| #include "aos/events/logging/logfile_utils.h" |
| |
| #include <fcntl.h> |
| #include <limits.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <sys/uio.h> |
| |
| #include <vector> |
| |
| #include "aos/configuration.h" |
| #include "aos/events/logging/logger_generated.h" |
| #include "aos/flatbuffer_merge.h" |
| #include "aos/util/file.h" |
| #include "flatbuffers/flatbuffers.h" |
| #include "gflags/gflags.h" |
| #include "glog/logging.h" |
| |
| DEFINE_int32(flush_size, 1000000, |
| "Number of outstanding bytes to allow before flushing to disk."); |
| |
| namespace aos { |
| namespace logger { |
| |
| namespace chrono = std::chrono; |
| |
| DetachedBufferWriter::DetachedBufferWriter(std::string_view filename) |
| : filename_(filename) { |
| util::MkdirP(filename, 0777); |
| fd_ = open(std::string(filename).c_str(), |
| O_RDWR | O_CLOEXEC | O_CREAT | O_EXCL, 0774); |
| VLOG(1) << "Opened " << filename << " for writing"; |
| PCHECK(fd_ != -1) << ": Failed to open " << filename << " for writing"; |
| } |
| |
| DetachedBufferWriter::~DetachedBufferWriter() { |
| Flush(); |
| PLOG_IF(ERROR, close(fd_) == -1) << " Failed to close logfile"; |
| } |
| |
| void DetachedBufferWriter::QueueSizedFlatbuffer( |
| flatbuffers::FlatBufferBuilder *fbb) { |
| QueueSizedFlatbuffer(fbb->Release()); |
| } |
| |
| void DetachedBufferWriter::WriteSizedFlatbuffer( |
| absl::Span<const uint8_t> span) { |
| // Cheat aggressively... Write out the queued up data, and then write this |
| // data once without buffering. It is hard to make a DetachedBuffer out of |
| // this data, and we don't want to worry about lifetimes. |
| Flush(); |
| iovec_.clear(); |
| iovec_.reserve(1); |
| |
| struct iovec n; |
| n.iov_base = const_cast<uint8_t *>(span.data()); |
| n.iov_len = span.size(); |
| iovec_.emplace_back(n); |
| |
| const ssize_t written = writev(fd_, iovec_.data(), iovec_.size()); |
| |
| PCHECK(written == static_cast<ssize_t>(n.iov_len)) |
| << ": Wrote " << written << " expected " << n.iov_len; |
| } |
| |
| void DetachedBufferWriter::QueueSizedFlatbuffer( |
| flatbuffers::DetachedBuffer &&buffer) { |
| queued_size_ += buffer.size(); |
| queue_.emplace_back(std::move(buffer)); |
| |
| // Flush if we are at the max number of iovs per writev, or have written |
| // enough data. Otherwise writev will fail with an invalid argument. |
| if (queued_size_ > static_cast<size_t>(FLAGS_flush_size) || |
| queue_.size() == IOV_MAX) { |
| Flush(); |
| } |
| } |
| |
| void DetachedBufferWriter::Flush() { |
| if (queue_.size() == 0u) { |
| return; |
| } |
| iovec_.clear(); |
| iovec_.reserve(queue_.size()); |
| size_t counted_size = 0; |
| for (size_t i = 0; i < queue_.size(); ++i) { |
| struct iovec n; |
| n.iov_base = queue_[i].data(); |
| n.iov_len = queue_[i].size(); |
| counted_size += n.iov_len; |
| iovec_.emplace_back(std::move(n)); |
| } |
| CHECK_EQ(counted_size, queued_size_); |
| const ssize_t written = writev(fd_, iovec_.data(), iovec_.size()); |
| |
| PCHECK(written == static_cast<ssize_t>(queued_size_)) |
| << ": Wrote " << written << " expected " << queued_size_; |
| |
| queued_size_ = 0; |
| queue_.clear(); |
| // TODO(austin): Handle partial writes in some way other than crashing... |
| } |
| |
| flatbuffers::Offset<MessageHeader> PackMessage( |
| flatbuffers::FlatBufferBuilder *fbb, const Context &context, |
| int channel_index, LogType log_type) { |
| flatbuffers::Offset<flatbuffers::Vector<uint8_t>> data_offset; |
| |
| switch (log_type) { |
| case LogType::kLogMessage: |
| case LogType::kLogMessageAndDeliveryTime: |
| case LogType::kLogRemoteMessage: |
| data_offset = |
| fbb->CreateVector(static_cast<uint8_t *>(context.data), context.size); |
| break; |
| |
| case LogType::kLogDeliveryTimeOnly: |
| break; |
| } |
| |
| MessageHeader::Builder message_header_builder(*fbb); |
| message_header_builder.add_channel_index(channel_index); |
| |
| switch (log_type) { |
| case LogType::kLogRemoteMessage: |
| message_header_builder.add_queue_index(context.remote_queue_index); |
| message_header_builder.add_monotonic_sent_time( |
| context.monotonic_remote_time.time_since_epoch().count()); |
| message_header_builder.add_realtime_sent_time( |
| context.realtime_remote_time.time_since_epoch().count()); |
| break; |
| |
| case LogType::kLogMessage: |
| case LogType::kLogMessageAndDeliveryTime: |
| case LogType::kLogDeliveryTimeOnly: |
| message_header_builder.add_queue_index(context.queue_index); |
| message_header_builder.add_monotonic_sent_time( |
| context.monotonic_event_time.time_since_epoch().count()); |
| message_header_builder.add_realtime_sent_time( |
| context.realtime_event_time.time_since_epoch().count()); |
| break; |
| } |
| |
| switch (log_type) { |
| case LogType::kLogMessage: |
| case LogType::kLogRemoteMessage: |
| message_header_builder.add_data(data_offset); |
| break; |
| |
| case LogType::kLogMessageAndDeliveryTime: |
| message_header_builder.add_data(data_offset); |
| [[fallthrough]]; |
| |
| case LogType::kLogDeliveryTimeOnly: |
| message_header_builder.add_monotonic_remote_time( |
| context.monotonic_remote_time.time_since_epoch().count()); |
| message_header_builder.add_realtime_remote_time( |
| context.realtime_remote_time.time_since_epoch().count()); |
| message_header_builder.add_remote_queue_index(context.remote_queue_index); |
| break; |
| } |
| |
| return message_header_builder.Finish(); |
| } |
| |
| SpanReader::SpanReader(std::string_view filename) |
| : filename_(filename), |
| fd_(open(std::string(filename).c_str(), O_RDONLY | O_CLOEXEC)) { |
| PCHECK(fd_ != -1) << ": Failed to open " << filename; |
| } |
| |
| absl::Span<const uint8_t> SpanReader::ReadMessage() { |
| // Make sure we have enough for the size. |
| if (data_.size() - consumed_data_ < sizeof(flatbuffers::uoffset_t)) { |
| if (!ReadBlock()) { |
| return absl::Span<const uint8_t>(); |
| } |
| } |
| |
| // Now make sure we have enough for the message. |
| const size_t data_size = |
| flatbuffers::GetPrefixedSize(data_.data() + consumed_data_) + |
| sizeof(flatbuffers::uoffset_t); |
| while (data_.size() < consumed_data_ + data_size) { |
| if (!ReadBlock()) { |
| return absl::Span<const uint8_t>(); |
| } |
| } |
| |
| // And return it, consuming the data. |
| const uint8_t *data_ptr = data_.data() + consumed_data_; |
| |
| consumed_data_ += data_size; |
| |
| return absl::Span<const uint8_t>(data_ptr, data_size); |
| } |
| |
| bool SpanReader::MessageAvailable() { |
| // Are we big enough to read the size? |
| if (data_.size() - consumed_data_ < sizeof(flatbuffers::uoffset_t)) { |
| return false; |
| } |
| |
| // Then, are we big enough to read the full message? |
| const size_t data_size = |
| flatbuffers::GetPrefixedSize(data_.data() + consumed_data_) + |
| sizeof(flatbuffers::uoffset_t); |
| if (data_.size() < consumed_data_ + data_size) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool SpanReader::ReadBlock() { |
| if (end_of_file_) { |
| return false; |
| } |
| |
| // Appends 256k. This is enough that the read call is efficient. We don't |
| // want to spend too much time reading small chunks because the syscalls for |
| // that will be expensive. |
| constexpr size_t kReadSize = 256 * 1024; |
| |
| // Strip off any unused data at the front. |
| if (consumed_data_ != 0) { |
| data_.erase(data_.begin(), data_.begin() + consumed_data_); |
| consumed_data_ = 0; |
| } |
| |
| const size_t starting_size = data_.size(); |
| |
| // This should automatically grow the backing store. It won't shrink if we |
| // get a small chunk later. This reduces allocations when we want to append |
| // more data. |
| data_.resize(data_.size() + kReadSize); |
| |
| ssize_t count = read(fd_, &data_[starting_size], kReadSize); |
| data_.resize(starting_size + std::max(count, static_cast<ssize_t>(0))); |
| if (count == 0) { |
| end_of_file_ = true; |
| return false; |
| } |
| PCHECK(count > 0); |
| |
| return true; |
| } |
| |
| FlatbufferVector<LogFileHeader> ReadHeader(std::string_view filename) { |
| SpanReader span_reader(filename); |
| // Make sure we have enough to read the size. |
| absl::Span<const uint8_t> config_data = span_reader.ReadMessage(); |
| |
| // Make sure something was read. |
| CHECK(config_data != absl::Span<const uint8_t>()); |
| |
| // And copy the config so we have it forever. |
| std::vector<uint8_t> data( |
| config_data.begin() + sizeof(flatbuffers::uoffset_t), config_data.end()); |
| return FlatbufferVector<LogFileHeader>(std::move(data)); |
| } |
| |
| MessageReader::MessageReader(std::string_view filename) |
| : span_reader_(filename) { |
| // Make sure we have enough to read the size. |
| absl::Span<const uint8_t> config_data = span_reader_.ReadMessage(); |
| |
| // Make sure something was read. |
| CHECK(config_data != absl::Span<const uint8_t>()); |
| |
| // And copy the config so we have it forever. |
| configuration_ = std::vector<uint8_t>(config_data.begin(), config_data.end()); |
| |
| max_out_of_order_duration_ = |
| std::chrono::nanoseconds(log_file_header()->max_out_of_order_duration()); |
| |
| VLOG(1) << "Opened " << filename << " as node " |
| << FlatbufferToJson(log_file_header()->node()); |
| } |
| |
| std::optional<FlatbufferVector<MessageHeader>> MessageReader::ReadMessage() { |
| absl::Span<const uint8_t> msg_data = span_reader_.ReadMessage(); |
| if (msg_data == absl::Span<const uint8_t>()) { |
| return std::nullopt; |
| } |
| |
| FlatbufferVector<MessageHeader> result{std::vector<uint8_t>( |
| msg_data.begin() + sizeof(flatbuffers::uoffset_t), msg_data.end())}; |
| |
| const monotonic_clock::time_point timestamp = monotonic_clock::time_point( |
| chrono::nanoseconds(result.message().monotonic_sent_time())); |
| |
| newest_timestamp_ = std::max(newest_timestamp_, timestamp); |
| VLOG(2) << "Read from " << filename() << " data " << FlatbufferToJson(result); |
| return std::move(result); |
| } |
| |
| SplitMessageReader::SplitMessageReader( |
| const std::vector<std::string> &filenames) |
| : filenames_(filenames), |
| log_file_header_(FlatbufferDetachedBuffer<LogFileHeader>::Empty()) { |
| CHECK(NextLogFile()) << ": filenames is empty. Need files to read."; |
| |
| // Grab any log file header. They should all match (and we will check as we |
| // open more of them). |
| log_file_header_ = CopyFlatBuffer(message_reader_->log_file_header()); |
| |
| // Setup per channel state. |
| channels_.resize(configuration()->channels()->size()); |
| for (ChannelData &channel_data : channels_) { |
| channel_data.data.split_reader = this; |
| // Build up the timestamp list. |
| if (configuration::MultiNode(configuration())) { |
| channel_data.timestamps.resize(configuration()->nodes()->size()); |
| for (MessageHeaderQueue &queue : channel_data.timestamps) { |
| queue.timestamps = true; |
| queue.split_reader = this; |
| } |
| } |
| } |
| |
| // Build up channels_to_write_ as an optimization to make it fast to figure |
| // out which datastructure to place any new data from a channel on. |
| for (const Channel *channel : *configuration()->channels()) { |
| // This is the main case. We will only see data on this node. |
| if (configuration::ChannelIsSendableOnNode(channel, node())) { |
| channels_to_write_.emplace_back( |
| &channels_[channels_to_write_.size()].data); |
| } else |
| // If we can't send, but can receive, we should be able to see |
| // timestamps here. |
| if (configuration::ChannelIsReadableOnNode(channel, node())) { |
| channels_to_write_.emplace_back( |
| &(channels_[channels_to_write_.size()] |
| .timestamps[configuration::GetNodeIndex(configuration(), |
| node())])); |
| } else { |
| channels_to_write_.emplace_back(nullptr); |
| } |
| } |
| } |
| |
| bool SplitMessageReader::NextLogFile() { |
| if (next_filename_index_ == filenames_.size()) { |
| return false; |
| } |
| message_reader_ = |
| std::make_unique<MessageReader>(filenames_[next_filename_index_]); |
| |
| // We can't support the config diverging between two log file headers. See if |
| // they are the same. |
| if (next_filename_index_ != 0) { |
| CHECK(CompareFlatBuffer(&log_file_header_.message(), |
| message_reader_->log_file_header())) |
| << ": Header is different between log file chunks " |
| << filenames_[next_filename_index_] << " and " |
| << filenames_[next_filename_index_ - 1] << ", this is not supported."; |
| } |
| |
| ++next_filename_index_; |
| return true; |
| } |
| |
| bool SplitMessageReader::QueueMessages( |
| monotonic_clock::time_point last_dequeued_time) { |
| // TODO(austin): Once we are happy that everything works, read a 256kb chunk |
| // to reduce the need to re-heap down below. |
| |
| // Special case no more data. Otherwise we blow up on the CHECK statement |
| // confirming that we have enough data queued. |
| if (at_end_) { |
| return false; |
| } |
| |
| // If this isn't the first time around, confirm that we had enough data queued |
| // to follow the contract. |
| if (time_to_queue_ != monotonic_clock::min_time) { |
| CHECK_LE(last_dequeued_time, |
| newest_timestamp() - max_out_of_order_duration()) |
| << " node " << FlatbufferToJson(node()) << " on " << this; |
| |
| // Bail if there is enough data already queued. |
| if (last_dequeued_time < time_to_queue_) { |
| VLOG(1) << "All up to date on " << this << ", dequeued " |
| << last_dequeued_time << " queue time " << time_to_queue_; |
| return true; |
| } |
| } else { |
| // Startup takes a special dance. We want to queue up until the start time, |
| // but we then want to find the next message to read. The conservative |
| // answer is to immediately trigger a second requeue to get things moving. |
| time_to_queue_ = monotonic_start_time(); |
| QueueMessages(time_to_queue_); |
| } |
| |
| // If we are asked to queue, queue for at least max_out_of_order_duration past |
| // the last known time in the log file (ie the newest timestep read). As long |
| // as we requeue exactly when time_to_queue_ is dequeued and go no further, we |
| // are safe. And since we pop in order, that works. |
| // |
| // Special case the start of the log file. There should be at most 1 message |
| // from each channel at the start of the log file. So always force the start |
| // of the log file to just be read. |
| time_to_queue_ = std::max(time_to_queue_, newest_timestamp()); |
| VLOG(1) << "Queueing, going until " << time_to_queue_ << " " << filename(); |
| |
| bool was_emplaced = false; |
| while (true) { |
| // Stop if we have enough. |
| if (newest_timestamp() > |
| time_to_queue_ + max_out_of_order_duration() && |
| was_emplaced) { |
| VLOG(1) << "Done queueing on " << this << ", queued to " |
| << newest_timestamp() << " with requeue time " << time_to_queue_; |
| return true; |
| } |
| |
| if (std::optional<FlatbufferVector<MessageHeader>> msg = |
| message_reader_->ReadMessage()) { |
| const MessageHeader &header = msg.value().message(); |
| |
| const monotonic_clock::time_point timestamp = monotonic_clock::time_point( |
| chrono::nanoseconds(header.monotonic_sent_time())); |
| |
| VLOG(1) << "Queued " << this << " " << filename() |
| << " ttq: " << time_to_queue_ << " now " |
| << newest_timestamp() << " start time " |
| << monotonic_start_time() << " " << FlatbufferToJson(&header); |
| |
| const int channel_index = header.channel_index(); |
| was_emplaced = channels_to_write_[channel_index]->emplace_back( |
| std::move(msg.value())); |
| if (was_emplaced) { |
| newest_timestamp_ = std::max(newest_timestamp_, timestamp); |
| } |
| } else { |
| if (!NextLogFile()) { |
| VLOG(1) << "End of log file " << filenames_.back(); |
| at_end_ = true; |
| for (MessageHeaderQueue *queue : channels_to_write_) { |
| if (queue == nullptr || queue->timestamp_merger == nullptr) { |
| continue; |
| } |
| queue->timestamp_merger->NoticeAtEnd(); |
| } |
| return false; |
| } |
| } |
| } |
| } |
| |
| void SplitMessageReader::SetTimestampMerger(TimestampMerger *timestamp_merger, |
| int channel_index, |
| const Node *target_node) { |
| const Node *reinterpreted_target_node = |
| configuration::GetNodeOrDie(configuration(), target_node); |
| const Channel *const channel = |
| configuration()->channels()->Get(channel_index); |
| |
| VLOG(1) << " Configuring merger " << this << " for channel " << channel_index |
| << " " |
| << configuration::CleanedChannelToString( |
| configuration()->channels()->Get(channel_index)); |
| |
| MessageHeaderQueue *message_header_queue = nullptr; |
| |
| // Figure out if this log file is from our point of view, or the other node's |
| // point of view. |
| if (node() == reinterpreted_target_node) { |
| VLOG(1) << " Replaying as logged node " << filename(); |
| |
| if (configuration::ChannelIsSendableOnNode(channel, node())) { |
| VLOG(1) << " Data on node"; |
| message_header_queue = &(channels_[channel_index].data); |
| } else if (configuration::ChannelIsReadableOnNode(channel, node())) { |
| VLOG(1) << " Timestamps on node"; |
| message_header_queue = |
| &(channels_[channel_index].timestamps[configuration::GetNodeIndex( |
| configuration(), node())]); |
| } else { |
| VLOG(1) << " Dropping"; |
| } |
| } else { |
| VLOG(1) << " Replaying as other node " << filename(); |
| // We are replaying from another node's point of view. The only interesting |
| // data is data that is sent from our node and received on theirs. |
| if (configuration::ChannelIsReadableOnNode(channel, |
| reinterpreted_target_node) && |
| configuration::ChannelIsSendableOnNode(channel, node())) { |
| VLOG(1) << " Readable on target node"; |
| // Data from another node. |
| message_header_queue = &(channels_[channel_index].data); |
| } else { |
| VLOG(1) << " Dropping"; |
| // This is either not sendable on the other node, or is a timestamp and |
| // therefore not interesting. |
| } |
| } |
| |
| // If we found one, write it down. This will be nullptr when there is nothing |
| // relevant on this channel on this node for the target node. In that case, |
| // we want to drop the message instead of queueing it. |
| if (message_header_queue != nullptr) { |
| message_header_queue->timestamp_merger = timestamp_merger; |
| } |
| } |
| |
| std::tuple<monotonic_clock::time_point, uint32_t, |
| FlatbufferVector<MessageHeader>> |
| SplitMessageReader::PopOldest(int channel_index) { |
| CHECK_GT(channels_[channel_index].data.size(), 0u); |
| const std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *> |
| timestamp = channels_[channel_index].data.front_timestamp(); |
| FlatbufferVector<MessageHeader> front = |
| std::move(channels_[channel_index].data.front()); |
| channels_[channel_index].data.pop_front(); |
| |
| VLOG(1) << "Popped " << this << " " << std::get<0>(timestamp); |
| |
| QueueMessages(std::get<0>(timestamp)); |
| |
| return std::make_tuple(std::get<0>(timestamp), std::get<1>(timestamp), |
| std::move(front)); |
| } |
| |
| std::tuple<monotonic_clock::time_point, uint32_t, |
| FlatbufferVector<MessageHeader>> |
| SplitMessageReader::PopOldest(int channel, int node_index) { |
| CHECK_GT(channels_[channel].timestamps[node_index].size(), 0u); |
| const std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *> |
| timestamp = channels_[channel].timestamps[node_index].front_timestamp(); |
| FlatbufferVector<MessageHeader> front = |
| std::move(channels_[channel].timestamps[node_index].front()); |
| channels_[channel].timestamps[node_index].pop_front(); |
| |
| VLOG(1) << "Popped " << this << " " << std::get<0>(timestamp); |
| |
| QueueMessages(std::get<0>(timestamp)); |
| |
| return std::make_tuple(std::get<0>(timestamp), std::get<1>(timestamp), |
| std::move(front)); |
| } |
| |
| bool SplitMessageReader::MessageHeaderQueue::emplace_back( |
| FlatbufferVector<MessageHeader> &&msg) { |
| CHECK(split_reader != nullptr); |
| |
| // If there is no timestamp merger for this queue, nobody is listening. Drop |
| // the message. This happens when a log file from another node is replayed, |
| // and the timestamp mergers down stream just don't care. |
| if (timestamp_merger == nullptr) { |
| return false; |
| } |
| |
| CHECK(timestamps != msg.message().has_data()) |
| << ": Got timestamps and data mixed up on a node. " |
| << FlatbufferToJson(msg); |
| |
| data_.emplace_back(std::move(msg)); |
| |
| if (data_.size() == 1u) { |
| // Yup, new data. Notify. |
| if (timestamps) { |
| timestamp_merger->UpdateTimestamp(split_reader, front_timestamp()); |
| } else { |
| timestamp_merger->Update(split_reader, front_timestamp()); |
| } |
| } |
| |
| return true; |
| } |
| |
| void SplitMessageReader::MessageHeaderQueue::pop_front() { |
| data_.pop_front(); |
| if (data_.size() != 0u) { |
| // Yup, new data. |
| if (timestamps) { |
| timestamp_merger->UpdateTimestamp(split_reader, front_timestamp()); |
| } else { |
| timestamp_merger->Update(split_reader, front_timestamp()); |
| } |
| } |
| } |
| |
| namespace { |
| |
| bool SplitMessageReaderHeapCompare( |
| const std::tuple<monotonic_clock::time_point, uint32_t, |
| SplitMessageReader *> |
| first, |
| const std::tuple<monotonic_clock::time_point, uint32_t, |
| SplitMessageReader *> |
| second) { |
| if (std::get<0>(first) > std::get<0>(second)) { |
| return true; |
| } else if (std::get<0>(first) == std::get<0>(second)) { |
| if (std::get<1>(first) > std::get<1>(second)) { |
| return true; |
| } else if (std::get<1>(first) == std::get<1>(second)) { |
| return std::get<2>(first) > std::get<2>(second); |
| } else { |
| return false; |
| } |
| } else { |
| return false; |
| } |
| } |
| |
| bool ChannelHeapCompare( |
| const std::pair<monotonic_clock::time_point, int> first, |
| const std::pair<monotonic_clock::time_point, int> second) { |
| if (first.first > second.first) { |
| return true; |
| } else if (first.first == second.first) { |
| return first.second > second.second; |
| } else { |
| return false; |
| } |
| } |
| |
| } // namespace |
| |
| TimestampMerger::TimestampMerger( |
| const Configuration *configuration, |
| std::vector<SplitMessageReader *> split_message_readers, int channel_index, |
| const Node *target_node, ChannelMerger *channel_merger) |
| : configuration_(configuration), |
| split_message_readers_(std::move(split_message_readers)), |
| channel_index_(channel_index), |
| node_index_(configuration::MultiNode(configuration) |
| ? configuration::GetNodeIndex(configuration, target_node) |
| : -1), |
| channel_merger_(channel_merger) { |
| // Tell the readers we care so they know who to notify. |
| VLOG(1) << "Configuring channel " << channel_index << " target node " |
| << FlatbufferToJson(target_node); |
| for (SplitMessageReader *reader : split_message_readers_) { |
| reader->SetTimestampMerger(this, channel_index, target_node); |
| } |
| |
| // And then determine if we need to track timestamps. |
| const Channel *channel = configuration->channels()->Get(channel_index); |
| if (!configuration::ChannelIsSendableOnNode(channel, target_node) && |
| configuration::ChannelIsReadableOnNode(channel, target_node)) { |
| has_timestamps_ = true; |
| } |
| } |
| |
| void TimestampMerger::PushMessageHeap( |
| std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *> |
| timestamp, |
| SplitMessageReader *split_message_reader) { |
| DCHECK(std::find_if(message_heap_.begin(), message_heap_.end(), |
| [split_message_reader]( |
| const std::tuple<monotonic_clock::time_point, |
| uint32_t, SplitMessageReader *> |
| x) { |
| return std::get<2>(x) == split_message_reader; |
| }) == message_heap_.end()) |
| << ": Pushing message when it is already in the heap."; |
| |
| message_heap_.push_back(std::make_tuple( |
| std::get<0>(timestamp), std::get<1>(timestamp), split_message_reader)); |
| |
| std::push_heap(message_heap_.begin(), message_heap_.end(), |
| &SplitMessageReaderHeapCompare); |
| |
| // If we are just a data merger, don't wait for timestamps. |
| if (!has_timestamps_) { |
| channel_merger_->Update(std::get<0>(timestamp), channel_index_); |
| pushed_ = true; |
| } |
| } |
| |
| std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *> |
| TimestampMerger::oldest_message() const { |
| CHECK_GT(message_heap_.size(), 0u); |
| std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *> |
| oldest_message_reader = message_heap_.front(); |
| return std::get<2>(oldest_message_reader)->oldest_message(channel_index_); |
| } |
| |
| std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *> |
| TimestampMerger::oldest_timestamp() const { |
| CHECK_GT(timestamp_heap_.size(), 0u); |
| std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *> |
| oldest_message_reader = timestamp_heap_.front(); |
| return std::get<2>(oldest_message_reader) |
| ->oldest_message(channel_index_, node_index_); |
| } |
| |
| void TimestampMerger::PushTimestampHeap( |
| std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *> |
| timestamp, |
| SplitMessageReader *split_message_reader) { |
| DCHECK(std::find_if(timestamp_heap_.begin(), timestamp_heap_.end(), |
| [split_message_reader]( |
| const std::tuple<monotonic_clock::time_point, |
| uint32_t, SplitMessageReader *> |
| x) { |
| return std::get<2>(x) == split_message_reader; |
| }) == timestamp_heap_.end()) |
| << ": Pushing timestamp when it is already in the heap."; |
| |
| timestamp_heap_.push_back(std::make_tuple( |
| std::get<0>(timestamp), std::get<1>(timestamp), split_message_reader)); |
| |
| std::push_heap(timestamp_heap_.begin(), timestamp_heap_.end(), |
| SplitMessageReaderHeapCompare); |
| |
| // If we are a timestamp merger, don't wait for data. Missing data will be |
| // caught at read time. |
| if (has_timestamps_) { |
| channel_merger_->Update(std::get<0>(timestamp), channel_index_); |
| pushed_ = true; |
| } |
| } |
| |
| std::tuple<monotonic_clock::time_point, uint32_t, |
| FlatbufferVector<MessageHeader>> |
| TimestampMerger::PopMessageHeap() { |
| // Pop the oldest message reader pointer off the heap. |
| CHECK_GT(message_heap_.size(), 0u); |
| std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *> |
| oldest_message_reader = message_heap_.front(); |
| |
| std::pop_heap(message_heap_.begin(), message_heap_.end(), |
| &SplitMessageReaderHeapCompare); |
| message_heap_.pop_back(); |
| |
| // Pop the oldest message. This re-pushes any messages from the reader to the |
| // message heap. |
| std::tuple<monotonic_clock::time_point, uint32_t, |
| FlatbufferVector<MessageHeader>> |
| oldest_message = |
| std::get<2>(oldest_message_reader)->PopOldest(channel_index_); |
| |
| // Confirm that the time and queue_index we have recorded matches. |
| CHECK_EQ(std::get<0>(oldest_message), std::get<0>(oldest_message_reader)); |
| CHECK_EQ(std::get<1>(oldest_message), std::get<1>(oldest_message_reader)); |
| |
| // Now, keep reading until we have found all duplicates. |
| while (message_heap_.size() > 0u) { |
| // See if it is a duplicate. |
| std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *> |
| next_oldest_message_reader = message_heap_.front(); |
| |
| std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *> |
| next_oldest_message_time = std::get<2>(next_oldest_message_reader) |
| ->oldest_message(channel_index_); |
| |
| if (std::get<0>(next_oldest_message_time) == std::get<0>(oldest_message) && |
| std::get<1>(next_oldest_message_time) == std::get<1>(oldest_message)) { |
| // Pop the message reader pointer. |
| std::pop_heap(message_heap_.begin(), message_heap_.end(), |
| &SplitMessageReaderHeapCompare); |
| message_heap_.pop_back(); |
| |
| // Pop the next oldest message. This re-pushes any messages from the |
| // reader. |
| std::tuple<monotonic_clock::time_point, uint32_t, |
| FlatbufferVector<MessageHeader>> |
| next_oldest_message = std::get<2>(next_oldest_message_reader) |
| ->PopOldest(channel_index_); |
| |
| // And make sure the message matches in it's entirety. |
| CHECK(std::get<2>(oldest_message).span() == |
| std::get<2>(next_oldest_message).span()) |
| << ": Data at the same timestamp doesn't match."; |
| } else { |
| break; |
| } |
| } |
| |
| return oldest_message; |
| } |
| |
| std::tuple<monotonic_clock::time_point, uint32_t, |
| FlatbufferVector<MessageHeader>> |
| TimestampMerger::PopTimestampHeap() { |
| // Pop the oldest message reader pointer off the heap. |
| CHECK_GT(timestamp_heap_.size(), 0u); |
| |
| std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *> |
| oldest_timestamp_reader = timestamp_heap_.front(); |
| |
| std::pop_heap(timestamp_heap_.begin(), timestamp_heap_.end(), |
| &SplitMessageReaderHeapCompare); |
| timestamp_heap_.pop_back(); |
| |
| CHECK(node_index_ != -1) << ": Timestamps in a single node environment"; |
| |
| // Pop the oldest message. This re-pushes any timestamps from the reader to |
| // the timestamp heap. |
| std::tuple<monotonic_clock::time_point, uint32_t, |
| FlatbufferVector<MessageHeader>> |
| oldest_timestamp = std::get<2>(oldest_timestamp_reader) |
| ->PopOldest(channel_index_, node_index_); |
| |
| // Confirm that the time we have recorded matches. |
| CHECK_EQ(std::get<0>(oldest_timestamp), std::get<0>(oldest_timestamp_reader)); |
| CHECK_EQ(std::get<1>(oldest_timestamp), std::get<1>(oldest_timestamp_reader)); |
| |
| // TODO(austin): What if we get duplicate timestamps? |
| |
| return oldest_timestamp; |
| } |
| |
| TimestampMerger::DeliveryTimestamp TimestampMerger::OldestTimestamp() const { |
| if (!has_timestamps_ || timestamp_heap_.size() == 0u) { |
| return TimestampMerger::DeliveryTimestamp{}; |
| } |
| |
| std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *> |
| oldest_timestamp_reader = timestamp_heap_.front(); |
| |
| std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *> |
| oldest_timestamp = std::get<2>(oldest_timestamp_reader) |
| ->oldest_message(channel_index_, node_index_); |
| |
| TimestampMerger::DeliveryTimestamp timestamp; |
| timestamp.monotonic_event_time = |
| monotonic_clock::time_point(chrono::nanoseconds( |
| std::get<2>(oldest_timestamp)->monotonic_sent_time())); |
| timestamp.realtime_event_time = realtime_clock::time_point( |
| chrono::nanoseconds(std::get<2>(oldest_timestamp)->realtime_sent_time())); |
| |
| timestamp.monotonic_remote_time = |
| monotonic_clock::time_point(chrono::nanoseconds( |
| std::get<2>(oldest_timestamp)->monotonic_remote_time())); |
| timestamp.realtime_remote_time = |
| realtime_clock::time_point(chrono::nanoseconds( |
| std::get<2>(oldest_timestamp)->realtime_remote_time())); |
| |
| timestamp.remote_queue_index = std::get<2>(oldest_timestamp)->queue_index(); |
| return timestamp; |
| } |
| |
| std::tuple<TimestampMerger::DeliveryTimestamp, FlatbufferVector<MessageHeader>> |
| TimestampMerger::PopOldest() { |
| if (has_timestamps_) { |
| // Read the timestamps. |
| std::tuple<monotonic_clock::time_point, uint32_t, |
| FlatbufferVector<MessageHeader>> |
| oldest_timestamp = PopTimestampHeap(); |
| |
| TimestampMerger::DeliveryTimestamp timestamp; |
| timestamp.monotonic_event_time = |
| monotonic_clock::time_point(chrono::nanoseconds( |
| std::get<2>(oldest_timestamp).message().monotonic_sent_time())); |
| timestamp.realtime_event_time = |
| realtime_clock::time_point(chrono::nanoseconds( |
| std::get<2>(oldest_timestamp).message().realtime_sent_time())); |
| |
| // Consistency check. |
| CHECK_EQ(timestamp.monotonic_event_time, std::get<0>(oldest_timestamp)); |
| CHECK_EQ(std::get<2>(oldest_timestamp).message().queue_index(), |
| std::get<1>(oldest_timestamp)); |
| |
| monotonic_clock::time_point remote_timestamp_monotonic_time( |
| chrono::nanoseconds( |
| std::get<2>(oldest_timestamp).message().monotonic_remote_time())); |
| |
| // See if we have any data. If not, pass the problem up the chain. |
| if (message_heap_.size() == 0u) { |
| VLOG(1) << "No data to match timestamp on " |
| << configuration::CleanedChannelToString( |
| configuration_->channels()->Get(channel_index_)); |
| return std::make_tuple(timestamp, |
| std::move(std::get<2>(oldest_timestamp))); |
| } |
| |
| while (true) { |
| { |
| // Ok, now try grabbing data until we find one which matches. |
| std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *> |
| oldest_message_ref = oldest_message(); |
| |
| // Time at which the message was sent (this message is written from the |
| // sending node's perspective. |
| monotonic_clock::time_point remote_monotonic_time(chrono::nanoseconds( |
| std::get<2>(oldest_message_ref)->monotonic_sent_time())); |
| |
| if (remote_monotonic_time < remote_timestamp_monotonic_time) { |
| VLOG(1) << "Undelivered message, skipping. Remote time is " |
| << remote_monotonic_time << " timestamp is " |
| << remote_timestamp_monotonic_time << " on channel " |
| << channel_index_; |
| PopMessageHeap(); |
| continue; |
| } else if (remote_monotonic_time > remote_timestamp_monotonic_time) { |
| VLOG(1) << "Data not found. Remote time should be " |
| << remote_timestamp_monotonic_time << " on channel " |
| << channel_index_; |
| return std::make_tuple(timestamp, |
| std::move(std::get<2>(oldest_timestamp))); |
| } |
| |
| timestamp.monotonic_remote_time = remote_monotonic_time; |
| } |
| |
| std::tuple<monotonic_clock::time_point, uint32_t, |
| FlatbufferVector<MessageHeader>> |
| oldest_message = PopMessageHeap(); |
| |
| timestamp.realtime_remote_time = |
| realtime_clock::time_point(chrono::nanoseconds( |
| std::get<2>(oldest_message).message().realtime_sent_time())); |
| timestamp.remote_queue_index = |
| std::get<2>(oldest_message).message().queue_index(); |
| |
| CHECK_EQ(timestamp.monotonic_remote_time, |
| remote_timestamp_monotonic_time); |
| |
| CHECK_EQ(timestamp.remote_queue_index, |
| std::get<2>(oldest_timestamp).message().remote_queue_index()) |
| << ": " << FlatbufferToJson(&std::get<2>(oldest_timestamp).message()) |
| << " data " |
| << FlatbufferToJson(&std::get<2>(oldest_message).message()); |
| |
| return std::make_tuple(timestamp, std::get<2>(oldest_message)); |
| } |
| } else { |
| std::tuple<monotonic_clock::time_point, uint32_t, |
| FlatbufferVector<MessageHeader>> |
| oldest_message = PopMessageHeap(); |
| |
| TimestampMerger::DeliveryTimestamp timestamp; |
| timestamp.monotonic_event_time = |
| monotonic_clock::time_point(chrono::nanoseconds( |
| std::get<2>(oldest_message).message().monotonic_sent_time())); |
| timestamp.realtime_event_time = |
| realtime_clock::time_point(chrono::nanoseconds( |
| std::get<2>(oldest_message).message().realtime_sent_time())); |
| timestamp.remote_queue_index = 0xffffffff; |
| |
| CHECK_EQ(std::get<0>(oldest_message), timestamp.monotonic_event_time); |
| CHECK_EQ(std::get<1>(oldest_message), |
| std::get<2>(oldest_message).message().queue_index()); |
| |
| return std::make_tuple(timestamp, std::get<2>(oldest_message)); |
| } |
| } |
| |
| void TimestampMerger::NoticeAtEnd() { channel_merger_->NoticeAtEnd(); } |
| |
| namespace { |
| std::vector<std::unique_ptr<SplitMessageReader>> MakeSplitMessageReaders( |
| const std::vector<std::vector<std::string>> &filenames) { |
| CHECK_GT(filenames.size(), 0u); |
| // Build up all the SplitMessageReaders. |
| std::vector<std::unique_ptr<SplitMessageReader>> result; |
| for (const std::vector<std::string> &filenames : filenames) { |
| result.emplace_back(std::make_unique<SplitMessageReader>(filenames)); |
| } |
| return result; |
| } |
| } // namespace |
| |
| ChannelMerger::ChannelMerger( |
| const std::vector<std::vector<std::string>> &filenames) |
| : split_message_readers_(MakeSplitMessageReaders(filenames)), |
| log_file_header_( |
| CopyFlatBuffer(split_message_readers_[0]->log_file_header())) { |
| // Now, confirm that the configuration matches for each and pick a start time. |
| // Also return the list of possible nodes. |
| for (const std::unique_ptr<SplitMessageReader> &reader : |
| split_message_readers_) { |
| CHECK(CompareFlatBuffer(log_file_header_.message().configuration(), |
| reader->log_file_header()->configuration())) |
| << ": Replaying log files with different configurations isn't " |
| "supported"; |
| } |
| |
| nodes_ = configuration::GetNodes(configuration()); |
| } |
| |
| bool ChannelMerger::SetNode(const Node *target_node) { |
| std::vector<SplitMessageReader *> split_message_readers; |
| for (const std::unique_ptr<SplitMessageReader> &reader : |
| split_message_readers_) { |
| split_message_readers.emplace_back(reader.get()); |
| } |
| |
| // Go find a log_file_header for this node. |
| { |
| bool found_node = false; |
| |
| for (const std::unique_ptr<SplitMessageReader> &reader : |
| split_message_readers_) { |
| if (CompareFlatBuffer(reader->node(), target_node)) { |
| if (!found_node) { |
| found_node = true; |
| log_file_header_ = CopyFlatBuffer(reader->log_file_header()); |
| VLOG(1) << "Found log file " << reader->filename() << " with node " |
| << FlatbufferToJson(reader->node()) << " start_time " |
| << monotonic_start_time(); |
| } else { |
| // And then make sure all the other files have matching headers. |
| CHECK(CompareFlatBuffer(log_file_header(), reader->log_file_header())) |
| << ": " << FlatbufferToJson(log_file_header()) << " reader " |
| << FlatbufferToJson(reader->log_file_header()); |
| } |
| } |
| } |
| |
| if (!found_node) { |
| LOG(WARNING) << "Failed to find log file for node " |
| << FlatbufferToJson(target_node); |
| return false; |
| } |
| } |
| |
| // Build up all the timestamp mergers. This connects up all the |
| // SplitMessageReaders. |
| timestamp_mergers_.reserve(configuration()->channels()->size()); |
| for (size_t channel_index = 0; |
| channel_index < configuration()->channels()->size(); ++channel_index) { |
| timestamp_mergers_.emplace_back( |
| configuration(), split_message_readers, channel_index, |
| configuration::GetNode(configuration(), target_node), this); |
| } |
| |
| // And prime everything. |
| for (std::unique_ptr<SplitMessageReader> &split_message_reader : |
| split_message_readers_) { |
| split_message_reader->QueueMessages( |
| split_message_reader->monotonic_start_time()); |
| } |
| |
| node_ = configuration::GetNodeOrDie(configuration(), target_node); |
| return true; |
| } |
| |
| monotonic_clock::time_point ChannelMerger::OldestMessage() const { |
| if (channel_heap_.size() == 0u) { |
| return monotonic_clock::max_time; |
| } |
| return channel_heap_.front().first; |
| } |
| |
| TimestampMerger::DeliveryTimestamp ChannelMerger::OldestTimestamp() const { |
| if (timestamp_heap_.size() == 0u) { |
| return TimestampMerger::DeliveryTimestamp{}; |
| } |
| return timestamp_mergers_[timestamp_heap_.front().second].OldestTimestamp(); |
| } |
| |
| TimestampMerger::DeliveryTimestamp ChannelMerger::OldestTimestampForChannel( |
| int channel) const { |
| // If we didn't find any data for this node, we won't have any mergers. Return |
| // an invalid timestamp in that case. |
| if (timestamp_mergers_.size() <= static_cast<size_t>(channel)) { |
| TimestampMerger::DeliveryTimestamp result; |
| return result; |
| } |
| return timestamp_mergers_[channel].OldestTimestamp(); |
| } |
| |
| void ChannelMerger::PushChannelHeap(monotonic_clock::time_point timestamp, |
| int channel_index) { |
| // Pop and recreate the heap if it has already been pushed. And since we are |
| // pushing again, we don't need to clear pushed. |
| if (timestamp_mergers_[channel_index].pushed()) { |
| channel_heap_.erase(std::find_if( |
| channel_heap_.begin(), channel_heap_.end(), |
| [channel_index](const std::pair<monotonic_clock::time_point, int> x) { |
| return x.second == channel_index; |
| })); |
| std::make_heap(channel_heap_.begin(), channel_heap_.end(), |
| ChannelHeapCompare); |
| |
| if (timestamp_mergers_[channel_index].has_timestamps()) { |
| timestamp_heap_.erase(std::find_if( |
| timestamp_heap_.begin(), timestamp_heap_.end(), |
| [channel_index](const std::pair<monotonic_clock::time_point, int> x) { |
| return x.second == channel_index; |
| })); |
| std::make_heap(timestamp_heap_.begin(), timestamp_heap_.end(), |
| ChannelHeapCompare); |
| } |
| } |
| |
| channel_heap_.push_back(std::make_pair(timestamp, channel_index)); |
| |
| // The default sort puts the newest message first. Use a custom comparator to |
| // put the oldest message first. |
| std::push_heap(channel_heap_.begin(), channel_heap_.end(), |
| ChannelHeapCompare); |
| |
| if (timestamp_mergers_[channel_index].has_timestamps()) { |
| timestamp_heap_.push_back(std::make_pair(timestamp, channel_index)); |
| std::push_heap(timestamp_heap_.begin(), timestamp_heap_.end(), |
| ChannelHeapCompare); |
| } |
| } |
| |
| std::tuple<TimestampMerger::DeliveryTimestamp, int, |
| FlatbufferVector<MessageHeader>> |
| ChannelMerger::PopOldest() { |
| CHECK_GT(channel_heap_.size(), 0u); |
| std::pair<monotonic_clock::time_point, int> oldest_channel_data = |
| channel_heap_.front(); |
| int channel_index = oldest_channel_data.second; |
| std::pop_heap(channel_heap_.begin(), channel_heap_.end(), |
| &ChannelHeapCompare); |
| channel_heap_.pop_back(); |
| |
| timestamp_mergers_[channel_index].set_pushed(false); |
| |
| TimestampMerger *merger = ×tamp_mergers_[channel_index]; |
| |
| if (merger->has_timestamps()) { |
| CHECK_GT(timestamp_heap_.size(), 0u); |
| std::pair<monotonic_clock::time_point, int> oldest_timestamp_data = |
| timestamp_heap_.front(); |
| CHECK(oldest_timestamp_data == oldest_channel_data) |
| << ": Timestamp heap out of sync."; |
| std::pop_heap(timestamp_heap_.begin(), timestamp_heap_.end(), |
| &ChannelHeapCompare); |
| timestamp_heap_.pop_back(); |
| } |
| |
| // Merger handles any queueing needed from here. |
| std::tuple<TimestampMerger::DeliveryTimestamp, |
| FlatbufferVector<MessageHeader>> |
| message = merger->PopOldest(); |
| |
| return std::make_tuple(std::get<0>(message), channel_index, |
| std::move(std::get<1>(message))); |
| } |
| |
| std::string SplitMessageReader::MessageHeaderQueue::DebugString() const { |
| std::stringstream ss; |
| for (size_t i = 0; i < data_.size(); ++i) { |
| if (timestamps) { |
| ss << " msg: "; |
| } else { |
| ss << " timestamp: "; |
| } |
| ss << monotonic_clock::time_point(std::chrono::nanoseconds( |
| data_[i].message().monotonic_sent_time())) |
| << " (" |
| << realtime_clock::time_point( |
| std::chrono::nanoseconds(data_[i].message().realtime_sent_time())) |
| << ") " << data_[i].message().queue_index(); |
| if (timestamps) { |
| ss << " <- remote " |
| << monotonic_clock::time_point(std::chrono::nanoseconds( |
| data_[i].message().monotonic_remote_time())) |
| << " (" |
| << realtime_clock::time_point(std::chrono::nanoseconds( |
| data_[i].message().realtime_remote_time())) |
| << ")"; |
| } |
| ss << "\n"; |
| } |
| |
| return ss.str(); |
| } |
| |
| std::string SplitMessageReader::DebugString(int channel) const { |
| std::stringstream ss; |
| ss << "[\n"; |
| ss << channels_[channel].data.DebugString(); |
| ss << " ]"; |
| return ss.str(); |
| } |
| |
| std::string SplitMessageReader::DebugString(int channel, int node_index) const { |
| std::stringstream ss; |
| ss << "[\n"; |
| ss << channels_[channel].timestamps[node_index].DebugString(); |
| ss << " ]"; |
| return ss.str(); |
| } |
| |
| std::string TimestampMerger::DebugString() const { |
| std::stringstream ss; |
| |
| if (timestamp_heap_.size() > 0) { |
| ss << " timestamp_heap {\n"; |
| std::vector< |
| std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *>> |
| timestamp_heap = timestamp_heap_; |
| while (timestamp_heap.size() > 0u) { |
| std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *> |
| oldest_timestamp_reader = timestamp_heap.front(); |
| |
| ss << " " << std::get<2>(oldest_timestamp_reader) << " " |
| << std::get<0>(oldest_timestamp_reader) << " queue_index (" |
| << std::get<1>(oldest_timestamp_reader) << ") ttq " |
| << std::get<2>(oldest_timestamp_reader)->time_to_queue() << " " |
| << std::get<2>(oldest_timestamp_reader)->filename() << " -> " |
| << std::get<2>(oldest_timestamp_reader) |
| ->DebugString(channel_index_, node_index_) |
| << "\n"; |
| |
| std::pop_heap(timestamp_heap.begin(), timestamp_heap.end(), |
| &SplitMessageReaderHeapCompare); |
| timestamp_heap.pop_back(); |
| } |
| ss << " }\n"; |
| } |
| |
| ss << " message_heap {\n"; |
| { |
| std::vector< |
| std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *>> |
| message_heap = message_heap_; |
| while (message_heap.size() > 0u) { |
| std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *> |
| oldest_message_reader = message_heap.front(); |
| |
| ss << " " << std::get<2>(oldest_message_reader) << " " |
| << std::get<0>(oldest_message_reader) << " queue_index (" |
| << std::get<1>(oldest_message_reader) << ") ttq " |
| << std::get<2>(oldest_message_reader)->time_to_queue() << " " |
| << std::get<2>(oldest_message_reader)->filename() << " -> " |
| << std::get<2>(oldest_message_reader)->DebugString(channel_index_) |
| << "\n"; |
| |
| std::pop_heap(message_heap.begin(), message_heap.end(), |
| &SplitMessageReaderHeapCompare); |
| message_heap.pop_back(); |
| } |
| } |
| ss << " }"; |
| |
| return ss.str(); |
| } |
| |
| std::string ChannelMerger::DebugString() const { |
| std::stringstream ss; |
| ss << "start_time " << realtime_start_time() << " " << monotonic_start_time() |
| << "\n"; |
| ss << "channel_heap {\n"; |
| std::vector<std::pair<monotonic_clock::time_point, int>> channel_heap = |
| channel_heap_; |
| while (channel_heap.size() > 0u) { |
| std::tuple<monotonic_clock::time_point, int> channel = channel_heap.front(); |
| ss << " " << std::get<0>(channel) << " (" << std::get<1>(channel) << ") " |
| << configuration::CleanedChannelToString( |
| configuration()->channels()->Get(std::get<1>(channel))) |
| << "\n"; |
| |
| ss << timestamp_mergers_[std::get<1>(channel)].DebugString() << "\n"; |
| |
| std::pop_heap(channel_heap.begin(), channel_heap.end(), |
| &ChannelHeapCompare); |
| channel_heap.pop_back(); |
| } |
| ss << "}"; |
| |
| return ss.str(); |
| } |
| |
| } // namespace logger |
| } // namespace aos |