blob: dde67c5e0ef5e1da7daf912829cf2932ca9c16d3 [file] [log] [blame]
from __future__ import print_function
import os
import basic_window
import random
import gi
import numpy
gi.require_version('Gtk', '3.0')
from gi.repository import Gdk
import cairo
import graph_generate
from graph_generate import XYSegment, AngleSegment, to_theta, to_xy, alpha_blend
from graph_generate import back_to_xy_loop, subdivide_theta, to_theta_loop
from graph_generate import l1, l2, joint_center
from basic_window import OverrideMatrix, identity, quit_main_loop
import shapely
from shapely.geometry import Polygon
def px(cr):
return OverrideMatrix(cr, identity)
def draw_px_cross(cr, length_px):
"""Draws a cross with fixed dimensions in pixel space."""
with px(cr):
x, y = cr.get_current_point()
cr.move_to(x, y - length_px)
cr.line_to(x, y + length_px)
cr.stroke()
cr.move_to(x - length_px, y)
cr.line_to(x + length_px, y)
cr.stroke()
def angle_dist_sqr(a1, a2):
"""Distance between two points in angle space."""
return (a1[0] - a2[0])**2 + (a1[1] - a2[1])**2
# Find the highest y position that intersects the vertical line defined by x.
def inter_y(x):
return numpy.sqrt((l2 + l1)**2 -
(x - joint_center[0])**2) + joint_center[1]
# This is the x position where the inner (hyperextension) circle intersects the horizontal line
derr = numpy.sqrt((l1 - l2)**2 - (joint_center[1] - 0.3048)**2)
# Define min and max l1 angles based on vertical constraints.
def get_angle(boundary):
h = numpy.sqrt((l1)**2 - (boundary - joint_center[0])**2) + joint_center[1]
return numpy.arctan2(h, boundary - joint_center[0])
# left hand side lines
lines1 = [
(-0.826135, inter_y(-0.826135)),
(-0.826135, 0.1397),
(-23.025 * 0.0254, 0.1397),
(-23.025 * 0.0254, 0.3048),
(joint_center[0] - derr, 0.3048),
]
# right hand side lines
lines2 = [(joint_center[0] + derr, 0.3048), (0.422275, 0.3048),
(0.422275, 0.1397), (0.826135, 0.1397), (0.826135,
inter_y(0.826135))]
t1_min = get_angle((32.525 - 4.0) * 0.0254)
t2_min = -7.0 / 4.0 * numpy.pi
t1_max = get_angle((-32.525 + 4.0) * 0.0254)
t2_max = numpy.pi * 3.0 / 4.0
# Draw lines to cr + stroke.
def draw_lines(cr, lines):
cr.move_to(lines[0][0], lines[0][1])
for pt in lines[1:]:
cr.line_to(pt[0], pt[1])
with px(cr):
cr.stroke()
# Rotate a rasterized loop such that it aligns to when the parameters loop
def rotate_to_jump_point(points):
last_pt = points[0]
for pt_i in range(1, len(points)):
pt = points[pt_i]
delta = last_pt[1] - pt[1]
if abs(delta) > numpy.pi:
return points[pt_i:] + points[:pt_i]
last_pt = pt
return points
# shift points vertically by dy.
def y_shift(points, dy):
return [(x, y + dy) for x, y in points]
lines1_theta_part = rotate_to_jump_point(to_theta_loop(lines1, 0))
lines2_theta_part = rotate_to_jump_point(to_theta_loop(lines2))
# Some hacks here to make a single polygon by shifting to get an extra copy of the contraints.
lines1_theta = y_shift(lines1_theta_part, -numpy.pi * 2) + lines1_theta_part + \
y_shift(lines1_theta_part, numpy.pi * 2)
lines2_theta = y_shift(lines2_theta_part, numpy.pi * 2) + lines2_theta_part + \
y_shift(lines2_theta_part, -numpy.pi * 2)
lines_theta = lines1_theta + lines2_theta
p1 = Polygon(lines_theta)
p2 = Polygon([(t1_min, t2_min), (t1_max, t2_min), (t1_max, t2_max), (t1_min,
t2_max)])
# Fully computed theta constrints.
lines_theta = list(p1.intersection(p2).exterior.coords)
lines1_theta_back = back_to_xy_loop(lines1_theta)
lines2_theta_back = back_to_xy_loop(lines2_theta)
lines_theta_back = back_to_xy_loop(lines_theta)
# Get the closest point to a line from a test pt.
def get_closest(prev, cur, pt):
dx_ang = (cur[0] - prev[0])
dy_ang = (cur[1] - prev[1])
d = numpy.sqrt(dx_ang**2 + dy_ang**2)
if (d < 0.000001):
return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
pdx = -dy_ang / d
pdy = dx_ang / d
dpx = pt[0] - prev[0]
dpy = pt[1] - prev[1]
alpha = (dx_ang * dpx + dy_ang * dpy) / d / d
if (alpha < 0):
return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
elif (alpha > 1):
return cur, numpy.sqrt((cur[0] - pt[0])**2 + (cur[1] - pt[1])**2)
else:
return (alpha_blend(prev[0], cur[0], alpha), alpha_blend(prev[1], cur[1], alpha)), \
abs(dpx * pdx + dpy * pdy)
#
def closest_segment(lines, pt):
c_pt, c_pt_dist = get_closest(lines[-1], lines[0], pt)
for i in range(1, len(lines)):
prev = lines[i - 1]
cur = lines[i]
c_pt_new, c_pt_new_dist = get_closest(prev, cur, pt)
if c_pt_new_dist < c_pt_dist:
c_pt = c_pt_new
c_pt_dist = c_pt_new_dist
return c_pt, c_pt_dist
# Create a GTK+ widget on which we will draw using Cairo
class Silly(basic_window.BaseWindow):
def __init__(self):
super(Silly, self).__init__()
self.theta_version = False
self.reinit_extents()
self.last_pos = (numpy.pi / 2.0, 1.0)
self.circular_index_select = -1
# Extra stuff for drawing lines.
self.segments = []
self.prev_segment_pt = None
self.now_segment_pt = None
self.spline_edit = 0
self.edit_control1 = True
def reinit_extents(self):
if self.theta_version:
self.extents_x_min = -numpy.pi * 2
self.extents_x_max = numpy.pi * 2
self.extents_y_min = -numpy.pi * 2
self.extents_y_max = numpy.pi * 2
else:
self.extents_x_min = -40.0 * 0.0254
self.extents_x_max = 40.0 * 0.0254
self.extents_y_min = -4.0 * 0.0254
self.extents_y_max = 110.0 * 0.0254
self.init_extents(
(0.5 * (self.extents_x_min + self.extents_x_max), 0.5 *
(self.extents_y_max + self.extents_y_min)),
(1.0 * (self.extents_x_max - self.extents_x_min), 1.0 *
(self.extents_y_max - self.extents_y_min)))
# Handle the expose-event by drawing
def handle_draw(self, cr):
# use "with px(cr): blah;" to transform to pixel coordinates.
# Fill the background color of the window with grey
cr.set_source_rgb(0.5, 0.5, 0.5)
cr.paint()
# Draw a extents rectangle
cr.set_source_rgb(1.0, 1.0, 1.0)
cr.rectangle(self.extents_x_min, self.extents_y_min,
(self.extents_x_max - self.extents_x_min),
self.extents_y_max - self.extents_y_min)
cr.fill()
if not self.theta_version:
# Draw a filled white rectangle.
cr.set_source_rgb(1.0, 1.0, 1.0)
cr.rectangle(-2.0, -2.0, 4.0, 4.0)
cr.fill()
cr.set_source_rgb(0.0, 0.0, 1.0)
cr.arc(joint_center[0], joint_center[1], l2 + l1, 0,
2.0 * numpy.pi)
with px(cr):
cr.stroke()
cr.arc(joint_center[0], joint_center[1], l1 - l2, 0,
2.0 * numpy.pi)
with px(cr):
cr.stroke()
else:
# Draw a filled white rectangle.
cr.set_source_rgb(1.0, 1.0, 1.0)
cr.rectangle(-numpy.pi, -numpy.pi, numpy.pi * 2.0, numpy.pi * 2.0)
cr.fill()
if self.theta_version:
cr.set_source_rgb(0.0, 0.0, 1.0)
for i in range(-6, 6):
cr.move_to(-40, -40 + i * numpy.pi)
cr.line_to(40, 40 + i * numpy.pi)
with px(cr):
cr.stroke()
if self.theta_version:
cr.set_source_rgb(0.5, 0.5, 1.0)
draw_lines(cr, lines_theta)
else:
cr.set_source_rgb(0.5, 1.0, 1.0)
draw_lines(cr, lines1)
draw_lines(cr, lines2)
def set_color(cr, circular_index):
if circular_index == -2:
cr.set_source_rgb(0.0, 0.25, 1.0)
elif circular_index == -1:
cr.set_source_rgb(0.5, 0.0, 1.0)
elif circular_index == 0:
cr.set_source_rgb(0.5, 1.0, 1.0)
elif circular_index == 1:
cr.set_source_rgb(0.0, 0.5, 1.0)
elif circular_index == 2:
cr.set_source_rgb(0.5, 1.0, 0.5)
else:
cr.set_source_rgb(1.0, 0.0, 0.0)
def get_circular_index(pt):
theta1, theta2 = pt
circular_index = int(numpy.floor((theta2 - theta1) / numpy.pi))
return circular_index
cr.set_source_rgb(0.0, 0.0, 1.0)
lines = subdivide_theta(lines_theta)
o_circular_index = circular_index = get_circular_index(lines[0])
p_xy = to_xy(lines[0][0], lines[0][1])
if circular_index == self.circular_index_select:
cr.move_to(p_xy[0] + circular_index * 0, p_xy[1])
for pt in lines[1:]:
p_xy = to_xy(pt[0], pt[1])
circular_index = get_circular_index(pt)
if o_circular_index == self.circular_index_select:
cr.line_to(p_xy[0] + o_circular_index * 0, p_xy[1])
if circular_index != o_circular_index:
o_circular_index = circular_index
with px(cr):
cr.stroke()
if circular_index == self.circular_index_select:
cr.move_to(p_xy[0] + circular_index * 0, p_xy[1])
with px(cr):
cr.stroke()
if not self.theta_version:
theta1, theta2 = to_theta(self.last_pos, self.circular_index_select)
x, y = joint_center[0], joint_center[1]
cr.move_to(x, y)
x += numpy.cos(theta1) * l1
y += numpy.sin(theta1) * l1
cr.line_to(x, y)
x += numpy.cos(theta2) * l2
y += numpy.sin(theta2) * l2
cr.line_to(x, y)
with px(cr):
cr.stroke()
cr.move_to(self.last_pos[0], self.last_pos[1])
cr.set_source_rgb(0.0, 1.0, 0.2)
draw_px_cross(cr, 20)
if self.theta_version:
cr.set_source_rgb(0.0, 1.0, 0.2)
cr.set_source_rgb(0.0, 1.0, 0.2)
cr.move_to(self.last_pos[0], self.last_pos[1])
draw_px_cross(cr, 5)
c_pt, dist = closest_segment(lines_theta, self.last_pos)
print("dist:", dist, c_pt, self.last_pos)
cr.set_source_rgb(0.0, 1.0, 1.0)
cr.move_to(c_pt[0], c_pt[1])
draw_px_cross(cr, 5)
cr.set_source_rgb(0.0, 0.5, 1.0)
for segment in self.segments:
color = [0, random.random(), 1]
random.shuffle(color)
cr.set_source_rgb(*color)
segment.DrawTo(cr, self.theta_version)
with px(cr):
cr.stroke()
cr.set_source_rgb(0.0, 1.0, 0.5)
segment = self.current_seg()
if segment:
print(segment)
segment.DrawTo(cr, self.theta_version)
with px(cr):
cr.stroke()
def cur_pt_in_theta(self):
if self.theta_version: return self.last_pos
return to_theta(self.last_pos, self.circular_index_select)
# Current segment based on which mode the drawing system is in.
def current_seg(self):
if self.prev_segment_pt and self.now_segment_pt:
if self.theta_version:
return AngleSegment(self.prev_segment_pt, self.now_segment_pt)
else:
return XYSegment(self.prev_segment_pt, self.now_segment_pt)
def do_key_press(self, event):
keyval = Gdk.keyval_to_lower(event.keyval)
print("Gdk.KEY_" + Gdk.keyval_name(keyval))
if keyval == Gdk.KEY_q:
print("Found q key and exiting.")
quit_main_loop()
elif keyval == Gdk.KEY_c:
# Increment which arm solution we render
self.circular_index_select += 1
print(self.circular_index_select)
elif keyval == Gdk.KEY_v:
# Decrement which arm solution we render
self.circular_index_select -= 1
print(self.circular_index_select)
elif keyval == Gdk.KEY_w:
# Add this segment to the segment list.
segment = self.current_seg()
if segment: self.segments.append(segment)
self.prev_segment_pt = self.now_segment_pt
elif keyval == Gdk.KEY_r:
self.prev_segment_pt = self.now_segment_pt
elif keyval == Gdk.KEY_p:
# Print out the segments.
print(repr(self.segments))
elif keyval == Gdk.KEY_g:
# Generate theta points.
if self.segments:
print(repr(self.segments[0].ToThetaPoints()))
elif keyval == Gdk.KEY_e:
best_pt = self.now_segment_pt
best_dist = 1e10
for segment in self.segments:
d = angle_dist_sqr(segment.start, self.now_segment_pt)
if (d < best_dist):
best_pt = segment.start
best_dist = d
d = angle_dist_sqr(segment.end, self.now_segment_pt)
if (d < best_dist):
best_pt = segment.end
best_dist = d
self.now_segment_pt = best_pt
elif keyval == Gdk.KEY_t:
# Toggle between theta and xy renderings
if self.theta_version:
theta1, theta2 = self.last_pos
data = to_xy(theta1, theta2)
self.circular_index_select = int(
numpy.floor((theta2 - theta1) / numpy.pi))
self.last_pos = (data[0], data[1])
else:
self.last_pos = self.cur_pt_in_theta()
self.theta_version = not self.theta_version
self.reinit_extents()
elif keyval == Gdk.KEY_z:
self.edit_control1 = not self.edit_control1
if self.edit_control1:
self.now_segment_pt = self.segments[0].control1
else:
self.now_segment_pt = self.segments[0].control2
if not self.theta_version:
data = to_xy(self.now_segment_pt[0], self.now_segment_pt[1])
self.last_pos = (data[0], data[1])
else:
self.last_pos = self.now_segment_pt
print("self.last_pos: ", self.last_pos, " ci: ",
self.circular_index_select)
self.redraw()
def do_button_press(self, event):
self.last_pos = (event.x, event.y)
self.now_segment_pt = self.cur_pt_in_theta()
if self.edit_control1:
self.segments[0].control1 = self.now_segment_pt
else:
self.segments[0].control2 = self.now_segment_pt
print('Clicked at theta: %s' % (repr(self.now_segment_pt,)))
if not self.theta_version:
print('Clicked at xy, circular index: (%f, %f, %f)' %
(self.last_pos[0], self.last_pos[1],
self.circular_index_select))
print('c1: numpy.array([%f, %f])' % (self.segments[0].control1[0],
self.segments[0].control1[1]))
print('c2: numpy.array([%f, %f])' % (self.segments[0].control2[0],
self.segments[0].control2[1]))
self.redraw()
silly = Silly()
silly.segments = graph_generate.segments
basic_window.RunApp()