Austin Schuh | 048fb60 | 2013-10-07 23:31:04 -0700 | [diff] [blame^] | 1 | #!/usr/bin/python |
| 2 | |
| 3 | import numpy |
| 4 | import sys |
| 5 | import polytope |
| 6 | import drivetrain |
| 7 | import controls |
| 8 | from matplotlib import pylab |
| 9 | |
| 10 | __author__ = 'Austin Schuh (austin.linux@gmail.com)' |
| 11 | |
| 12 | |
| 13 | def CoerceGoal(region, K, w, R): |
| 14 | """Intersects a line with a region, and finds the closest point to R. |
| 15 | |
| 16 | Finds a point that is closest to R inside the region, and on the line |
| 17 | defined by K X = w. If it is not possible to find a point on the line, |
| 18 | finds a point that is inside the region and closest to the line. This |
| 19 | function assumes that |
| 20 | |
| 21 | Args: |
| 22 | region: HPolytope, the valid goal region. |
| 23 | K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w |
| 24 | w: float, the offset in the equation above. |
| 25 | R: numpy.matrix (2 x 1), the point to be closest to. |
| 26 | |
| 27 | Returns: |
| 28 | numpy.matrix (2 x 1), the point. |
| 29 | """ |
| 30 | |
| 31 | if region.IsInside(R): |
| 32 | return R |
| 33 | |
| 34 | perpendicular_vector = K.T / numpy.linalg.norm(K) |
| 35 | parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]], |
| 36 | [-perpendicular_vector[0, 0]]]) |
| 37 | |
| 38 | # We want to impose the constraint K * X = w on the polytope H * X <= k. |
| 39 | # We do this by breaking X up into parallel and perpendicular components to |
| 40 | # the half plane. This gives us the following equation. |
| 41 | # |
| 42 | # parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X |
| 43 | # |
| 44 | # Then, substitute this into the polytope. |
| 45 | # |
| 46 | # H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k |
| 47 | # |
| 48 | # Substitute K * X = w |
| 49 | # |
| 50 | # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k |
| 51 | # |
| 52 | # Move all the knowns to the right side. |
| 53 | # |
| 54 | # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w |
| 55 | # |
| 56 | # Let t = parallel.T \dot X, the component parallel to the surface. |
| 57 | # |
| 58 | # H * parallel * t <= k - H * perpendicular * w |
| 59 | # |
| 60 | # This is a polytope which we can solve, and use to figure out the range of X |
| 61 | # that we care about! |
| 62 | |
| 63 | t_poly = polytope.HPolytope( |
| 64 | region.H * parallel_vector, |
| 65 | region.k - region.H * perpendicular_vector * w) |
| 66 | |
| 67 | vertices = t_poly.Vertices() |
| 68 | |
| 69 | if vertices.shape[0]: |
| 70 | # The region exists! |
| 71 | # Find the closest vertex |
| 72 | min_distance = numpy.infty |
| 73 | closest_point = None |
| 74 | for vertex in vertices: |
| 75 | point = parallel_vector * vertex + perpendicular_vector * w |
| 76 | length = numpy.linalg.norm(R - point) |
| 77 | if length < min_distance: |
| 78 | min_distance = length |
| 79 | closest_point = point |
| 80 | |
| 81 | return closest_point |
| 82 | else: |
| 83 | # Find the vertex of the space that is closest to the line. |
| 84 | region_vertices = region.Vertices() |
| 85 | min_distance = numpy.infty |
| 86 | closest_point = None |
| 87 | for vertex in region_vertices: |
| 88 | point = vertex.T |
| 89 | length = numpy.abs((perpendicular_vector.T * point)[0, 0]) |
| 90 | if length < min_distance: |
| 91 | min_distance = length |
| 92 | closest_point = point |
| 93 | |
| 94 | return closest_point |
| 95 | |
| 96 | |
| 97 | class VelocityDrivetrain(object): |
| 98 | def __init__(self): |
| 99 | self.drivetrain = drivetrain.Drivetrain() |
| 100 | |
| 101 | # X is [lvel, rvel] |
| 102 | self.X = numpy.matrix( |
| 103 | [[0.0], |
| 104 | [0.0]]) |
| 105 | |
| 106 | self.A = numpy.matrix( |
| 107 | [[self.drivetrain.A[1, 1], self.drivetrain.A[1, 3]], |
| 108 | [self.drivetrain.A[3, 1], self.drivetrain.A[3, 3]]]) |
| 109 | |
| 110 | self.B = numpy.matrix( |
| 111 | [[self.drivetrain.B[1, 0], self.drivetrain.B[1, 1]], |
| 112 | [self.drivetrain.B[3, 0], self.drivetrain.B[3, 1]]]) |
| 113 | |
| 114 | # FF * X = U (steady state) |
| 115 | self.FF = self.B.I * (numpy.eye(2) - self.A) |
| 116 | |
| 117 | self.U_poly = polytope.HPolytope( |
| 118 | numpy.matrix([[1, 0], |
| 119 | [-1, 0], |
| 120 | [0, 1], |
| 121 | [0, -1]]), |
| 122 | numpy.matrix([[12], |
| 123 | [12], |
| 124 | [12], |
| 125 | [12]])) |
| 126 | |
| 127 | self.U_max = numpy.matrix( |
| 128 | [[12.0], |
| 129 | [12.0]]) |
| 130 | self.U_min = numpy.matrix( |
| 131 | [[-12.0000000000], |
| 132 | [-12.0000000000]]) |
| 133 | |
| 134 | self.K = controls.dplace(self.A, self.B, [0.3, 0.3]) |
| 135 | |
| 136 | self.dt = 0.01 |
| 137 | |
| 138 | self.R = numpy.matrix( |
| 139 | [[0.0], |
| 140 | [0.0]]) |
| 141 | |
| 142 | self.vmax = ( |
| 143 | self.U_max[0, 0] * self.B[0, :].sum() / (1 - self.A[0, :].sum())) |
| 144 | |
| 145 | self.xfiltered = 0.0 |
| 146 | |
| 147 | # U = self.K[0, :].sum() * (R - xfiltered) + self.FF[0, :].sum() * R |
| 148 | # throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R |
| 149 | # - self.K[0, :].sum() * xfiltered |
| 150 | |
| 151 | # R = (throttle * 12.0 + self.K[0, :].sum() * xfiltered) / |
| 152 | # (self.K[0, :].sum() + self.FF[0, :].sum()) |
| 153 | |
| 154 | # U = (K + FF) * R - K * X |
| 155 | # (K + FF) ^-1 * (U + K * X) = R |
| 156 | |
| 157 | # (K + FF) ^-1 * (throttle * 12.0 + K * throttle * self.vmax) = R |
| 158 | # Xn+1 = A * X + B * (throttle * 12.0) |
| 159 | |
| 160 | # xfiltered = self.A[0, :].sum() + B[0, :].sum() * throttle * 12.0 |
| 161 | self.ttrust = 1.1 |
| 162 | |
| 163 | def Update(self, throttle, steering): |
| 164 | # Invert the plant to figure out how the velocity filter would have to work |
| 165 | # out in order to filter out the forwards negative inertia. |
| 166 | # This math assumes that the left and right power and velocity are equals, |
| 167 | # and that the plant is the same on the left and right. |
| 168 | # TODO(aschuh): Prove that this is right again and figure out what ttrust |
| 169 | # means... |
| 170 | fvel = ((throttle * 12.0 + self.ttrust * self.K[0, :].sum() * self.xfiltered) |
| 171 | / (self.ttrust * self.K[0, :].sum() + self.FF[0, :].sum())) |
| 172 | self.xfiltered = (self.A[0, :].sum() * self.xfiltered + |
| 173 | self.B[0, :].sum() * throttle * 12.0) |
| 174 | |
| 175 | fvel = 12 / self.FF[0, :].sum() * throttle |
| 176 | |
| 177 | # Constant radius means that angualar_velocity / linear_velocity = constant. |
| 178 | # Compute the left and right velocities. |
| 179 | left_velocity = fvel - steering * numpy.abs(fvel) |
| 180 | right_velocity = fvel + steering * numpy.abs(fvel) |
| 181 | |
| 182 | # Write this constraint in the form of K * R = w |
| 183 | # angular velocity / linear velocity = constant |
| 184 | # (left - right) / (left + right) = constant |
| 185 | # left - right = constant * left + constant * right |
| 186 | |
| 187 | # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) / |
| 188 | # (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) = |
| 189 | # constant |
| 190 | # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant |
| 191 | # (-steering * sign(fvel)) = constant |
| 192 | # (-steering * sign(fvel)) * (left + right) = left - right |
| 193 | # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0 |
| 194 | |
| 195 | equality_k = numpy.matrix( |
| 196 | [[1 + steering * numpy.sign(fvel), -(1 - steering * numpy.sign(fvel))]]) |
| 197 | equality_w = 0.0 |
| 198 | |
| 199 | self.R[0, 0] = left_velocity |
| 200 | self.R[1, 0] = right_velocity |
| 201 | |
| 202 | # Construct a constraint on R by manipulating the constraint on U |
| 203 | # Start out with H * U <= k |
| 204 | # U = FF * R + K * (R - X) |
| 205 | # H * (FF * R + K * R - K * X) <= k |
| 206 | # H * (FF + K) * R <= k + H * K * X |
| 207 | R_poly = polytope.HPolytope( |
| 208 | self.U_poly.H * (self.K + self.FF), |
| 209 | self.U_poly.k + self.U_poly.H * self.K * self.X) |
| 210 | |
| 211 | # Limit R back inside the box. |
| 212 | self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R) |
| 213 | |
| 214 | FF_volts = self.FF * self.boxed_R |
| 215 | self.U_ideal = self.K * (self.boxed_R - self.X) + FF_volts |
| 216 | |
| 217 | # Verify that the steering angle has not flipped. |
| 218 | assert((self.boxed_R[1, 0] - self.boxed_R[0, 0]) * steering >= 0) |
| 219 | |
| 220 | self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max) |
| 221 | self.X = self.A * self.X + self.B * self.U |
| 222 | |
| 223 | |
| 224 | def main(argv): |
| 225 | drivetrain = VelocityDrivetrain() |
| 226 | |
| 227 | vl_plot = [] |
| 228 | vr_plot = [] |
| 229 | ul_plot = [] |
| 230 | ur_plot = [] |
| 231 | radius_plot = [] |
| 232 | t_plot = [] |
| 233 | for t in numpy.arange(0, 1.5, drivetrain.dt): |
| 234 | if t < 0.5: |
| 235 | drivetrain.Update(throttle=0.60, steering=0.3) |
| 236 | elif t < 1.0: |
| 237 | drivetrain.Update(throttle=0.60, steering=-0.3) |
| 238 | else: |
| 239 | drivetrain.Update(throttle=0.00, steering=0.3) |
| 240 | t_plot.append(t) |
| 241 | vl_plot.append(drivetrain.X[0, 0]) |
| 242 | vr_plot.append(drivetrain.X[1, 0]) |
| 243 | ul_plot.append(drivetrain.U[0, 0]) |
| 244 | ur_plot.append(drivetrain.U[1, 0]) |
| 245 | |
| 246 | fwd_velocity = (drivetrain.X[1, 0] + drivetrain.X[0, 0]) / 2 |
| 247 | turn_velocity = (drivetrain.X[1, 0] - drivetrain.X[0, 0]) |
| 248 | if fwd_velocity < 0.0000001: |
| 249 | radius_plot.append(turn_velocity) |
| 250 | else: |
| 251 | radius_plot.append(turn_velocity / fwd_velocity) |
| 252 | |
| 253 | pylab.plot(t_plot, vl_plot, label='left velocity') |
| 254 | pylab.plot(t_plot, vr_plot, label='right velocity') |
| 255 | pylab.plot(t_plot, ul_plot, label='left power') |
| 256 | pylab.plot(t_plot, ur_plot, label='right power') |
| 257 | pylab.plot(t_plot, radius_plot, label='radius') |
| 258 | pylab.legend() |
| 259 | pylab.show() |
| 260 | return 0 |
| 261 | |
| 262 | if __name__ == '__main__': |
| 263 | sys.exit(main(sys.argv)) |