |
| 300 | |
| 301 | Matrix4f m4ref = m4; |
| 302 | copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2)); |
| 303 | m4ref.block(1, 1, 2, 3) = m3.bottomRows(2); |
| 304 | VERIFY_IS_APPROX(m4, m4ref); |
| 305 | |
| 306 | mX.setIdentity(20,20); |
| 307 | MatrixXf mXref = MatrixXf::Identity(20,20); |
| 308 | mXsrc = MatrixXf::Random(9,12); |
| 309 | copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc); |
| 310 | mXref.block(4, 4, 9, 12) = mXsrc; |
| 311 | VERIFY_IS_APPROX(mX, mXref); |
| 312 | |
| 313 | // test Map |
| 314 | const float raw[3] = {1,2,3}; |
| 315 | float buffer[3] = {0,0,0}; |
| 316 | Vector3f v3; |
| 317 | Array3f a3f; |
| 318 | VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw)); |
| 319 | VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw)); |
| 320 | Vector3f::Map(buffer) = 2*v3; |
| 321 | VERIFY(buffer[0] == 2); |
| 322 | VERIFY(buffer[1] == 4); |
| 323 | VERIFY(buffer[2] == 6); |
| 324 | |
| 325 | // test CwiseUnaryView |
| 326 | mat1.setRandom(); |
| 327 | mat2.setIdentity(); |
| 328 | MatrixXcd matXcd(6,6), matXcd_ref(6,6); |
| 329 | copy_using_evaluator(matXcd.real(), mat1); |
| 330 | copy_using_evaluator(matXcd.imag(), mat2); |
| 331 | matXcd_ref.real() = mat1; |
| 332 | matXcd_ref.imag() = mat2; |
| 333 | VERIFY_IS_APPROX(matXcd, matXcd_ref); |
| 334 | |
| 335 | // test Select |
| 336 | VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc)); |
| 337 | |
| 338 | // test Replicate |
| 339 | mXsrc = MatrixXf::Random(6, 6); |
| 340 | VectorXf vX = VectorXf::Random(6); |
| 341 | mX.resize(6, 6); |
| 342 | VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX); |
| 343 | matXcd.resize(12, 12); |
| 344 | VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2)); |
| 345 | VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>())); |
| 346 | |
| 347 | // test partial reductions |
| 348 | VectorXd vec1(6); |
| 349 | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum()); |
| 350 | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose()); |
| 351 | |
| 352 | // test MatrixWrapper and ArrayWrapper |
| 353 | mat1.setRandom(6,6); |
| 354 | arr1.setRandom(6,6); |
| 355 | VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix()); |
| 356 | VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array()); |
| 357 | VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix()); |
| 358 | VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2); |
| 359 | mat2.array() = arr1 * arr1; |
| 360 | VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix()); |
| 361 | arr2.matrix() = MatrixXd::Identity(6,6); |
| 362 | VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array()); |
| 363 | |
| 364 | // test Reverse |
| 365 | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse()); |
| 366 | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse()); |
| 367 | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse()); |
| 368 | arr2.reverse() = arr1; |
| 369 | VERIFY_IS_APPROX(arr2, arr1.reverse()); |
| 370 | mat2.array() = mat1.array().reverse(); |
| 371 | VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse()); |
| 372 | |
| 373 | // test Diagonal |
| 374 | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal()); |
| 375 | vec1.resize(5); |
| 376 | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1)); |
| 377 | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>()); |
| 378 | vec1.setRandom(); |
| 379 | |
| 380 | mat2 = mat1; |
| 381 | copy_using_evaluator(mat1.diagonal(1), vec1); |
| 382 | mat2.diagonal(1) = vec1; |
| 383 | VERIFY_IS_APPROX(mat1, mat2); |
| 384 | |
| 385 | copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1)); |
| 386 | mat2.diagonal<-1>() = mat2.diagonal(1); |
| 387 | VERIFY_IS_APPROX(mat1, mat2); |
| 388 | } |
| 389 | |
| 390 | { |
| 391 | // test swapping |
| 392 | MatrixXd mat1, mat2, mat1ref, mat2ref; |
| 393 | mat1ref = mat1 = MatrixXd::Random(6, 6); |
| 394 | mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6); |
| 395 | swap_using_evaluator(mat1, mat2); |
| 396 | mat1ref.swap(mat2ref); |
| 397 | VERIFY_IS_APPROX(mat1, mat1ref); |
| 398 | VERIFY_IS_APPROX(mat2, mat2ref); |
| 399 | |
| 400 | swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3)); |
| 401 | mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3)); |
| 402 | VERIFY_IS_APPROX(mat1, mat1ref); |
| 403 | VERIFY_IS_APPROX(mat2, mat2ref); |
| 404 | |
| 405 | swap_using_evaluator(mat1.row(2), mat2.col(3).transpose()); |
| 406 | mat1.row(2).swap(mat2.col(3).transpose()); |
| 407 | VERIFY_IS_APPROX(mat1, mat1ref); |
| 408 | VERIFY_IS_APPROX(mat2, mat2ref); |
| 409 | } |
| 410 | |
| 411 | { |
| 412 | // test compound assignment |
| 413 | const Matrix4d mat_const = Matrix4d::Random(); |
| 414 | Matrix4d mat, mat_ref; |
| 415 | mat = mat_ref = Matrix4d::Identity(); |
| 416 | add_assign_using_evaluator(mat, mat_const); |
| 417 | mat_ref += mat_const; |
| 418 | VERIFY_IS_APPROX(mat, mat_ref); |
| 419 | |
| 420 | subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2)); |
| 421 | mat_ref.row(1) -= 2*mat_ref.row(2); |
| 422 | VERIFY_IS_APPROX(mat, mat_ref); |
| 423 | |
| 424 | const ArrayXXf arr_const = ArrayXXf::Random(5,3); |
| 425 | ArrayXXf arr, arr_ref; |
| 426 | arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5); |
| 427 | multiply_assign_using_evaluator(arr, arr_const); |
| 428 | arr_ref *= arr_const; |
| 429 | VERIFY_IS_APPROX(arr, arr_ref); |
| 430 | |
| 431 | divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1); |
| 432 | arr_ref.row(1) /= (arr_ref.row(2) + 1); |
| 433 | VERIFY_IS_APPROX(arr, arr_ref); |
| 434 | } |
| 435 | |
| 436 | { |
| 437 | // test triangular shapes |
| 438 | MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6); |
| 439 | A.setRandom();B.setRandom(); |
| 440 | VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>())); |
| 441 | |
| 442 | A.setRandom();B.setRandom(); |
| 443 | VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>())); |
| 444 | |
| 445 | A.setRandom();B.setRandom(); |
| 446 | VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>())); |
| 447 | |
| 448 | A.setRandom();B.setRandom(); |
| 449 | C = B; C.triangularView<Upper>() = A; |
| 450 | copy_using_evaluator(B.triangularView<Upper>(), A); |
| 451 | VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)"); |
| 452 | |
| 453 | A.setRandom();B.setRandom(); |
| 454 | C = B; C.triangularView<Lower>() = A.triangularView<Lower>(); |
| 455 | copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>()); |
| 456 | VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())"); |
| 457 | |
| 458 | |
| 459 | A.setRandom();B.setRandom(); |
| 460 | C = B; C.triangularView<Lower>() = A.triangularView<Upper>().transpose(); |
| 461 | copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose()); |
| 462 | VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())"); |
| 463 | |
| 464 | |
| 465 | A.setRandom();B.setRandom(); C = B; D = A; |
| 466 | C.triangularView<Upper>().swap(D.triangularView<Upper>()); |
| 467 | swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>()); |
| 468 | VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())"); |
| 469 | |
| 470 | |
| 471 | VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(),A), MatrixXd(A.triangularView<Upper>()*A)); |
| 472 | |
| 473 | VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(),A), MatrixXd(A.selfadjointView<Upper>()*A)); |
| 474 | } |
| 475 | |
| 476 | { |
| 477 | // test diagonal shapes |
| 478 | VectorXd d = VectorXd::Random(6); |
| 479 | MatrixXd A = MatrixXd::Random(6,6), B(6,6); |
| 480 | A.setRandom();B.setRandom(); |
| 481 | |
| 482 | VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(),A), MatrixXd(d.asDiagonal()*A)); |
| 483 | VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A,d.asDiagonal()), MatrixXd(A*d.asDiagonal())); |
| 484 | } |
| 485 | |
| 486 | { |
| 487 | // test CoeffReadCost |
| 488 | Matrix4d a, b; |
| 489 | VERIFY_IS_EQUAL( get_cost(a), 1 ); |
| 490 | VERIFY_IS_EQUAL( get_cost(a+b), 3); |
| 491 | VERIFY_IS_EQUAL( get_cost(2*a+b), 4); |
| 492 | VERIFY_IS_EQUAL( get_cost(a*b), 1); |
| 493 | VERIFY_IS_EQUAL( get_cost(a.lazyProduct(b)), 15); |
| 494 | VERIFY_IS_EQUAL( get_cost(a*(a*b)), 1); |
| 495 | VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a*b)), 15); |
| 496 | VERIFY_IS_EQUAL( get_cost(a*(a+b)), 1); |
| 497 | VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a+b)), 15); |
| 498 | } |
| 499 | } |