Austin Schuh | 010eb81 | 2014-10-25 18:06:49 -0700 | [diff] [blame^] | 1 | #include <stdio.h> |
| 2 | #include <string.h> |
| 3 | #include <thread> |
| 4 | #include <mutex> |
| 5 | #include <unistd.h> |
| 6 | #include <inttypes.h> |
| 7 | |
| 8 | #include "aos/prime/output/motor_output.h" |
| 9 | #include "aos/common/controls/output_check.q.h" |
| 10 | #include "aos/common/controls/sensor_generation.q.h" |
| 11 | #include "aos/common/logging/logging.h" |
| 12 | #include "aos/common/logging/queue_logging.h" |
| 13 | #include "aos/common/messages/robot_state.q.h" |
| 14 | #include "aos/common/time.h" |
| 15 | #include "aos/common/util/log_interval.h" |
| 16 | #include "aos/common/util/phased_loop.h" |
| 17 | #include "aos/common/util/wrapping_counter.h" |
| 18 | #include "aos/common/network/team_number.h" |
| 19 | #include "aos/linux_code/init.h" |
| 20 | |
| 21 | #include "frc971/control_loops/drivetrain/drivetrain.q.h" |
| 22 | #include "frc971/control_loops/claw/claw.q.h" |
| 23 | #include "frc971/control_loops/shooter/shooter.q.h" |
| 24 | #include "frc971/constants.h" |
| 25 | #include "frc971/queues/other_sensors.q.h" |
| 26 | #include "frc971/queues/to_log.q.h" |
| 27 | |
| 28 | #include <WPILib.h> |
| 29 | |
| 30 | #ifndef M_PI |
| 31 | #define M_PI 3.14159265358979323846 |
| 32 | #endif |
| 33 | |
| 34 | using ::aos::util::SimpleLogInterval; |
| 35 | using ::frc971::control_loops::drivetrain; |
| 36 | using ::frc971::sensors::other_sensors; |
| 37 | using ::frc971::sensors::gyro_reading; |
| 38 | using ::aos::util::WrappingCounter; |
| 39 | |
| 40 | namespace frc971 { |
| 41 | namespace output { |
| 42 | |
| 43 | void SetThreadRealtimePriority(int priority) { |
| 44 | struct sched_param param; |
| 45 | param.sched_priority = priority; |
| 46 | if (sched_setscheduler(0, SCHED_FIFO, ¶m) == -1) { |
| 47 | PLOG(FATAL, "sched_setscheduler failed"); |
| 48 | } |
| 49 | } |
| 50 | |
| 51 | class priority_mutex { |
| 52 | public: |
| 53 | typedef pthread_mutex_t *native_handle_type; |
| 54 | |
| 55 | // TODO(austin): Write a test case for the mutex, and make the constructor |
| 56 | // constexpr. |
| 57 | priority_mutex() { |
| 58 | pthread_mutexattr_t attr; |
| 59 | // Turn on priority inheritance. |
| 60 | #ifdef NDEBUG |
| 61 | #error "Won't let perror be no-op ed" |
| 62 | #endif |
| 63 | assert_perror(pthread_mutexattr_init(&attr)); |
| 64 | assert_perror(pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL)); |
| 65 | assert_perror(pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT)); |
| 66 | |
| 67 | assert_perror(pthread_mutex_init(native_handle(), &attr)); |
| 68 | |
| 69 | assert_perror(pthread_mutexattr_destroy(&attr)); |
| 70 | } |
| 71 | |
| 72 | ~priority_mutex() { pthread_mutex_destroy(&handle_); } |
| 73 | |
| 74 | void lock() { assert_perror(pthread_mutex_lock(&handle_)); } |
| 75 | bool try_lock() { |
| 76 | int ret = pthread_mutex_trylock(&handle_); |
| 77 | if (ret == 0) { |
| 78 | return true; |
| 79 | } else if (ret == EBUSY) { |
| 80 | return false; |
| 81 | } else { |
| 82 | assert_perror(ret); |
| 83 | } |
| 84 | } |
| 85 | void unlock() { assert_perror(pthread_mutex_unlock(&handle_)); } |
| 86 | |
| 87 | native_handle_type native_handle() { return &handle_; } |
| 88 | |
| 89 | private: |
| 90 | DISALLOW_COPY_AND_ASSIGN(priority_mutex); |
| 91 | pthread_mutex_t handle_; |
| 92 | }; |
| 93 | |
| 94 | class HallEffect : public DigitalInput { |
| 95 | public: |
| 96 | HallEffect(int index) : DigitalInput(index) {} |
| 97 | bool GetHall() { return !Get(); } |
| 98 | }; |
| 99 | |
| 100 | class EdgeCounter { |
| 101 | public: |
| 102 | EdgeCounter(int priority, Encoder *encoder, HallEffect *input, |
| 103 | priority_mutex *mutex) |
| 104 | : priority_(priority), |
| 105 | encoder_(encoder), |
| 106 | input_(input), |
| 107 | mutex_(mutex), |
| 108 | run_(true), |
| 109 | any_interrupt_count_(0) { |
| 110 | thread_.reset(new ::std::thread(::std::ref(*this))); |
| 111 | } |
| 112 | |
| 113 | // Waits for interrupts, locks the mutex, and updates the internal state. |
| 114 | // Updates the any_interrupt_count count when the interrupt comes in without |
| 115 | // the lock. |
| 116 | void operator ()() { |
| 117 | SetThreadRealtimePriority(priority_); |
| 118 | |
| 119 | input_->RequestInterrupts(); |
| 120 | input_->SetUpSourceEdge(true, true); |
| 121 | |
| 122 | { |
| 123 | ::std::unique_lock<priority_mutex> mutex_guard(*mutex_); |
| 124 | current_value_ = input_->GetHall(); |
| 125 | } |
| 126 | |
| 127 | InterruptableSensorBase::WaitResult result = InterruptableSensorBase::kBoth; |
| 128 | while (run_) { |
| 129 | result = input_->WaitForInterrupt( |
| 130 | 0.1, result != InterruptableSensorBase::kTimeout); |
| 131 | if (result == InterruptableSensorBase::kTimeout) { |
| 132 | continue; |
| 133 | } |
| 134 | ++any_interrupt_count_; |
| 135 | |
| 136 | ::std::unique_lock<priority_mutex> mutex_guard(*mutex_); |
| 137 | int32_t encoder_value = encoder_->GetRaw(); |
| 138 | bool hall_value = input_->GetHall(); |
| 139 | if (current_value_ != hall_value) { |
| 140 | if (hall_value) { |
| 141 | ++positive_interrupt_count_; |
| 142 | last_positive_encoder_value_ = encoder_value; |
| 143 | } else { |
| 144 | ++negative_interrupt_count_; |
| 145 | last_negative_encoder_value_ = encoder_value; |
| 146 | } |
| 147 | } else { |
| 148 | LOG(WARNING, "Detected spurious edge on %d. Dropping it.\n", |
| 149 | input_->GetChannel()); |
| 150 | } |
| 151 | |
| 152 | current_value_ = hall_value; |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | // Updates the internal hall effect value given this new observation. |
| 157 | // The mutex provided at construction time must be held during this operation. |
| 158 | void set_polled_value(bool value) { |
| 159 | polled_value_ = value; |
| 160 | bool miss_match = (value != current_value_); |
| 161 | if (miss_match && last_miss_match_) { |
| 162 | current_value_ = value; |
| 163 | last_miss_match_ = false; |
| 164 | } else { |
| 165 | last_miss_match_ = miss_match; |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | // Signals the thread to quit next time it gets an interrupt. |
| 170 | void Quit() { |
| 171 | run_ = false; |
| 172 | thread_->join(); |
| 173 | } |
| 174 | |
| 175 | // Returns the total number of interrupts since construction time. This |
| 176 | // should be done without the mutex held. |
| 177 | int any_interrupt_count() const { return any_interrupt_count_; } |
| 178 | // Returns the current interrupt edge counts and encoder values. |
| 179 | // The mutex provided at construction time must be held during this operation. |
| 180 | int positive_interrupt_count() const { return positive_interrupt_count_; } |
| 181 | int negative_interrupt_count() const { return negative_interrupt_count_; } |
| 182 | int32_t last_positive_encoder_value() const { |
| 183 | return last_positive_encoder_value_; |
| 184 | } |
| 185 | int32_t last_negative_encoder_value() const { |
| 186 | return last_negative_encoder_value_; |
| 187 | } |
| 188 | // Returns the current polled value. |
| 189 | bool polled_value() const { return polled_value_; } |
| 190 | |
| 191 | private: |
| 192 | int priority_; |
| 193 | Encoder *encoder_; |
| 194 | HallEffect *input_; |
| 195 | priority_mutex *mutex_; |
| 196 | ::std::atomic<bool> run_; |
| 197 | |
| 198 | ::std::atomic<int> any_interrupt_count_; |
| 199 | |
| 200 | // The following variables represent the current state. They must be |
| 201 | // synchronized by mutex_; |
| 202 | bool current_value_ = false; |
| 203 | bool polled_value_ = false; |
| 204 | bool last_miss_match_ = true; |
| 205 | int positive_interrupt_count_ = 0; |
| 206 | int negative_interrupt_count_ = 0; |
| 207 | int32_t last_positive_encoder_value_ = 0; |
| 208 | int32_t last_negative_encoder_value_ = 0; |
| 209 | |
| 210 | ::std::unique_ptr<::std::thread> thread_; |
| 211 | }; |
| 212 | |
| 213 | // This class will synchronize sampling edges on a bunch of DigitalInputs with |
| 214 | // the periodic poll. |
| 215 | // |
| 216 | // The data is provided to subclasses by calling SaveState when the state is |
| 217 | // consistent and ready. |
| 218 | template <int num_sensors> |
| 219 | class PeriodicHallSynchronizer { |
| 220 | public: |
| 221 | PeriodicHallSynchronizer( |
| 222 | const char *name, int priority, int interrupt_priority, |
| 223 | ::std::unique_ptr<Encoder> encoder, |
| 224 | ::std::array<::std::unique_ptr<HallEffect>, num_sensors> *sensors) |
| 225 | : name_(name), |
| 226 | priority_(priority), |
| 227 | encoder_(::std::move(encoder)), |
| 228 | run_(true) { |
| 229 | for (int i = 0; i < num_sensors; ++i) { |
| 230 | sensors_[i] = ::std::move((*sensors)[i]); |
| 231 | edge_counters_[i] = ::std::unique_ptr<EdgeCounter>(new EdgeCounter( |
| 232 | interrupt_priority, encoder_.get(), sensors_[i].get(), &mutex_)); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | const char *name() const { return name_.c_str(); } |
| 237 | |
| 238 | void StartThread() { thread_.reset(new ::std::thread(::std::ref(*this))); } |
| 239 | |
| 240 | // Called when the state is consistent and up to date. |
| 241 | virtual void SaveState() = 0; |
| 242 | |
| 243 | // Starts a sampling iteration. See RunIteration for usage. |
| 244 | void StartIteration() { |
| 245 | // Start by capturing the current interrupt counts. |
| 246 | for (int i = 0; i < num_sensors; ++i) { |
| 247 | interrupt_counts_[i] = edge_counters_[i]->any_interrupt_count(); |
| 248 | } |
| 249 | |
| 250 | { |
| 251 | // Now, update the encoder and sensor values. |
| 252 | ::std::unique_lock<priority_mutex> mutex_guard(mutex_); |
| 253 | encoder_value_ = encoder_->GetRaw(); |
| 254 | for (int i = 0; i < num_sensors; ++i) { |
| 255 | edge_counters_[i]->set_polled_value(sensors_[i]->GetHall()); |
| 256 | } |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | // Attempts to finish a sampling iteration. See RunIteration for usage. |
| 261 | // Returns true if the iteration succeeded, and false otherwise. |
| 262 | bool TryFinishingIteration() { |
| 263 | // Make sure no interrupts have occurred while we were waiting. If they |
| 264 | // have, we are in an inconsistent state and need to try again. |
| 265 | ::std::unique_lock<priority_mutex> mutex_guard(mutex_); |
| 266 | bool retry = false; |
| 267 | for (int i = 0; i < num_sensors; ++i) { |
| 268 | retry = retry || (interrupt_counts_[i] != |
| 269 | edge_counters_[i]->any_interrupt_count()); |
| 270 | } |
| 271 | if (!retry) { |
| 272 | SaveState(); |
| 273 | return true; |
| 274 | } |
| 275 | LOG(WARNING, "Got an interrupt while sampling encoder %s, retrying\n", |
| 276 | name()); |
| 277 | return false; |
| 278 | } |
| 279 | |
| 280 | void RunIteration() { |
| 281 | while (true) { |
| 282 | StartIteration(); |
| 283 | |
| 284 | // Wait more than the amount of time it takes for a digital input change |
| 285 | // to go from visible to software to having triggered an interrupt. |
| 286 | ::aos::time::SleepFor(::aos::time::Time::InUS(120)); |
| 287 | |
| 288 | if (TryFinishingIteration()) { |
| 289 | return; |
| 290 | } |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | void operator()() { |
| 295 | SetThreadRealtimePriority(priority_); |
| 296 | while (run_) { |
| 297 | ::aos::time::PhasedLoopXMS(10, 9000); |
| 298 | RunIteration(); |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | void Quit() { |
| 303 | run_ = false; |
| 304 | for (int i = 0; i < num_sensors; ++i) { |
| 305 | edge_counters_[i]->Quit(); |
| 306 | } |
| 307 | if (thread_) { |
| 308 | thread_->join(); |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | protected: |
| 313 | // These values are only safe to fetch from inside SaveState() |
| 314 | int32_t encoder_value() const { return encoder_value_; } |
| 315 | ::std::array<::std::unique_ptr<EdgeCounter>, num_sensors> &edge_counters() { |
| 316 | return edge_counters_; |
| 317 | } |
| 318 | |
| 319 | private: |
| 320 | // A descriptive name for error messages. |
| 321 | ::std::string name_; |
| 322 | // The priority of the polling thread. |
| 323 | int priority_; |
| 324 | // The Encoder to sample. |
| 325 | ::std::unique_ptr<Encoder> encoder_; |
| 326 | // A list of all the digital inputs. |
| 327 | ::std::array<::std::unique_ptr<HallEffect>, num_sensors> sensors_; |
| 328 | // The mutex used to synchronize all the state. |
| 329 | priority_mutex mutex_; |
| 330 | ::std::atomic<bool> run_; |
| 331 | |
| 332 | // The state. |
| 333 | // The current encoder value. |
| 334 | int32_t encoder_value_ = 0; |
| 335 | // The current edge counters. |
| 336 | ::std::array<::std::unique_ptr<EdgeCounter>, num_sensors> edge_counters_; |
| 337 | |
| 338 | ::std::unique_ptr<::std::thread> thread_; |
| 339 | ::std::array<int, num_sensors> interrupt_counts_; |
| 340 | }; |
| 341 | |
| 342 | double drivetrain_translate(int32_t in) { |
| 343 | return static_cast<double>(in) |
| 344 | / (256.0 /*cpr*/ * 2.0 /*2x. Stupid WPILib*/) |
| 345 | * (18.0 / 50.0 /*output stage*/) * (56.0 / 30.0 /*encoder gears*/) |
| 346 | // * constants::GetValues().drivetrain_encoder_ratio |
| 347 | * (3.5 /*wheel diameter*/ * 2.54 / 100.0 * M_PI); |
| 348 | } |
| 349 | |
| 350 | static const double kVcc = 5.15; |
| 351 | |
| 352 | double gyro_translate(int64_t in) { |
| 353 | return in / 16.0 / 1000.0 / (180.0 / M_PI); |
| 354 | } |
| 355 | |
| 356 | float hall_translate(const constants::ShifterHallEffect &k, float in_low, |
| 357 | float in_high) { |
| 358 | const float low_ratio = |
| 359 | 0.5 * (in_low - static_cast<float>(k.low_gear_low)) / |
| 360 | static_cast<float>(k.low_gear_middle - k.low_gear_low); |
| 361 | const float high_ratio = |
| 362 | 0.5 + 0.5 * (in_high - static_cast<float>(k.high_gear_middle)) / |
| 363 | static_cast<float>(k.high_gear_high - k.high_gear_middle); |
| 364 | |
| 365 | // Return low when we are below 1/2, and high when we are above 1/2. |
| 366 | if (low_ratio + high_ratio < 1.0) { |
| 367 | return low_ratio; |
| 368 | } else { |
| 369 | return high_ratio; |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | double claw_translate(int32_t in) { |
| 374 | return static_cast<double>(in) |
| 375 | / (256.0 /*cpr*/ * 4.0 /*quad*/) |
| 376 | / (18.0 / 48.0 /*encoder gears*/) |
| 377 | / (12.0 / 60.0 /*chain reduction*/) |
| 378 | * (M_PI / 180.0) |
| 379 | * 2.0 /*TODO(austin): Debug this, encoders read too little*/; |
| 380 | } |
| 381 | |
| 382 | double shooter_translate(int32_t in) { |
| 383 | return static_cast<double>(in) |
| 384 | / (256.0 /*cpr*/ * 4.0 /*quad*/) |
| 385 | * 16 /*sprocket teeth*/ * 0.375 /*chain pitch*/ |
| 386 | * (2.54 / 100.0 /*in to m*/); |
| 387 | } |
| 388 | |
| 389 | |
| 390 | // This class sends out half of the claw position state at 100 hz. |
| 391 | class HalfClawHallSynchronizer : public PeriodicHallSynchronizer<3> { |
| 392 | public: |
| 393 | // Constructs a HalfClawHallSynchronizer. |
| 394 | // |
| 395 | // priority is the priority of the polling thread. |
| 396 | // interrupt_priority is the priority of the interrupt threads. |
| 397 | // encoder is the encoder to read. |
| 398 | // sensors is an array of hall effect sensors. The sensors[0] is the front |
| 399 | // sensor, sensors[1] is the calibration sensor, sensors[2] is the back sensor. |
| 400 | HalfClawHallSynchronizer( |
| 401 | const char *name, int priority, int interrupt_priority, |
| 402 | ::std::unique_ptr<Encoder> encoder, |
| 403 | ::std::array<::std::unique_ptr<HallEffect>, 3> *sensors, bool reversed) |
| 404 | : PeriodicHallSynchronizer<3>(name, priority, interrupt_priority, |
| 405 | ::std::move(encoder), sensors), |
| 406 | reversed_(reversed) {} |
| 407 | |
| 408 | void set_position(control_loops::HalfClawPosition *half_claw_position) { |
| 409 | half_claw_position_ = half_claw_position; |
| 410 | } |
| 411 | |
| 412 | // Saves the state so that it can be sent if it was synchronized. |
| 413 | virtual void SaveState() { |
| 414 | const auto &front = edge_counters()[0]; |
| 415 | half_claw_position_->front.current = front->polled_value(); |
| 416 | half_claw_position_->front.posedge_count = |
| 417 | front->positive_interrupt_count(); |
| 418 | half_claw_position_->front.negedge_count = |
| 419 | front->negative_interrupt_count(); |
| 420 | |
| 421 | const auto &calibration = edge_counters()[1]; |
| 422 | half_claw_position_->calibration.current = calibration->polled_value(); |
| 423 | half_claw_position_->calibration.posedge_count = |
| 424 | calibration->positive_interrupt_count(); |
| 425 | half_claw_position_->calibration.negedge_count = |
| 426 | calibration->negative_interrupt_count(); |
| 427 | |
| 428 | const auto &back = edge_counters()[2]; |
| 429 | half_claw_position_->back.current = back->polled_value(); |
| 430 | half_claw_position_->back.posedge_count = back->positive_interrupt_count(); |
| 431 | half_claw_position_->back.negedge_count = back->negative_interrupt_count(); |
| 432 | |
| 433 | const double multiplier = reversed_ ? -1.0 : 1.0; |
| 434 | |
| 435 | half_claw_position_->position = |
| 436 | multiplier * claw_translate(encoder_value()); |
| 437 | |
| 438 | // We assume here that we can only have 1 sensor have a posedge per cycle. |
| 439 | { |
| 440 | half_claw_position_->posedge_value = |
| 441 | last_half_claw_position_.posedge_value; |
| 442 | int posedge_changes = 0; |
| 443 | if (half_claw_position_->front.posedge_count != |
| 444 | last_half_claw_position_.front.posedge_count) { |
| 445 | ++posedge_changes; |
| 446 | half_claw_position_->posedge_value = |
| 447 | multiplier * claw_translate(front->last_positive_encoder_value()); |
| 448 | LOG(INFO, "Got a front posedge\n"); |
| 449 | } |
| 450 | |
| 451 | if (half_claw_position_->back.posedge_count != |
| 452 | last_half_claw_position_.back.posedge_count) { |
| 453 | ++posedge_changes; |
| 454 | half_claw_position_->posedge_value = |
| 455 | multiplier * claw_translate(back->last_positive_encoder_value()); |
| 456 | LOG(INFO, "Got a back posedge\n"); |
| 457 | } |
| 458 | |
| 459 | if (half_claw_position_->calibration.posedge_count != |
| 460 | last_half_claw_position_.calibration.posedge_count) { |
| 461 | ++posedge_changes; |
| 462 | half_claw_position_->posedge_value = |
| 463 | multiplier * |
| 464 | claw_translate(calibration->last_positive_encoder_value()); |
| 465 | LOG(INFO, "Got a calibration posedge\n"); |
| 466 | } |
| 467 | |
| 468 | if (posedge_changes > 1) { |
| 469 | LOG(WARNING, "Found more than 1 positive edge on %s\n", name()); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | { |
| 474 | half_claw_position_->negedge_value = |
| 475 | last_half_claw_position_.negedge_value; |
| 476 | int negedge_changes = 0; |
| 477 | if (half_claw_position_->front.negedge_count != |
| 478 | last_half_claw_position_.front.negedge_count) { |
| 479 | ++negedge_changes; |
| 480 | half_claw_position_->negedge_value = |
| 481 | multiplier * claw_translate(front->last_negative_encoder_value()); |
| 482 | LOG(INFO, "Got a front negedge\n"); |
| 483 | } |
| 484 | |
| 485 | if (half_claw_position_->back.negedge_count != |
| 486 | last_half_claw_position_.back.negedge_count) { |
| 487 | ++negedge_changes; |
| 488 | half_claw_position_->negedge_value = |
| 489 | multiplier * claw_translate(back->last_negative_encoder_value()); |
| 490 | LOG(INFO, "Got a back negedge\n"); |
| 491 | } |
| 492 | |
| 493 | if (half_claw_position_->calibration.negedge_count != |
| 494 | last_half_claw_position_.calibration.negedge_count) { |
| 495 | ++negedge_changes; |
| 496 | half_claw_position_->negedge_value = |
| 497 | multiplier * |
| 498 | claw_translate(calibration->last_negative_encoder_value()); |
| 499 | LOG(INFO, "Got a calibration negedge\n"); |
| 500 | } |
| 501 | |
| 502 | if (negedge_changes > 1) { |
| 503 | LOG(WARNING, "Found more than 1 negative edge on %s\n", name()); |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | last_half_claw_position_ = *half_claw_position_; |
| 508 | } |
| 509 | |
| 510 | private: |
| 511 | control_loops::HalfClawPosition *half_claw_position_; |
| 512 | control_loops::HalfClawPosition last_half_claw_position_; |
| 513 | bool reversed_; |
| 514 | }; |
| 515 | |
| 516 | |
| 517 | // This class sends out the shooter position state at 100 hz. |
| 518 | class ShooterHallSynchronizer : public PeriodicHallSynchronizer<2> { |
| 519 | public: |
| 520 | // Constructs a ShooterHallSynchronizer. |
| 521 | // |
| 522 | // priority is the priority of the polling thread. |
| 523 | // interrupt_priority is the priority of the interrupt threads. |
| 524 | // encoder is the encoder to read. |
| 525 | // sensors is an array of hall effect sensors. The sensors[0] is the proximal |
| 526 | // sensor, sensors[1] is the distal sensor. |
| 527 | // shooter_plunger is the plunger. |
| 528 | // shooter_latch is the latch. |
| 529 | ShooterHallSynchronizer( |
| 530 | int priority, int interrupt_priority, ::std::unique_ptr<Encoder> encoder, |
| 531 | ::std::array<::std::unique_ptr<HallEffect>, 2> *sensors, |
| 532 | ::std::unique_ptr<HallEffect> shooter_plunger, |
| 533 | ::std::unique_ptr<HallEffect> shooter_latch) |
| 534 | : PeriodicHallSynchronizer<2>("shooter", priority, interrupt_priority, |
| 535 | ::std::move(encoder), sensors), |
| 536 | shooter_plunger_(::std::move(shooter_plunger)), |
| 537 | shooter_latch_(::std::move(shooter_latch)) {} |
| 538 | |
| 539 | // Saves the state so that it can be sent if it was synchronized. |
| 540 | virtual void SaveState() { |
| 541 | auto shooter_position = |
| 542 | control_loops::shooter_queue_group.position.MakeMessage(); |
| 543 | |
| 544 | shooter_position->plunger = shooter_plunger_->GetHall(); |
| 545 | shooter_position->latch = shooter_latch_->GetHall(); |
| 546 | shooter_position->position = shooter_translate(encoder_value()); |
| 547 | |
| 548 | { |
| 549 | const auto &proximal_edge_counter = edge_counters()[0]; |
| 550 | shooter_position->pusher_proximal.current = |
| 551 | proximal_edge_counter->polled_value(); |
| 552 | shooter_position->pusher_proximal.posedge_count = |
| 553 | proximal_edge_counter->positive_interrupt_count(); |
| 554 | shooter_position->pusher_proximal.negedge_count = |
| 555 | proximal_edge_counter->negative_interrupt_count(); |
| 556 | shooter_position->pusher_proximal.posedge_value = shooter_translate( |
| 557 | proximal_edge_counter->last_positive_encoder_value()); |
| 558 | } |
| 559 | |
| 560 | { |
| 561 | const auto &distal_edge_counter = edge_counters()[1]; |
| 562 | shooter_position->pusher_distal.current = |
| 563 | distal_edge_counter->polled_value(); |
| 564 | shooter_position->pusher_distal.posedge_count = |
| 565 | distal_edge_counter->positive_interrupt_count(); |
| 566 | shooter_position->pusher_distal.negedge_count = |
| 567 | distal_edge_counter->negative_interrupt_count(); |
| 568 | shooter_position->pusher_distal.posedge_value = |
| 569 | shooter_translate(distal_edge_counter->last_positive_encoder_value()); |
| 570 | } |
| 571 | |
| 572 | shooter_position.Send(); |
| 573 | } |
| 574 | |
| 575 | private: |
| 576 | ::std::unique_ptr<HallEffect> shooter_plunger_; |
| 577 | ::std::unique_ptr<HallEffect> shooter_latch_; |
| 578 | }; |
| 579 | |
| 580 | |
| 581 | class SensorReader { |
| 582 | public: |
| 583 | SensorReader() |
| 584 | : auto_selector_analog_(new AnalogInput(4)), |
| 585 | left_encoder_(new Encoder(10, 11, false, Encoder::k2X)), // E0 |
| 586 | right_encoder_(new Encoder(12, 13, false, Encoder::k2X)), // E1 |
| 587 | low_left_drive_hall_(new AnalogInput(2)), |
| 588 | high_left_drive_hall_(new AnalogInput(3)), |
| 589 | low_right_drive_hall_(new AnalogInput(1)), |
| 590 | high_right_drive_hall_(new AnalogInput(0)), |
| 591 | shooter_plunger_(new HallEffect(1)), // S3 |
| 592 | shooter_latch_(new HallEffect(0)), // S4 |
| 593 | shooter_distal_(new HallEffect(2)), // S2 |
| 594 | shooter_proximal_(new HallEffect(3)), // S1 |
| 595 | shooter_encoder_(new Encoder(19, 18)), // E2 |
| 596 | claw_top_front_hall_(new HallEffect(5)), // R2 |
| 597 | claw_top_calibration_hall_(new HallEffect(6)), // R3 |
| 598 | claw_top_back_hall_(new HallEffect(4)), // R2 |
| 599 | claw_top_encoder_(new Encoder(20, 21)), // E3 |
| 600 | // L2 Middle Left hall effect sensor. |
| 601 | claw_bottom_front_hall_(new HallEffect(8)), |
| 602 | // L3 Bottom Left hall effect sensor |
| 603 | claw_bottom_calibration_hall_(new HallEffect(9)), |
| 604 | // L1 Top Left hall effect sensor |
| 605 | claw_bottom_back_hall_(new HallEffect(7)), |
| 606 | claw_bottom_encoder_(new Encoder(22, 23)), // E5 |
| 607 | run_(true) { |
| 608 | filter_.SetPeriodNanoSeconds(100000); |
| 609 | filter_.Add(shooter_plunger_.get()); |
| 610 | filter_.Add(shooter_latch_.get()); |
| 611 | filter_.Add(shooter_distal_.get()); |
| 612 | filter_.Add(shooter_proximal_.get()); |
| 613 | filter_.Add(claw_top_front_hall_.get()); |
| 614 | filter_.Add(claw_top_calibration_hall_.get()); |
| 615 | filter_.Add(claw_top_back_hall_.get()); |
| 616 | filter_.Add(claw_bottom_front_hall_.get()); |
| 617 | filter_.Add(claw_bottom_calibration_hall_.get()); |
| 618 | filter_.Add(claw_bottom_back_hall_.get()); |
| 619 | printf("Filtering all hall effect sensors with a %" PRIu64 |
| 620 | " nanosecond window\n", |
| 621 | filter_.GetPeriodNanoSeconds()); |
| 622 | } |
| 623 | |
| 624 | void operator()() { |
| 625 | const int kPriority = 30; |
| 626 | const int kInterruptPriority = 55; |
| 627 | SetThreadRealtimePriority(kPriority); |
| 628 | |
| 629 | ::std::array<::std::unique_ptr<HallEffect>, 2> shooter_sensors; |
| 630 | shooter_sensors[0] = ::std::move(shooter_proximal_); |
| 631 | shooter_sensors[1] = ::std::move(shooter_distal_); |
| 632 | ShooterHallSynchronizer shooter( |
| 633 | kPriority, kInterruptPriority, ::std::move(shooter_encoder_), |
| 634 | &shooter_sensors, ::std::move(shooter_plunger_), |
| 635 | ::std::move(shooter_latch_)); |
| 636 | shooter.StartThread(); |
| 637 | |
| 638 | ::std::array<::std::unique_ptr<HallEffect>, 3> claw_top_sensors; |
| 639 | claw_top_sensors[0] = ::std::move(claw_top_front_hall_); |
| 640 | claw_top_sensors[1] = ::std::move(claw_top_calibration_hall_); |
| 641 | claw_top_sensors[2] = ::std::move(claw_top_back_hall_); |
| 642 | HalfClawHallSynchronizer top_claw("top_claw", kPriority, kInterruptPriority, |
| 643 | ::std::move(claw_top_encoder_), |
| 644 | &claw_top_sensors, false); |
| 645 | |
| 646 | ::std::array<::std::unique_ptr<HallEffect>, 3> claw_bottom_sensors; |
| 647 | claw_bottom_sensors[0] = ::std::move(claw_bottom_front_hall_); |
| 648 | claw_bottom_sensors[1] = ::std::move(claw_bottom_calibration_hall_); |
| 649 | claw_bottom_sensors[2] = ::std::move(claw_bottom_back_hall_); |
| 650 | HalfClawHallSynchronizer bottom_claw( |
| 651 | "bottom_claw", kPriority, kInterruptPriority, |
| 652 | ::std::move(claw_bottom_encoder_), &claw_bottom_sensors, true); |
| 653 | |
| 654 | while (run_) { |
| 655 | ::aos::time::PhasedLoopXMS(10, 9000); |
| 656 | RunIteration(); |
| 657 | |
| 658 | auto claw_position = |
| 659 | control_loops::claw_queue_group.position.MakeMessage(); |
| 660 | bottom_claw.set_position(&claw_position->bottom); |
| 661 | top_claw.set_position(&claw_position->top); |
| 662 | while (true) { |
| 663 | bottom_claw.StartIteration(); |
| 664 | top_claw.StartIteration(); |
| 665 | |
| 666 | // Wait more than the amount of time it takes for a digital input change |
| 667 | // to go from visible to software to having triggered an interrupt. |
| 668 | ::aos::time::SleepFor(::aos::time::Time::InUS(120)); |
| 669 | |
| 670 | if (bottom_claw.TryFinishingIteration() && top_claw.TryFinishingIteration()) { |
| 671 | break; |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | claw_position.Send(); |
| 676 | } |
| 677 | shooter.Quit(); |
| 678 | top_claw.Quit(); |
| 679 | bottom_claw.Quit(); |
| 680 | } |
| 681 | |
| 682 | void RunIteration() { |
| 683 | //::aos::time::TimeFreezer time_freezer; |
| 684 | DriverStation *ds = DriverStation::GetInstance(); |
| 685 | |
| 686 | bool bad_gyro = true; |
| 687 | // TODO(brians): Switch to LogInterval for these things. |
| 688 | /* |
| 689 | if (data->uninitialized_gyro) { |
| 690 | LOG(DEBUG, "uninitialized gyro\n"); |
| 691 | bad_gyro = true; |
| 692 | } else if (data->zeroing_gyro) { |
| 693 | LOG(DEBUG, "zeroing gyro\n"); |
| 694 | bad_gyro = true; |
| 695 | } else if (data->bad_gyro) { |
| 696 | LOG(ERROR, "bad gyro\n"); |
| 697 | bad_gyro = true; |
| 698 | } else if (data->old_gyro_reading) { |
| 699 | LOG(WARNING, "old/bad gyro reading\n"); |
| 700 | bad_gyro = true; |
| 701 | } else { |
| 702 | bad_gyro = false; |
| 703 | } |
| 704 | */ |
| 705 | |
| 706 | if (!bad_gyro) { |
| 707 | // TODO(austin): Read the gyro. |
| 708 | gyro_reading.MakeWithBuilder().angle(0).Send(); |
| 709 | } |
| 710 | |
| 711 | if (ds->SystemActive()) { |
| 712 | auto message = ::aos::controls::output_check_received.MakeMessage(); |
| 713 | // TODO(brians): Actually read a pulse value from the roboRIO. |
| 714 | message->pwm_value = 0; |
| 715 | message->pulse_length = -1; |
| 716 | LOG_STRUCT(DEBUG, "received", *message); |
| 717 | message.Send(); |
| 718 | } |
| 719 | |
| 720 | ::frc971::sensors::auto_mode.MakeWithBuilder() |
| 721 | .voltage(auto_selector_analog_->GetVoltage()) |
| 722 | .Send(); |
| 723 | |
| 724 | // TODO(austin): Calibrate the shifter constants again. |
| 725 | drivetrain.position.MakeWithBuilder() |
| 726 | .right_encoder(drivetrain_translate(right_encoder_->GetRaw())) |
| 727 | .left_encoder(-drivetrain_translate(left_encoder_->GetRaw())) |
| 728 | .left_shifter_position( |
| 729 | hall_translate(constants::GetValues().left_drive, |
| 730 | low_left_drive_hall_->GetVoltage(), |
| 731 | high_left_drive_hall_->GetVoltage())) |
| 732 | .right_shifter_position( |
| 733 | hall_translate(constants::GetValues().right_drive, |
| 734 | low_right_drive_hall_->GetVoltage(), |
| 735 | high_right_drive_hall_->GetVoltage())) |
| 736 | .battery_voltage(ds->GetBatteryVoltage()) |
| 737 | .Send(); |
| 738 | |
| 739 | // Signal that we are allive. |
| 740 | ::aos::controls::sensor_generation.MakeWithBuilder() |
| 741 | .reader_pid(getpid()) |
| 742 | .cape_resets(0) |
| 743 | .Send(); |
| 744 | } |
| 745 | |
| 746 | void Quit() { run_ = false; } |
| 747 | |
| 748 | private: |
| 749 | ::std::unique_ptr<AnalogInput> auto_selector_analog_; |
| 750 | |
| 751 | ::std::unique_ptr<Encoder> left_encoder_; |
| 752 | ::std::unique_ptr<Encoder> right_encoder_; |
| 753 | ::std::unique_ptr<AnalogInput> low_left_drive_hall_; |
| 754 | ::std::unique_ptr<AnalogInput> high_left_drive_hall_; |
| 755 | ::std::unique_ptr<AnalogInput> low_right_drive_hall_; |
| 756 | ::std::unique_ptr<AnalogInput> high_right_drive_hall_; |
| 757 | |
| 758 | ::std::unique_ptr<HallEffect> shooter_plunger_; |
| 759 | ::std::unique_ptr<HallEffect> shooter_latch_; |
| 760 | ::std::unique_ptr<HallEffect> shooter_distal_; |
| 761 | ::std::unique_ptr<HallEffect> shooter_proximal_; |
| 762 | ::std::unique_ptr<Encoder> shooter_encoder_; |
| 763 | |
| 764 | ::std::unique_ptr<HallEffect> claw_top_front_hall_; |
| 765 | ::std::unique_ptr<HallEffect> claw_top_calibration_hall_; |
| 766 | ::std::unique_ptr<HallEffect> claw_top_back_hall_; |
| 767 | ::std::unique_ptr<Encoder> claw_top_encoder_; |
| 768 | |
| 769 | ::std::unique_ptr<HallEffect> claw_bottom_front_hall_; |
| 770 | ::std::unique_ptr<HallEffect> claw_bottom_calibration_hall_; |
| 771 | ::std::unique_ptr<HallEffect> claw_bottom_back_hall_; |
| 772 | ::std::unique_ptr<Encoder> claw_bottom_encoder_; |
| 773 | |
| 774 | ::std::atomic<bool> run_; |
| 775 | DigitalGlitchFilter filter_; |
| 776 | }; |
| 777 | |
| 778 | class MotorWriter { |
| 779 | public: |
| 780 | MotorWriter() |
| 781 | : right_drivetrain_talon_(new Talon(2)), |
| 782 | left_drivetrain_talon_(new Talon(5)), |
| 783 | shooter_talon_(new Talon(6)), |
| 784 | top_claw_talon_(new Talon(1)), |
| 785 | bottom_claw_talon_(new Talon(0)), |
| 786 | left_tusk_talon_(new Talon(4)), |
| 787 | right_tusk_talon_(new Talon(3)), |
| 788 | intake1_talon_(new Talon(7)), |
| 789 | intake2_talon_(new Talon(8)), |
| 790 | left_shifter_(new Solenoid(6)), |
| 791 | right_shifter_(new Solenoid(7)), |
| 792 | shooter_latch_(new Solenoid(5)), |
| 793 | shooter_brake_(new Solenoid(4)), |
| 794 | compressor_(new Compressor()) { |
| 795 | compressor_->SetClosedLoopControl(true); |
| 796 | //right_drivetrain_talon_->EnableDeadbandElimination(true); |
| 797 | //left_drivetrain_talon_->EnableDeadbandElimination(true); |
| 798 | //shooter_talon_->EnableDeadbandElimination(true); |
| 799 | //top_claw_talon_->EnableDeadbandElimination(true); |
| 800 | //bottom_claw_talon_->EnableDeadbandElimination(true); |
| 801 | //left_tusk_talon_->EnableDeadbandElimination(true); |
| 802 | //right_tusk_talon_->EnableDeadbandElimination(true); |
| 803 | //intake1_talon_->EnableDeadbandElimination(true); |
| 804 | //intake2_talon_->EnableDeadbandElimination(true); |
| 805 | } |
| 806 | |
| 807 | // Maximum age of an output packet before the motors get zeroed instead. |
| 808 | static const int kOutputMaxAgeMS = 20; |
| 809 | static constexpr ::aos::time::Time kOldLogInterval = |
| 810 | ::aos::time::Time::InSeconds(0.5); |
| 811 | |
| 812 | void Run() { |
| 813 | //::aos::time::Time::EnableMockTime(); |
| 814 | while (true) { |
| 815 | //::aos::time::Time::UpdateMockTime(); |
| 816 | // 200 hz loop |
| 817 | ::aos::time::PhasedLoopXMS(5, 1000); |
| 818 | //::aos::time::Time::UpdateMockTime(); |
| 819 | |
| 820 | no_robot_state_.Print(); |
| 821 | fake_robot_state_.Print(); |
| 822 | sending_failed_.Print(); |
| 823 | |
| 824 | RunIteration(); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | virtual void RunIteration() { |
| 829 | ::aos::robot_state.FetchLatest(); |
| 830 | if (!::aos::robot_state.get()) { |
| 831 | LOG_INTERVAL(no_robot_state_); |
| 832 | return; |
| 833 | } |
| 834 | if (::aos::robot_state->fake) { |
| 835 | LOG_INTERVAL(fake_robot_state_); |
| 836 | return; |
| 837 | } |
| 838 | |
| 839 | // TODO(austin): Write the motor values out when they change! One thread |
| 840 | // per queue. |
| 841 | // TODO(austin): Figure out how to synchronize everything to the PWM update |
| 842 | // rate, or get the pulse to go out clocked off of this code. That would be |
| 843 | // awesome. |
| 844 | { |
| 845 | static auto &drivetrain = ::frc971::control_loops::drivetrain.output; |
| 846 | drivetrain.FetchLatest(); |
| 847 | if (drivetrain.IsNewerThanMS(kOutputMaxAgeMS)) { |
| 848 | LOG_STRUCT(DEBUG, "will output", *drivetrain); |
| 849 | left_drivetrain_talon_->Set(-drivetrain->left_voltage / 12.0); |
| 850 | right_drivetrain_talon_->Set(drivetrain->right_voltage / 12.0); |
| 851 | left_shifter_->Set(drivetrain->left_high); |
| 852 | right_shifter_->Set(drivetrain->right_high); |
| 853 | } else { |
| 854 | left_drivetrain_talon_->Disable(); |
| 855 | right_drivetrain_talon_->Disable(); |
| 856 | LOG_INTERVAL(drivetrain_old_); |
| 857 | } |
| 858 | drivetrain_old_.Print(); |
| 859 | } |
| 860 | |
| 861 | { |
| 862 | static auto &shooter = |
| 863 | ::frc971::control_loops::shooter_queue_group.output; |
| 864 | shooter.FetchLatest(); |
| 865 | if (shooter.IsNewerThanMS(kOutputMaxAgeMS)) { |
| 866 | LOG_STRUCT(DEBUG, "will output", *shooter); |
| 867 | shooter_talon_->Set(shooter->voltage / 12.0); |
| 868 | shooter_latch_->Set(!shooter->latch_piston); |
| 869 | shooter_brake_->Set(!shooter->brake_piston); |
| 870 | } else { |
| 871 | shooter_talon_->Disable(); |
| 872 | shooter_brake_->Set(false); // engage the brake |
| 873 | LOG_INTERVAL(shooter_old_); |
| 874 | } |
| 875 | shooter_old_.Print(); |
| 876 | } |
| 877 | |
| 878 | { |
| 879 | static auto &claw = ::frc971::control_loops::claw_queue_group.output; |
| 880 | claw.FetchLatest(); |
| 881 | if (claw.IsNewerThanMS(kOutputMaxAgeMS)) { |
| 882 | LOG_STRUCT(DEBUG, "will output", *claw); |
| 883 | intake1_talon_->Set(claw->intake_voltage / 12.0); |
| 884 | intake2_talon_->Set(claw->intake_voltage / 12.0); |
| 885 | bottom_claw_talon_->Set(-claw->bottom_claw_voltage / 12.0); |
| 886 | top_claw_talon_->Set(claw->top_claw_voltage / 12.0); |
| 887 | left_tusk_talon_->Set(claw->tusk_voltage / 12.0); |
| 888 | right_tusk_talon_->Set(-claw->tusk_voltage / 12.0); |
| 889 | } else { |
| 890 | intake1_talon_->Disable(); |
| 891 | intake2_talon_->Disable(); |
| 892 | bottom_claw_talon_->Disable(); |
| 893 | top_claw_talon_->Disable(); |
| 894 | left_tusk_talon_->Disable(); |
| 895 | right_tusk_talon_->Disable(); |
| 896 | LOG_INTERVAL(claw_old_); |
| 897 | } |
| 898 | claw_old_.Print(); |
| 899 | } |
| 900 | } |
| 901 | |
| 902 | SimpleLogInterval drivetrain_old_ = |
| 903 | SimpleLogInterval(kOldLogInterval, WARNING, "drivetrain too old"); |
| 904 | SimpleLogInterval shooter_old_ = |
| 905 | SimpleLogInterval(kOldLogInterval, WARNING, "shooter too old"); |
| 906 | SimpleLogInterval claw_old_ = |
| 907 | SimpleLogInterval(kOldLogInterval, WARNING, "claw too old"); |
| 908 | |
| 909 | ::std::unique_ptr<Talon> right_drivetrain_talon_; |
| 910 | ::std::unique_ptr<Talon> left_drivetrain_talon_; |
| 911 | ::std::unique_ptr<Talon> shooter_talon_; |
| 912 | ::std::unique_ptr<Talon> top_claw_talon_; |
| 913 | ::std::unique_ptr<Talon> bottom_claw_talon_; |
| 914 | ::std::unique_ptr<Talon> left_tusk_talon_; |
| 915 | ::std::unique_ptr<Talon> right_tusk_talon_; |
| 916 | ::std::unique_ptr<Talon> intake1_talon_; |
| 917 | ::std::unique_ptr<Talon> intake2_talon_; |
| 918 | |
| 919 | ::std::unique_ptr<Solenoid> left_shifter_; |
| 920 | ::std::unique_ptr<Solenoid> right_shifter_; |
| 921 | ::std::unique_ptr<Solenoid> shooter_latch_; |
| 922 | ::std::unique_ptr<Solenoid> shooter_brake_; |
| 923 | |
| 924 | ::std::unique_ptr<Compressor> compressor_; |
| 925 | |
| 926 | ::aos::util::SimpleLogInterval no_robot_state_ = |
| 927 | ::aos::util::SimpleLogInterval(::aos::time::Time::InSeconds(0.5), INFO, |
| 928 | "no robot state -> not outputting"); |
| 929 | ::aos::util::SimpleLogInterval fake_robot_state_ = |
| 930 | ::aos::util::SimpleLogInterval(::aos::time::Time::InSeconds(0.5), DEBUG, |
| 931 | "fake robot state -> not outputting"); |
| 932 | ::aos::util::SimpleLogInterval sending_failed_ = |
| 933 | ::aos::util::SimpleLogInterval(::aos::time::Time::InSeconds(0.1), WARNING, |
| 934 | "sending outputs failed"); |
| 935 | }; |
| 936 | |
| 937 | constexpr ::aos::time::Time MotorWriter::kOldLogInterval; |
| 938 | |
| 939 | class JoystickSender { |
| 940 | public: |
| 941 | JoystickSender() : run_(true) {} |
| 942 | |
| 943 | void operator()() { |
| 944 | DriverStation *ds = DriverStation::GetInstance(); |
| 945 | SetThreadRealtimePriority(29); |
| 946 | uint16_t team_id = ::aos::network::GetTeamNumber(); |
| 947 | |
| 948 | while (run_) { |
| 949 | ds->WaitForData(); |
| 950 | auto new_state = ::aos::robot_state.MakeMessage(); |
| 951 | |
| 952 | new_state->test_mode = ds->IsAutonomous(); |
| 953 | new_state->fms_attached = ds->IsFMSAttached(); |
| 954 | new_state->enabled = ds->IsEnabled(); |
| 955 | new_state->autonomous = ds->IsAutonomous(); |
| 956 | new_state->team_id = team_id; |
| 957 | new_state->fake = false; |
| 958 | |
| 959 | for (int i = 0; i < 4; ++i) { |
| 960 | new_state->joysticks[i].buttons = ds->GetStickButtons(i); |
| 961 | for (int j = 0; j < 4; ++j) { |
| 962 | new_state->joysticks[i].axis[j] = ds->GetStickAxis(i, j + 1); |
| 963 | } |
| 964 | } |
| 965 | LOG_STRUCT(DEBUG, "robot_state", *new_state); |
| 966 | |
| 967 | if (!new_state.Send()) { |
| 968 | LOG(WARNING, "sending robot_state failed\n"); |
| 969 | } |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | void Quit() { run_ = false; } |
| 974 | |
| 975 | private: |
| 976 | ::std::atomic<bool> run_; |
| 977 | }; |
| 978 | |
| 979 | } // namespace output |
| 980 | } // namespace frc971 |
| 981 | |
| 982 | class WPILibRobot : public RobotBase { |
| 983 | public: |
| 984 | virtual void StartCompetition() { |
| 985 | ::aos::Init(); |
| 986 | ::frc971::output::MotorWriter writer; |
| 987 | ::frc971::output::SensorReader reader; |
| 988 | ::std::thread reader_thread(::std::ref(reader)); |
| 989 | ::frc971::output::JoystickSender joystick_sender; |
| 990 | ::std::thread joystick_thread(::std::ref(joystick_sender)); |
| 991 | writer.Run(); |
| 992 | LOG(ERROR, "Exiting WPILibRobot\n"); |
| 993 | reader.Quit(); |
| 994 | reader_thread.join(); |
| 995 | joystick_sender.Quit(); |
| 996 | joystick_thread.join(); |
| 997 | ::aos::Cleanup(); |
| 998 | } |
| 999 | }; |
| 1000 | |
| 1001 | START_ROBOT_CLASS(WPILibRobot); |