blob: 586ffb62a8d7419e51371c7a34613a988d2b20e4 [file] [log] [blame] [edit]
#include "y2023/localizer/localizer.h"
#include "absl/flags/flag.h"
#include "aos/containers/sized_array.h"
#include "frc971/control_loops/drivetrain/localizer_generated.h"
#include "frc971/control_loops/pose.h"
#include "frc971/vision/target_map_utils.h"
#include "y2023/constants.h"
ABSL_FLAG(double, max_pose_error, 1e-6,
"Throw out target poses with a higher pose error than this");
ABSL_FLAG(double, max_pose_error_ratio, 0.4,
"Throw out target poses with a higher pose error ratio than this");
ABSL_FLAG(double, distortion_noise_scalar, 1.0,
"Scale the target pose distortion factor by this when computing "
"the noise.");
ABSL_FLAG(
double, max_implied_yaw_error, 3.0,
"Reject target poses that imply a robot yaw of more than this many degrees "
"off from our estimate.");
ABSL_FLAG(
double, max_implied_teleop_yaw_error, 30.0,
"Reject target poses that imply a robot yaw of more than this many degrees "
"off from our estimate.");
ABSL_FLAG(double, max_distance_to_target, 5.0,
"Reject target poses that have a 3d distance of more than this "
"many meters.");
ABSL_FLAG(double, max_auto_image_robot_speed, 2.0,
"Reject target poses when the robot is travelling faster than "
"this speed in auto.");
namespace y2023::localizer {
namespace {
constexpr std::array<std::string_view, Localizer::kNumCameras> kPisToUse{
"pi1", "pi2", "pi3", "pi4"};
size_t CameraIndexForName(std::string_view name) {
for (size_t index = 0; index < kPisToUse.size(); ++index) {
if (name == kPisToUse.at(index)) {
return index;
}
}
LOG(FATAL) << "No camera named " << name;
}
std::map<uint64_t, Localizer::Transform> GetTargetLocations(
const Constants &constants) {
CHECK(constants.has_target_map());
CHECK(constants.target_map()->has_target_poses());
std::map<uint64_t, Localizer::Transform> transforms;
for (const frc971::vision::TargetPoseFbs *target :
*constants.target_map()->target_poses()) {
CHECK(target->has_id());
CHECK(target->has_position());
CHECK(target->has_orientation());
CHECK_EQ(0u, transforms.count(target->id()));
transforms[target->id()] = PoseToTransform(target);
}
return transforms;
}
} // namespace
std::array<Localizer::CameraState, Localizer::kNumCameras>
Localizer::MakeCameras(const Constants &constants, aos::EventLoop *event_loop) {
CHECK(constants.has_cameras());
std::array<Localizer::CameraState, Localizer::kNumCameras> cameras;
for (const CameraConfiguration *camera : *constants.cameras()) {
CHECK(camera->has_calibration());
const frc971::vision::calibration::CameraCalibration *calibration =
camera->calibration();
CHECK(!calibration->has_turret_extrinsics())
<< "The 2023 robot does not have a turret.";
CHECK(calibration->has_node_name());
const size_t index =
CameraIndexForName(calibration->node_name()->string_view());
// We default-construct the extrinsics matrix to all-zeros; use that to
// sanity-check whether we have populated the matrix yet or not.
CHECK(cameras.at(index).extrinsics.norm() == 0)
<< "Got multiple calibrations for "
<< calibration->node_name()->string_view();
CHECK(calibration->has_fixed_extrinsics());
cameras.at(index).extrinsics =
frc971::control_loops::drivetrain::FlatbufferToTransformationMatrix(
*calibration->fixed_extrinsics());
cameras.at(index).debug_sender = event_loop->MakeSender<Visualization>(
absl::StrCat("/", calibration->node_name()->string_view(), "/camera"));
}
for (const CameraState &camera : cameras) {
CHECK(camera.extrinsics.norm() != 0) << "Missing a camera calibration.";
}
return cameras;
}
Localizer::Localizer(
aos::EventLoop *event_loop,
const frc971::control_loops::drivetrain::DrivetrainConfig<double> dt_config)
: event_loop_(event_loop),
dt_config_(dt_config),
constants_fetcher_(event_loop),
cameras_(MakeCameras(constants_fetcher_.constants(), event_loop)),
target_poses_(GetTargetLocations(constants_fetcher_.constants())),
down_estimator_(dt_config),
ekf_(dt_config),
observations_(&ekf_),
imu_watcher_(event_loop, dt_config,
y2023::constants::Values::DrivetrainEncoderToMeters(1),
std::bind(&Localizer::HandleImu, this, std::placeholders::_1,
std::placeholders::_2, std::placeholders::_3,
std::placeholders::_4, std::placeholders::_5),
frc971::controls::ImuWatcher::TimestampSource::kPi),
utils_(event_loop),
status_sender_(event_loop->MakeSender<Status>("/localizer")),
output_sender_(event_loop->MakeSender<frc971::controls::LocalizerOutput>(
"/localizer")),
server_statistics_fetcher_(
event_loop_->MakeFetcher<aos::message_bridge::ServerStatistics>(
"/aos")),
client_statistics_fetcher_(
event_loop_->MakeFetcher<aos::message_bridge::ClientStatistics>(
"/aos")) {
if (dt_config_.is_simulated) {
down_estimator_.assume_perfect_gravity();
}
for (size_t camera_index = 0; camera_index < kNumCameras; ++camera_index) {
const std::string_view pi_name = kPisToUse.at(camera_index);
event_loop->MakeWatcher(
absl::StrCat("/", pi_name, "/camera"),
[this, pi_name,
camera_index](const frc971::vision::TargetMap &targets) {
CHECK(targets.has_target_poses());
CHECK(targets.has_monotonic_timestamp_ns());
const std::optional<aos::monotonic_clock::duration> clock_offset =
utils_.ClockOffset(pi_name);
if (!clock_offset.has_value()) {
VLOG(1) << "Rejecting image due to disconnected message bridge at "
<< event_loop_->monotonic_now();
cameras_.at(camera_index)
.rejection_counter.IncrementError(
RejectionReason::MESSAGE_BRIDGE_DISCONNECTED);
return;
}
const aos::monotonic_clock::time_point pi_capture_time(
std::chrono::nanoseconds(targets.monotonic_timestamp_ns()) -
clock_offset.value());
const aos::monotonic_clock::time_point capture_time =
pi_capture_time - imu_watcher_.pico_offset_error();
VLOG(2) << "Capture time of "
<< targets.monotonic_timestamp_ns() * 1e-9
<< " clock offset of "
<< aos::time::DurationInSeconds(clock_offset.value())
<< " pico error "
<< aos::time::DurationInSeconds(
imu_watcher_.pico_offset_error());
if (pi_capture_time > event_loop_->context().monotonic_event_time) {
VLOG(1) << "Rejecting image due to being from future at "
<< event_loop_->monotonic_now() << " with timestamp of "
<< pi_capture_time << " and event time pf "
<< event_loop_->context().monotonic_event_time;
cameras_.at(camera_index)
.rejection_counter.IncrementError(
RejectionReason::IMAGE_FROM_FUTURE);
return;
}
auto builder = cameras_.at(camera_index).debug_sender.MakeBuilder();
aos::SizedArray<flatbuffers::Offset<TargetEstimateDebug>, 20>
debug_offsets;
for (const frc971::vision::TargetPoseFbs *target :
*targets.target_poses()) {
VLOG(1) << "Handling target from " << camera_index;
auto offset = HandleTarget(camera_index, capture_time, *target,
builder.fbb());
if (debug_offsets.size() < debug_offsets.capacity()) {
debug_offsets.push_back(offset);
} else {
AOS_LOG(ERROR, "Dropped message from debug vector.");
}
}
auto vector_offset = builder.fbb()->CreateVector(
debug_offsets.data(), debug_offsets.size());
auto stats_offset =
StatisticsForCamera(cameras_.at(camera_index), builder.fbb());
Visualization::Builder visualize_builder(*builder.fbb());
visualize_builder.add_targets(vector_offset);
visualize_builder.add_statistics(stats_offset);
builder.CheckOk(builder.Send(visualize_builder.Finish()));
SendStatus();
});
}
event_loop_->AddPhasedLoop([this](int) { SendOutput(); },
std::chrono::milliseconds(20));
event_loop_->MakeWatcher(
"/drivetrain",
[this](
const frc971::control_loops::drivetrain::LocalizerControl &control) {
const double theta = control.keep_current_theta()
? ekf_.X_hat(StateIdx::kTheta)
: control.theta();
const double left_encoder = ekf_.X_hat(StateIdx::kLeftEncoder);
const double right_encoder = ekf_.X_hat(StateIdx::kRightEncoder);
ekf_.ResetInitialState(
t_,
(HybridEkf::State() << control.x(), control.y(), theta,
left_encoder, 0, right_encoder, 0, 0, 0, 0, 0, 0)
.finished(),
ekf_.P());
});
ekf_.set_ignore_accel(true);
// Priority should be lower than the imu reading process, but non-zero.
event_loop->SetRuntimeRealtimePriority(10);
event_loop->OnRun([this, event_loop]() {
ekf_.ResetInitialState(event_loop->monotonic_now(),
HybridEkf::State::Zero(), ekf_.P());
});
}
void Localizer::HandleImu(aos::monotonic_clock::time_point sample_time_pico,
aos::monotonic_clock::time_point sample_time_pi,
std::optional<Eigen::Vector2d> encoders,
Eigen::Vector3d gyro, Eigen::Vector3d accel) {
last_encoder_readings_ = encoders;
// Ignore ivnalid readings; the HybridEkf will handle it reasonably.
if (!encoders.has_value()) {
return;
}
if (t_ == aos::monotonic_clock::min_time) {
t_ = sample_time_pico;
}
if (t_ + 10 * frc971::controls::ImuWatcher::kNominalDt < sample_time_pico) {
t_ = sample_time_pico;
++clock_resets_;
}
const aos::monotonic_clock::duration dt = sample_time_pico - t_;
t_ = sample_time_pico;
// We don't actually use the down estimator currently, but it's really
// convenient for debugging.
down_estimator_.Predict(gyro, accel, dt);
const double yaw_rate = (dt_config_.imu_transform * gyro)(2);
ekf_.UpdateEncodersAndGyro(encoders.value()(0), encoders.value()(1), yaw_rate,
utils_.VoltageOrZero(sample_time_pi), accel, t_);
SendStatus();
}
flatbuffers::Offset<TargetEstimateDebug> Localizer::RejectImage(
int camera_index, RejectionReason reason,
TargetEstimateDebug::Builder *builder) {
builder->add_accepted(false);
builder->add_rejection_reason(reason);
cameras_.at(camera_index).rejection_counter.IncrementError(reason);
return builder->Finish();
}
bool Localizer::UseAprilTag(uint64_t target_id) {
if (target_poses_.count(target_id) == 0) {
return false;
}
const flatbuffers::Vector<uint64_t> *ignore_tags = nullptr;
switch (utils_.Alliance()) {
case aos::Alliance::kRed:
ignore_tags = constants_fetcher_.constants().ignore_targets()->red();
CHECK(ignore_tags != nullptr);
break;
case aos::Alliance::kBlue:
ignore_tags = constants_fetcher_.constants().ignore_targets()->blue();
CHECK(ignore_tags != nullptr);
break;
case aos::Alliance::kInvalid:
return true;
}
return std::find(ignore_tags->begin(), ignore_tags->end(), target_id) ==
ignore_tags->end();
}
flatbuffers::Offset<TargetEstimateDebug> Localizer::HandleTarget(
int camera_index, const aos::monotonic_clock::time_point capture_time,
const frc971::vision::TargetPoseFbs &target,
flatbuffers::FlatBufferBuilder *debug_fbb) {
++total_candidate_targets_;
++cameras_.at(camera_index).total_candidate_targets;
TargetEstimateDebug::Builder builder(*debug_fbb);
builder.add_camera(camera_index);
builder.add_image_age_sec(aos::time::DurationInSeconds(
event_loop_->monotonic_now() - capture_time));
builder.add_image_monotonic_timestamp_ns(
std::chrono::duration_cast<std::chrono::nanoseconds>(
capture_time.time_since_epoch())
.count());
const uint64_t target_id = target.id();
builder.add_april_tag(target_id);
VLOG(2) << aos::FlatbufferToJson(&target);
if (!UseAprilTag(target_id)) {
VLOG(1) << "Rejecting target due to invalid ID " << target_id;
return RejectImage(camera_index, RejectionReason::NO_SUCH_TARGET, &builder);
}
const Transform &H_field_target = target_poses_.at(target_id);
const Transform &H_robot_camera = cameras_.at(camera_index).extrinsics;
const Transform H_camera_target = PoseToTransform(&target);
const Transform H_field_camera = H_field_target * H_camera_target.inverse();
// Back out the robot position that is implied by the current camera
// reading. Note that the Pose object ignores any roll/pitch components, so
// if the camera's extrinsics for pitch/roll are off, this should just
// ignore it.
const frc971::control_loops::Pose measured_camera_pose(H_field_camera);
builder.add_camera_x(measured_camera_pose.rel_pos().x());
builder.add_camera_y(measured_camera_pose.rel_pos().y());
// Because the camera uses Z as forwards rather than X, just calculate the
// debugging theta value using the transformation matrix directly.
builder.add_camera_theta(
std::atan2(H_field_camera(1, 2), H_field_camera(0, 2)));
// Calculate the camera-to-robot transformation matrix ignoring the
// pitch/roll of the camera.
const Transform H_camera_robot_stripped =
frc971::control_loops::Pose(H_robot_camera)
.AsTransformationMatrix()
.inverse();
const frc971::control_loops::Pose measured_pose(
measured_camera_pose.AsTransformationMatrix() * H_camera_robot_stripped);
// This "Z" is the robot pose directly implied by the camera results.
const Eigen::Matrix<double, 3, 1> Z(measured_pose.rel_pos().x(),
measured_pose.rel_pos().y(),
measured_pose.rel_theta());
builder.add_implied_robot_x(Z(Corrector::kX));
builder.add_implied_robot_y(Z(Corrector::kY));
builder.add_implied_robot_theta(Z(Corrector::kTheta));
Eigen::AngleAxisd rvec_camera_target(
Eigen::Affine3d(H_camera_target).rotation());
// Use y angle (around vertical axis) to compute skew
double skew = rvec_camera_target.axis().y() * rvec_camera_target.angle();
builder.add_skew(skew);
double distance_to_target =
Eigen::Affine3d(H_camera_target).translation().norm();
// TODO(james): Tune this. Also, gain schedule for auto mode?
Eigen::Matrix<double, 3, 1> noises(1.0, 1.0, 0.5);
noises /= 4.0;
// Scale noise by the distortion factor for this detection
noises *=
(1.0 + absl::GetFlag(FLAGS_distortion_noise_scalar) *
target.distortion_factor() * std::exp(distance_to_target));
Eigen::Matrix3d R = Eigen::Matrix3d::Zero();
R.diagonal() = noises.cwiseAbs2();
// In order to do the EKF correction, we determine the expected state based
// on the state at the time the image was captured; however, we insert the
// correction update itself at the current time. This is technically not
// quite correct, but saves substantial CPU usage & code complexity by
// making
// it so that we don't have to constantly rewind the entire EKF history.
const std::optional<State> state_at_capture =
ekf_.LastStateBeforeTime(capture_time);
if (!state_at_capture.has_value()) {
VLOG(1) << "Rejecting image due to being too old.";
return RejectImage(camera_index, RejectionReason::IMAGE_TOO_OLD, &builder);
} else if (target.pose_error() > absl::GetFlag(FLAGS_max_pose_error)) {
VLOG(1) << "Rejecting target due to high pose error "
<< target.pose_error();
return RejectImage(camera_index, RejectionReason::HIGH_POSE_ERROR,
&builder);
} else if (target.pose_error_ratio() >
absl::GetFlag(FLAGS_max_pose_error_ratio)) {
VLOG(1) << "Rejecting target due to high pose error ratio "
<< target.pose_error_ratio();
return RejectImage(camera_index, RejectionReason::HIGH_POSE_ERROR_RATIO,
&builder);
}
double theta_at_capture = state_at_capture.value()(StateIdx::kTheta);
double camera_implied_theta = Z(Corrector::kTheta);
constexpr double kDegToRad = M_PI / 180.0;
const double robot_speed =
(state_at_capture.value()(StateIdx::kLeftVelocity) +
state_at_capture.value()(StateIdx::kRightVelocity)) /
2.0;
const double yaw_threshold =
(utils_.MaybeInAutonomous()
? absl::GetFlag(FLAGS_max_implied_yaw_error)
: absl::GetFlag(FLAGS_max_implied_teleop_yaw_error)) *
kDegToRad;
if (utils_.MaybeInAutonomous() &&
(std::abs(robot_speed) >
absl::GetFlag(FLAGS_max_auto_image_robot_speed))) {
return RejectImage(camera_index, RejectionReason::ROBOT_TOO_FAST, &builder);
} else if (std::abs(aos::math::NormalizeAngle(
camera_implied_theta - theta_at_capture)) > yaw_threshold) {
return RejectImage(camera_index, RejectionReason::HIGH_IMPLIED_YAW_ERROR,
&builder);
} else if (distance_to_target > absl::GetFlag(FLAGS_max_distance_to_target)) {
return RejectImage(camera_index, RejectionReason::HIGH_DISTANCE_TO_TARGET,
&builder);
}
const Input U = ekf_.MostRecentInput();
VLOG(1) << "previous state " << ekf_.X_hat().topRows<3>().transpose();
const State prior_state = ekf_.X_hat();
// For the correction step, instead of passing in the measurement directly,
// we pass in (0, 0, 0) as the measurement and then for the expected
// measurement (Zhat) we calculate the error between the pose implied by
// the camera measurement and the current estimate of the
// pose. This doesn't affect any of the math, it just makes the code a bit
// more convenient to write given the Correct() interface we already have.
observations_.CorrectKnownH(Eigen::Vector3d::Zero(), &U,
Corrector(state_at_capture.value(), Z), R, t_);
++total_accepted_targets_;
++cameras_.at(camera_index).total_accepted_targets;
VLOG(1) << "new state " << ekf_.X_hat().topRows<3>().transpose();
builder.add_correction_x(ekf_.X_hat()(StateIdx::kX) -
prior_state(StateIdx::kX));
builder.add_correction_y(ekf_.X_hat()(StateIdx::kY) -
prior_state(StateIdx::kY));
builder.add_correction_theta(ekf_.X_hat()(StateIdx::kTheta) -
prior_state(StateIdx::kTheta));
builder.add_accepted(true);
return builder.Finish();
}
Localizer::Output Localizer::Corrector::H(const State &, const Input &) {
CHECK(Z_.allFinite());
Eigen::Vector3d Zhat = H_ * state_at_capture_ - Z_;
// Rewrap angle difference to put it back in range.
Zhat(2) = aos::math::NormalizeAngle(Zhat(2));
VLOG(1) << "Zhat " << Zhat.transpose() << " Z_ " << Z_.transpose()
<< " state " << (H_ * state_at_capture_).transpose();
return Zhat;
}
void Localizer::SendOutput() {
auto builder = output_sender_.MakeBuilder();
frc971::controls::LocalizerOutput::Builder output_builder =
builder.MakeBuilder<frc971::controls::LocalizerOutput>();
output_builder.add_monotonic_timestamp_ns(
std::chrono::duration_cast<std::chrono::nanoseconds>(
event_loop_->context().monotonic_event_time.time_since_epoch())
.count());
output_builder.add_x(ekf_.X_hat(StateIdx::kX));
output_builder.add_y(ekf_.X_hat(StateIdx::kY));
output_builder.add_theta(ekf_.X_hat(StateIdx::kTheta));
output_builder.add_zeroed(imu_watcher_.zeroer().Zeroed());
output_builder.add_image_accepted_count(total_accepted_targets_);
const Eigen::Quaterniond &orientation =
Eigen::AngleAxis<double>(ekf_.X_hat(StateIdx::kTheta),
Eigen::Vector3d::UnitZ()) *
down_estimator_.X_hat();
frc971::controls::Quaternion quaternion;
quaternion.mutate_x(orientation.x());
quaternion.mutate_y(orientation.y());
quaternion.mutate_z(orientation.z());
quaternion.mutate_w(orientation.w());
output_builder.add_orientation(&quaternion);
server_statistics_fetcher_.Fetch();
client_statistics_fetcher_.Fetch();
bool pis_connected = true;
if (server_statistics_fetcher_.get()) {
for (const auto *pi_server_status :
*server_statistics_fetcher_->connections()) {
if (pi_server_status->state() ==
aos::message_bridge::State::DISCONNECTED &&
pi_server_status->node()->name()->string_view() != "logger") {
pis_connected = false;
}
}
}
if (client_statistics_fetcher_.get()) {
for (const auto *pi_client_status :
*client_statistics_fetcher_->connections()) {
if (pi_client_status->state() ==
aos::message_bridge::State::DISCONNECTED &&
pi_client_status->node()->name()->string_view() != "logger") {
pis_connected = false;
}
}
}
output_builder.add_all_pis_connected(pis_connected);
builder.CheckOk(builder.Send(output_builder.Finish()));
}
flatbuffers::Offset<frc971::control_loops::drivetrain::LocalizerState>
Localizer::PopulateState(const State &X_hat,
flatbuffers::FlatBufferBuilder *fbb) {
frc971::control_loops::drivetrain::LocalizerState::Builder builder(*fbb);
builder.add_x(X_hat(StateIdx::kX));
builder.add_y(X_hat(StateIdx::kY));
builder.add_theta(X_hat(StateIdx::kTheta));
builder.add_left_velocity(X_hat(StateIdx::kLeftVelocity));
builder.add_right_velocity(X_hat(StateIdx::kRightVelocity));
builder.add_left_encoder(X_hat(StateIdx::kLeftEncoder));
builder.add_right_encoder(X_hat(StateIdx::kRightEncoder));
builder.add_left_voltage_error(X_hat(StateIdx::kLeftVoltageError));
builder.add_right_voltage_error(X_hat(StateIdx::kRightVoltageError));
builder.add_angular_error(X_hat(StateIdx::kAngularError));
builder.add_longitudinal_velocity_offset(
X_hat(StateIdx::kLongitudinalVelocityOffset));
builder.add_lateral_velocity(X_hat(StateIdx::kLateralVelocity));
return builder.Finish();
}
flatbuffers::Offset<ImuStatus> Localizer::PopulateImu(
flatbuffers::FlatBufferBuilder *fbb) const {
const auto zeroer_offset = imu_watcher_.zeroer().PopulateStatus(fbb);
const auto failures_offset = imu_watcher_.PopulateImuFailures(fbb);
ImuStatus::Builder builder(*fbb);
builder.add_zeroed(imu_watcher_.zeroer().Zeroed());
builder.add_faulted_zero(imu_watcher_.zeroer().Faulted());
builder.add_zeroing(zeroer_offset);
if (imu_watcher_.pico_offset().has_value()) {
builder.add_pico_offset_ns(imu_watcher_.pico_offset().value().count());
builder.add_pico_offset_error_ns(imu_watcher_.pico_offset_error().count());
}
if (last_encoder_readings_.has_value()) {
builder.add_left_encoder(last_encoder_readings_.value()(0));
builder.add_right_encoder(last_encoder_readings_.value()(1));
}
builder.add_imu_failures(failures_offset);
return builder.Finish();
}
flatbuffers::Offset<CumulativeStatistics> Localizer::StatisticsForCamera(
const CameraState &camera, flatbuffers::FlatBufferBuilder *fbb) {
const auto counts_offset = camera.rejection_counter.PopulateCounts(fbb);
CumulativeStatistics::Builder stats_builder(*fbb);
stats_builder.add_total_accepted(camera.total_accepted_targets);
stats_builder.add_total_candidates(camera.total_candidate_targets);
stats_builder.add_rejection_reasons(counts_offset);
return stats_builder.Finish();
}
void Localizer::SendStatus() {
auto builder = status_sender_.MakeBuilder();
std::array<flatbuffers::Offset<CumulativeStatistics>, kNumCameras>
stats_offsets;
for (size_t ii = 0; ii < kNumCameras; ++ii) {
stats_offsets.at(ii) = StatisticsForCamera(cameras_.at(ii), builder.fbb());
}
auto stats_offset =
builder.fbb()->CreateVector(stats_offsets.data(), stats_offsets.size());
auto down_estimator_offset =
down_estimator_.PopulateStatus(builder.fbb(), t_);
auto imu_offset = PopulateImu(builder.fbb());
auto state_offset = PopulateState(ekf_.X_hat(), builder.fbb());
Status::Builder status_builder = builder.MakeBuilder<Status>();
status_builder.add_state(state_offset);
status_builder.add_down_estimator(down_estimator_offset);
status_builder.add_imu(imu_offset);
status_builder.add_statistics(stats_offset);
builder.CheckOk(builder.Send(status_builder.Finish()));
}
} // namespace y2023::localizer