blob: b7fed9a52fc4e7f76777174f0c89dbeb4538461e [file] [log] [blame]
#include "y2019/vision/target_finder.h"
#include <condition_variable>
#include <fstream>
#include <mutex>
#include <random>
#include <thread>
#include "aos/vision/blob/codec.h"
#include "aos/vision/blob/find_blob.h"
#include "aos/vision/events/socket_types.h"
#include "aos/vision/events/udp.h"
#include "y2019/jevois/camera/image_stream.h"
#include "y2019/jevois/camera/reader.h"
#include "y2019/jevois/serial.h"
#include "y2019/jevois/structures.h"
#include "y2019/jevois/uart.h"
#include "y2019/vision/image_writer.h"
// This has to be last to preserve compatibility with other headers using AOS
// logging.
#include "glog/logging.h"
using ::aos::events::DataSocket;
using ::aos::events::RXUdpSocket;
using ::aos::events::TCPServer;
using ::aos::vision::DataRef;
using ::aos::vision::Int32Codec;
using ::aos::monotonic_clock;
using ::y2019::jevois::open_via_terminos;
using aos::vision::Segment;
class CameraStream : public ::y2019::camera::ImageStreamEvent {
public:
CameraStream(::aos::vision::CameraParams params, const ::std::string &fname)
: ImageStreamEvent(fname, params) {}
void ProcessImage(DataRef data, monotonic_clock::time_point monotonic_now) {
LOG(INFO) << "got frame: " << data.size();
if (on_frame_) on_frame_(data, monotonic_now);
}
void set_on_frame(const std::function<
void(DataRef, monotonic_clock::time_point)> &on_frame) {
on_frame_ = on_frame;
}
private:
std::function<void(DataRef, monotonic_clock::time_point)> on_frame_;
};
int open_terminos(const char *tty_name) { return open_via_terminos(tty_name); }
std::string GetFileContents(const std::string &filename) {
std::ifstream in(filename, std::ios::in | std::ios::binary);
if (in) {
std::string contents;
in.seekg(0, std::ios::end);
contents.resize(in.tellg());
in.seekg(0, std::ios::beg);
in.read(&contents[0], contents.size());
in.close();
return (contents);
}
fprintf(stderr, "Could not read file: %s\n", filename.c_str());
exit(-1);
}
using aos::vision::ImageRange;
using aos::vision::RangeImage;
using aos::vision::ImageFormat;
using y2019::vision::TargetFinder;
using y2019::vision::IntermediateResult;
using y2019::vision::Target;
class TargetProcessPool {
public:
// The number of threads we'll use.
static constexpr int kThreads = 4;
TargetProcessPool(TargetFinder *finder);
~TargetProcessPool();
std::vector<IntermediateResult> Process(std::vector<const Target *> &&inputs,
bool verbose);
private:
// The main function for a thread.
void RunThread();
std::array<std::thread, kThreads> threads_;
// Coordinates access to results_/inputs_ and coordinates with
// condition_variable_.
std::mutex mutex_;
// Signals changes to results_/inputs_ and quit_.
std::condition_variable condition_variable_;
bool quit_ = false;
bool verbose_ = false;
std::vector<const Target *> inputs_;
std::vector<IntermediateResult> results_;
TargetFinder *const finder_;
};
TargetProcessPool::TargetProcessPool(TargetFinder *finder) : finder_(finder) {
for (int i = 0; i < kThreads; ++i) {
threads_[i] = std::thread([this]() { RunThread(); });
}
}
TargetProcessPool::~TargetProcessPool() {
{
std::unique_lock<std::mutex> locker(mutex_);
quit_ = true;
condition_variable_.notify_all();
}
for (int i = 0; i < kThreads; ++i) {
threads_[i].join();
}
}
std::vector<IntermediateResult> TargetProcessPool::Process(
std::vector<const Target *> &&inputs, bool verbose) {
inputs_ = std::move(inputs);
results_.clear();
verbose_ = verbose;
const size_t number_targets = inputs_.size();
{
std::unique_lock<std::mutex> locker(mutex_);
condition_variable_.notify_all();
while (results_.size() < number_targets) {
condition_variable_.wait(locker);
}
}
return std::move(results_);
}
void TargetProcessPool::RunThread() {
while (true) {
const Target *my_input;
{
std::unique_lock<std::mutex> locker(mutex_);
while (inputs_.empty()) {
if (quit_) {
return;
}
condition_variable_.wait(locker);
}
my_input = inputs_.back();
inputs_.pop_back();
}
IntermediateResult my_output =
finder_->ProcessTargetToResult(*my_input, false);
{
std::unique_lock<std::mutex> locker(mutex_);
results_.emplace_back(std::move(my_output));
condition_variable_.notify_all();
}
}
}
int main(int argc, char **argv) {
(void)argc;
(void)argv;
using namespace y2019::vision;
using frc971::jevois::CameraCommand;
// gflags::ParseCommandLineFlags(&argc, &argv, false);
FLAGS_logtostderr = true;
google::InitGoogleLogging(argv[0]);
int itsDev = open_terminos("/dev/ttyS0");
frc971::jevois::CobsPacketizer<frc971::jevois::uart_to_camera_size()> cobs;
// Uncomment these to printf directly to stdout to get debug info...
// dup2(itsDev, 1);
// dup2(itsDev, 2);
TargetFinder finder;
TargetProcessPool process_pool(&finder);
ImageWriter writer;
uint32_t image_count = 0;
bool log_images = false;
aos::vision::CameraParams params0;
params0.set_exposure(60);
params0.set_brightness(40);
params0.set_width(640);
params0.set_fps(25);
params0.set_height(480);
aos::vision::FastYuyvYPooledThresholder thresholder;
// A source of psuedorandom numbers which gives different numbers each time we
// need to drop targets.
std::minstd_rand random_engine;
::std::unique_ptr<CameraStream> camera0(
new CameraStream(params0, "/dev/video0"));
camera0->set_on_frame([&](DataRef data,
monotonic_clock::time_point monotonic_now) {
aos::vision::ImageFormat fmt{640, 480};
aos::vision::BlobList imgs =
aos::vision::FindBlobs(thresholder.Threshold(fmt, data.data(), 120));
const int num_pixels = finder.PixelCount(&imgs);
LOG(INFO) << "Number pixels: " << num_pixels;
finder.PreFilter(&imgs);
LOG(INFO) << "Blobs: " << imgs.size();
constexpr bool verbose = false;
::std::vector<Polygon> raw_polys;
for (const RangeImage &blob : imgs) {
// Convert blobs to contours in the corrected space.
ContourNode *contour = finder.GetContour(blob);
::std::vector<::Eigen::Vector2f> unwarped_contour =
finder.UnWarpContour(contour);
const Polygon polygon =
finder.FindPolygon(::std::move(unwarped_contour), verbose);
if (!polygon.segments.empty()) {
raw_polys.push_back(polygon);
}
}
LOG(INFO) << "Polygons: " << raw_polys.size();
// Calculate each component side of a possible target.
::std::vector<TargetComponent> target_component_list =
finder.FillTargetComponentList(raw_polys, verbose);
LOG(INFO) << "Components: " << target_component_list.size();
// Put the compenents together into targets.
::std::vector<Target> target_list =
finder.FindTargetsFromComponents(target_component_list, verbose);
static constexpr size_t kMaximumPotentialTargets = 8;
LOG(INFO) << "Potential Targets (will filter to "
<< kMaximumPotentialTargets << "): " << target_list.size();
// A list of all the indices into target_list which we're going to actually
// use.
std::vector<int> target_list_indices;
target_list_indices.resize(target_list.size());
for (size_t i = 0; i < target_list.size(); ++i) {
target_list_indices[i] = i;
}
// Drop random elements until we get sufficiently few of them. We drop
// different elements each time to ensure we will see different valid
// targets on successive frames, which provides more useful information to
// the localization.
while (target_list_indices.size() > kMaximumPotentialTargets) {
std::uniform_int_distribution<size_t> distribution(
0, target_list_indices.size() - 1);
const size_t index = distribution(random_engine);
target_list_indices.erase(target_list_indices.begin() + index);
}
// Use the solver to generate an intermediate version of our results.
std::vector<const Target *> inputs;
for (size_t index : target_list_indices) {
inputs.push_back(&target_list[index]);
}
std::vector<IntermediateResult> results =
process_pool.Process(std::move(inputs), verbose);
LOG(INFO) << "Raw Results: " << results.size();
results = finder.FilterResults(results, 30, verbose);
LOG(INFO) << "Results: " << results.size();
int desired_exposure;
if (finder.TestExposure(results, num_pixels, &desired_exposure)) {
camera0->SetExposure(desired_exposure);
}
frc971::jevois::CameraFrame frame{};
for (size_t i = 0; i < results.size() && i < frame.targets.max_size();
++i) {
const auto &result = results[i].extrinsics;
frame.targets.push_back(frc971::jevois::Target{
static_cast<float>(result.z), static_cast<float>(result.y),
static_cast<float>(result.r2), static_cast<float>(result.r1)});
}
frame.age = std::chrono::duration_cast<frc971::jevois::camera_duration>(
aos::monotonic_clock::now() - monotonic_now);
// If we succeed in writing our delimiter, then write out the rest of
// the frame. If not, no point in continuing.
if (write(itsDev, "\0", 1) == 1) {
const auto serialized_frame = frc971::jevois::UartPackToTeensy(frame);
// We don't really care if this succeeds or not. If it fails for some
// reason, we'll just try again with the next frame, and the other end
// will find the new packet just fine.
ssize_t n =
write(itsDev, serialized_frame.data(), serialized_frame.size());
if (n != (ssize_t)serialized_frame.size()) {
LOG(INFO) << "Some problem happened";
}
}
if (log_images) {
if ((image_count % 5) == 0) {
writer.WriteImage(data);
}
++image_count;
}
});
aos::events::EpollLoop loop;
while (true) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
camera0->ReadEvent();
{
constexpr size_t kBufferSize = frc971::jevois::uart_to_teensy_size();
char data[kBufferSize];
ssize_t n = read(itsDev, &data[0], kBufferSize);
if (n >= 1) {
cobs.ParseData(gsl::span<const char>(&data[0], n));
auto packet = cobs.received_packet();
if (!packet.empty()) {
auto calibration_question =
frc971::jevois::UartUnpackToCamera(packet);
if (calibration_question) {
const auto &calibration = *calibration_question;
IntrinsicParams *intrinsics = finder.mutable_intrinsics();
intrinsics->mount_angle = calibration.calibration(0, 0);
intrinsics->focal_length = calibration.calibration(0, 1);
intrinsics->barrel_mount = calibration.calibration(0, 2);
switch (calibration.camera_command) {
case CameraCommand::kNormal:
case CameraCommand::kAs:
log_images = false;
break;
case CameraCommand::kLog:
log_images = true;
break;
case CameraCommand::kUsb:
return 0;
case CameraCommand::kCameraPassthrough:
return system("touch /tmp/do_not_export_sd_card");
}
} else {
fprintf(stderr, "bad frame\n");
}
cobs.clear_received_packet();
}
}
}
}
// TODO: Fix event loop on jevois:
// loop.Add(camera0.get());
// loop.Run();
}