| import * as Colors from 'org_frc971/aos/network/www/colors'; |
| // Multiplies all the values in the provided array by scale. |
| function scaleVec(vec: number[], scale: number): number[] { |
| const scaled: number[] = []; |
| for (let num of vec) { |
| scaled.push(num * scale); |
| } |
| return scaled; |
| } |
| |
| // Runs the operation op() over every pair of numbers in a, b and returns |
| // the result. |
| function cwiseOp( |
| a: number[], b: number[], op: (a: number, b: number) => number): number[] { |
| if (a.length !== b.length) { |
| throw new Error("a and b must be of equal length."); |
| } |
| const min: number[] = []; |
| for (let ii = 0; ii < a.length; ++ii) { |
| min.push(op(a[ii], b[ii])); |
| } |
| return min; |
| } |
| |
| // Adds vectors a and b. |
| function addVec(a: number[], b: number[]): number[] { |
| return cwiseOp(a, b, (p, q) => { |
| return p + q; |
| }); |
| } |
| |
| function subtractVec(a: number[], b: number[]): number[] { |
| return cwiseOp(a, b, (p, q) => { |
| return p - q; |
| }); |
| } |
| |
| function multVec(a: number[], b: number[]): number[] { |
| return cwiseOp(a, b, (p, q) => { |
| return p * q; |
| }); |
| } |
| |
| function divideVec(a: number[], b: number[]): number[] { |
| return cwiseOp(a, b, (p, q) => { |
| return p / q; |
| }); |
| } |
| |
| // Parameters used when scaling the lines to the canvas. |
| // If a point in a line is at pos then its position in the canvas space will be |
| // scale * pos + offset. |
| class ZoomParameters { |
| public scale: number[] = [1.0, 1.0]; |
| public offset: number[] = [0.0, 0.0]; |
| copy():ZoomParameters { |
| const copy = new ZoomParameters(); |
| copy.scale = [this.scale[0], this.scale[1]]; |
| copy.offset = [this.offset[0], this.offset[1]]; |
| return copy; |
| } |
| } |
| |
| export class Point { |
| constructor( |
| public x: number = 0.0, |
| public y: number = 0.0) {} |
| } |
| |
| // Represents a single line within a plot. Handles rendering the line with |
| // all of its points and the appropriate color/markers/lines. |
| export class Line { |
| // Notes on zoom/precision management: |
| // The adjustedPoints field is the buffert of points (formatted [x0, y0, x1, |
| // y1, ..., xn, yn]) that will be read directly by WebGL and operated on in |
| // the vertex shader. However, WebGL provides relatively minimal guarantess |
| // about the floating point precision available in the shaders (to the point |
| // where even Float32 precision is not guaranteed). As such, we |
| // separately maintain the points vector using javascript number's |
| // (arbitrary-precision ints or double-precision floats). We then periodically |
| // set the baseZoom to be equal to the current desired zoom, calculate the |
| // scaled values directly in typescript, store them in adjustedPoints, and |
| // then just pass an identity transformation to WebGL for the zoom parameters. |
| // When actively zooming, we then just use WebGL to compensate for the offset |
| // between the baseZoom and the desired zoom, taking advantage of WebGL's |
| // performance to handle the high-rate updates but then falling back to |
| // typescript periodically to reset the offsets to avoid precision issues. |
| // |
| // As a practical matter, I've found that even if we were to recalculate |
| // the zoom in typescript on every iteration, the penalty is relatively |
| // minor--we still perform far better than using a non-WebGL canvas. This |
| // suggests that the bulk of the performance advantage from using WebGL for |
| // this use-case lies not in doing the zoom updates in the shaders, but rather |
| // in relying on WebGL to figure out how to drawin the lines/points that we |
| // specify. |
| private adjustedPoints: Float32Array = new Float32Array([]); |
| private points: Point[] = []; |
| private _drawLine: boolean = true; |
| private _pointSize: number = 3.0; |
| private _hasUpdate: boolean = false; |
| private _minValues: number[] = [Infinity, Infinity]; |
| private _maxValues: number[] = [-Infinity, -Infinity]; |
| private _color: number[] = [1.0, 0.0, 0.0]; |
| private pointAttribLocation: number; |
| private colorLocation: WebGLUniformLocation | null; |
| private pointSizeLocation: WebGLUniformLocation | null; |
| private _label: string|null = null; |
| constructor( |
| private readonly ctx: WebGLRenderingContext, |
| private readonly program: WebGLProgram, |
| private readonly buffer: WebGLBuffer, private baseZoom: ZoomParameters) { |
| this.pointAttribLocation = this.ctx.getAttribLocation(this.program, 'apos'); |
| this.colorLocation = this.ctx.getUniformLocation(this.program, 'color'); |
| this.pointSizeLocation = |
| this.ctx.getUniformLocation(this.program, 'point_size'); |
| } |
| |
| // Return the largest x and y values present in the list of points. |
| maxValues(): number[] { |
| return this._maxValues; |
| } |
| |
| // Return the smallest x and y values present in the list of points. |
| minValues(): number[] { |
| return this._minValues; |
| } |
| |
| // Whether any parameters have changed that would require re-rending the line. |
| hasUpdate(): boolean { |
| return this._hasUpdate; |
| } |
| |
| // Get/set the color of the line, returned as an RGB tuple. |
| color(): number[] { |
| return this._color; |
| } |
| |
| setColor(newColor: number[]): Line { |
| this._color = newColor; |
| this._hasUpdate = true; |
| return this; |
| } |
| |
| // Get/set the size of the markers to draw, in pixels (zero means no markers). |
| pointSize(): number { |
| return this._pointSize; |
| } |
| |
| setPointSize(size: number): Line { |
| this._pointSize = size; |
| this._hasUpdate = true; |
| return this; |
| } |
| |
| // Get/set whether we draw a line between the points (i.e., setting this to |
| // false would effectively create a scatter-plot). If drawLine is false and |
| // pointSize is zero, then no data is rendered. |
| drawLine(): boolean { |
| return this._drawLine; |
| } |
| |
| setDrawLine(newDrawLine: boolean): Line { |
| this._drawLine = newDrawLine; |
| this._hasUpdate = true; |
| return this; |
| } |
| |
| // Set the points to render. The points in the line are ordered and should |
| // be of the format: |
| // [x1, y1, x2, y2, x3, y3, ...., xN, yN] |
| setPoints(points: Point[]) { |
| this.points = points; |
| this.adjustedPoints = new Float32Array(points.length * 2); |
| this.updateBaseZoom(this.baseZoom); |
| this._hasUpdate = true; |
| this._minValues[0] = Infinity; |
| this._minValues[1] = Infinity; |
| this._maxValues[0] = -Infinity; |
| this._maxValues[1] = -Infinity; |
| for (let ii = 0; ii < this.points.length; ++ii) { |
| const x = this.points[ii].x; |
| const y = this.points[ii].y; |
| |
| if (isNaN(x) || isNaN(y)) { |
| continue; |
| } |
| |
| this._minValues = cwiseOp(this._minValues, [x, y], Math.min); |
| this._maxValues = cwiseOp(this._maxValues, [x, y], Math.max); |
| } |
| } |
| |
| getPoints(): Point[] { |
| return this.points; |
| } |
| |
| // Get/set the label to use for the line when drawing the legend. |
| setLabel(label: string): Line { |
| this._label = label; |
| return this; |
| } |
| |
| label(): string|null { |
| return this._label; |
| } |
| |
| updateBaseZoom(zoom: ZoomParameters) { |
| this.baseZoom = zoom; |
| for (let ii = 0; ii < this.points.length; ++ii) { |
| const point = this.points[ii]; |
| this.adjustedPoints[ii * 2] = point.x * zoom.scale[0] + zoom.offset[0]; |
| this.adjustedPoints[ii * 2 + 1] = point.y * zoom.scale[1] + zoom.offset[1]; |
| } |
| } |
| |
| // Render the line on the canvas. |
| draw() { |
| this._hasUpdate = false; |
| if (this.points.length === 0) { |
| return; |
| } |
| |
| this.ctx.bindBuffer(this.ctx.ARRAY_BUFFER, this.buffer); |
| // Note: if this is generating errors associated with the buffer size, |
| // confirm that this.points really is a Float32Array. |
| this.ctx.bufferData( |
| this.ctx.ARRAY_BUFFER, |
| this.adjustedPoints, |
| this.ctx.STATIC_DRAW); |
| { |
| const numComponents = 2; // pull out 2 values per iteration |
| const numType = this.ctx.FLOAT; // the data in the buffer is 32bit floats |
| const normalize = false; // don't normalize |
| const stride = 0; // how many bytes to get from one set of values to the |
| // next 0 = use type and numComponents above |
| const offset = 0; // how many bytes inside the buffer to start from |
| this.ctx.vertexAttribPointer( |
| this.pointAttribLocation, numComponents, numType, |
| normalize, stride, offset); |
| this.ctx.enableVertexAttribArray(this.pointAttribLocation); |
| } |
| |
| this.ctx.uniform1f(this.pointSizeLocation, this._pointSize); |
| this.ctx.uniform4f( |
| this.colorLocation, this._color[0], this._color[1], this._color[2], |
| 1.0); |
| |
| if (this._drawLine) { |
| this.ctx.drawArrays(this.ctx.LINE_STRIP, 0, this.points.length); |
| } |
| if (this._pointSize > 0.0) { |
| this.ctx.drawArrays(this.ctx.POINTS, 0, this.points.length); |
| } |
| } |
| } |
| |
| enum MouseButton { |
| Right, |
| Middle, |
| Left |
| } |
| |
| // The button to use for panning the plot. |
| const PAN_BUTTON = MouseButton.Left; |
| const RECTANGLE_BUTTON = MouseButton.Right; |
| |
| // Returns the mouse button that generated a given event. |
| function transitionButton(event: MouseEvent): MouseButton { |
| switch (event.button) { |
| case 0: |
| return MouseButton.Left; |
| case 1: |
| return MouseButton.Middle; |
| case 2: |
| return MouseButton.Right; |
| } |
| } |
| |
| // Returns whether the given button is pressed on the mouse. |
| function buttonPressed(event: MouseEvent, button: MouseButton): boolean { |
| switch (button) { |
| // For some reason, the middle/right buttons are swapped relative to where |
| // we would expect them to be given the .button field. |
| case MouseButton.Left: |
| return 0 !== (event.buttons & 0x1); |
| case MouseButton.Right: |
| return 0 !== (event.buttons & 0x2); |
| case MouseButton.Middle: |
| return 0 !== (event.buttons & 0x4); |
| } |
| } |
| |
| // Handles rendering a Legend for a list of lines. |
| // This takes a 2d canvas, which is what we use for rendering all the text of |
| // the plot and is separate, but overlayed on top of, the WebGL canvas that the |
| // lines are drawn on. |
| export class Legend { |
| // Location, in pixels, of the legend in the text canvas. |
| private location: number[] = [0, 0]; |
| constructor(private lines: Line[], private legend: HTMLDivElement) { |
| this.setPosition([80, 30]); |
| } |
| |
| setPosition(location: number[]): void { |
| this.location = location; |
| this.legend.style.left = location[0] + 'px'; |
| this.legend.style.top = location[1] + 'px'; |
| } |
| |
| draw(): void { |
| // First, figure out if anything has changed. The legend is created and |
| // then titles are changed afterwords, so we have to do this lazily. |
| let needsUpdate = false; |
| { |
| let child = 0; |
| for (let line of this.lines) { |
| if (line.label() === null) { |
| continue; |
| } |
| |
| if (child >= this.legend.children.length) { |
| needsUpdate = true; |
| break; |
| } |
| |
| // Make sure both have text in the right spot. Don't be too picky since |
| // nothing should really be changing here, and it's handy to let the |
| // user edit the HTML for testing. |
| if (this.legend.children[child].lastChild.textContent.length == 0 && |
| line.label().length != 0) { |
| needsUpdate = true; |
| break; |
| } |
| child += 1; |
| } |
| |
| // If we got through everything, we should be pointed past the last child. |
| // If not, more children exists than lines. |
| if (child != this.legend.children.length) { |
| needsUpdate = true; |
| } |
| } |
| if (!needsUpdate) { |
| return; |
| } |
| |
| // Nuke the old legend. |
| while (this.legend.firstChild) { |
| this.legend.removeChild(this.legend.firstChild); |
| } |
| |
| // Now, build up a new legend. |
| for (let line of this.lines) { |
| if (line.label() === null) { |
| continue; |
| } |
| |
| // The legend is a div containing both a canvas for the style/color, and a |
| // div for the text. Make those, color in the canvas, and add it to the |
| // page. |
| let l = document.createElement('div'); |
| l.classList.add('aos_legend_line'); |
| let text = document.createElement('div'); |
| text.textContent = line.label(); |
| |
| l.appendChild(text); |
| this.legend.appendChild(l); |
| |
| let c = document.createElement('canvas'); |
| c.width = text.offsetHeight; |
| c.height = text.offsetHeight; |
| |
| const linestyleContext = c.getContext("2d"); |
| linestyleContext.clearRect(0, 0, c.width, c.height); |
| |
| const color = line.color(); |
| linestyleContext.strokeStyle = `rgb(${255.0 * color[0]}, ${ |
| 255.0 * color[1]}, ${255.0 * color[2]})`; |
| linestyleContext.fillStyle = linestyleContext.strokeStyle; |
| |
| const pointSize = line.pointSize(); |
| const kDistanceIn = pointSize / 2.0; |
| |
| if (line.drawLine()) { |
| linestyleContext.beginPath(); |
| linestyleContext.moveTo(0, 0); |
| linestyleContext.lineTo(c.height, c.width); |
| linestyleContext.closePath(); |
| linestyleContext.stroke(); |
| } |
| |
| if (pointSize > 0) { |
| linestyleContext.fillRect(0, 0, pointSize, pointSize); |
| linestyleContext.fillRect( |
| c.height - 1 - pointSize, c.width - 1 - pointSize, pointSize, |
| pointSize); |
| } |
| |
| l.prepend(c); |
| } |
| } |
| } |
| |
| // This class manages all the WebGL rendering--namely, drawing the reference |
| // grid for the user and then rendering all the actual lines of the plot. |
| export class LineDrawer { |
| private program: WebGLProgram|null = null; |
| private scaleLocation: WebGLUniformLocation; |
| private offsetLocation: WebGLUniformLocation; |
| private vertexBuffer: WebGLBuffer; |
| private lines: Line[] = []; |
| private zoom: ZoomParameters = new ZoomParameters(); |
| private baseZoom: ZoomParameters = new ZoomParameters(); |
| private zoomUpdated: boolean = true; |
| // Maximum grid lines to render at once--this is used provide an upper limit |
| // on the number of Line objects we need to create in order to render the |
| // grid. |
| public readonly MAX_GRID_LINES: number = 5; |
| // Arrays of the points at which we will draw grid lines for the x/y axes. |
| private xTicks: number[] = []; |
| private yTicks: number[] = []; |
| private xGridLines: Line[] = []; |
| private yGridLines: Line[] = []; |
| |
| public static readonly COLOR_CYCLE = [ |
| Colors.RED, Colors.GREEN, Colors.BLUE, Colors.BROWN, Colors.PINK, |
| Colors.CYAN, Colors.WHITE, Colors.ORANGE, Colors.YELLOW |
| ]; |
| private colorCycleIndex = 0; |
| |
| constructor(public readonly ctx: WebGLRenderingContext) { |
| this.program = this.compileShaders(); |
| this.scaleLocation = this.ctx.getUniformLocation(this.program, 'scale'); |
| this.offsetLocation = this.ctx.getUniformLocation(this.program, 'offset'); |
| this.vertexBuffer = this.ctx.createBuffer(); |
| |
| for (let ii = 0; ii < this.MAX_GRID_LINES; ++ii) { |
| this.xGridLines.push( |
| new Line(this.ctx, this.program, this.vertexBuffer, this.baseZoom)); |
| this.yGridLines.push( |
| new Line(this.ctx, this.program, this.vertexBuffer, this.baseZoom)); |
| } |
| } |
| |
| getZoom(): ZoomParameters { |
| return this.zoom.copy(); |
| } |
| |
| plotToCanvasCoordinates(plotPos: number[]): number[] { |
| return addVec(multVec(plotPos, this.zoom.scale), this.zoom.offset); |
| } |
| |
| |
| canvasToPlotCoordinates(canvasPos: number[]): number[] { |
| return divideVec(subtractVec(canvasPos, this.zoom.offset), this.zoom.scale); |
| } |
| |
| // These return the max/min rendered points, in plot-space (this is helpful |
| // for drawing axis labels). |
| maxVisiblePoint(): number[] { |
| return this.canvasToPlotCoordinates([1.0, 1.0]); |
| } |
| |
| minVisiblePoint(): number[] { |
| return this.canvasToPlotCoordinates([-1.0, -1.0]); |
| } |
| |
| getLines(): Line[] { |
| return this.lines; |
| } |
| |
| setZoom(zoom: ZoomParameters) { |
| if (this.zoom.scale[0] == zoom.scale[0] && |
| this.zoom.scale[1] == zoom.scale[1] && |
| this.zoom.offset[0] == zoom.offset[0] && |
| this.zoom.offset[1] == zoom.offset[1]) { |
| return; |
| } |
| this.zoomUpdated = true; |
| this.zoom = zoom.copy(); |
| } |
| |
| setXTicks(ticks: number[]): void { |
| this.xTicks = ticks; |
| } |
| |
| setYTicks(ticks: number[]): void { |
| this.yTicks = ticks; |
| } |
| |
| // Update the grid lines. |
| updateTicks() { |
| for (let ii = 0; ii < this.MAX_GRID_LINES; ++ii) { |
| this.xGridLines[ii].setPoints([]); |
| this.yGridLines[ii].setPoints([]); |
| } |
| |
| const minValues = this.minVisiblePoint(); |
| const maxValues = this.maxVisiblePoint(); |
| |
| for (let ii = 0; ii < this.xTicks.length; ++ii) { |
| this.xGridLines[ii].setColor([0.0, 0.0, 0.0]); |
| const points = [ |
| new Point(this.xTicks[ii], minValues[1]), |
| new Point(this.xTicks[ii], maxValues[1]) |
| ]; |
| this.xGridLines[ii].setPointSize(0); |
| this.xGridLines[ii].setPoints(points); |
| this.xGridLines[ii].draw(); |
| } |
| |
| for (let ii = 0; ii < this.yTicks.length; ++ii) { |
| this.yGridLines[ii].setColor([0.0, 0.0, 0.0]); |
| const points = [ |
| new Point(minValues[0], this.yTicks[ii]), |
| new Point(maxValues[0], this.yTicks[ii]) |
| ]; |
| this.yGridLines[ii].setPointSize(0); |
| this.yGridLines[ii].setPoints(points); |
| this.yGridLines[ii].draw(); |
| } |
| } |
| |
| // Handles redrawing any of the WebGL objects, if necessary. |
| draw(): void { |
| let needsUpdate = this.zoomUpdated; |
| this.zoomUpdated = false; |
| for (let line of this.lines) { |
| if (line.hasUpdate()) { |
| needsUpdate = true; |
| break; |
| } |
| } |
| if (!needsUpdate) { |
| return; |
| } |
| |
| this.reset(); |
| |
| this.updateTicks(); |
| |
| for (let line of this.lines) { |
| line.draw(); |
| } |
| |
| return; |
| } |
| |
| loadShader(shaderType: number, source: string): WebGLShader { |
| const shader = this.ctx.createShader(shaderType); |
| this.ctx.shaderSource(shader, source); |
| this.ctx.compileShader(shader); |
| if (!this.ctx.getShaderParameter(shader, this.ctx.COMPILE_STATUS)) { |
| alert( |
| 'Got an error compiling a shader: ' + |
| this.ctx.getShaderInfoLog(shader)); |
| this.ctx.deleteShader(shader); |
| return null; |
| } |
| |
| return shader; |
| } |
| |
| compileShaders(): WebGLProgram { |
| const vertexShader = 'attribute vec2 apos;' + |
| 'uniform vec2 scale;' + |
| 'uniform vec2 offset;' + |
| 'uniform float point_size;' + |
| 'void main() {' + |
| ' gl_Position.xy = apos.xy * scale.xy + offset.xy;' + |
| ' gl_Position.z = 0.0;' + |
| ' gl_Position.w = 1.0;' + |
| ' gl_PointSize = point_size;' + |
| '}'; |
| |
| const fragmentShader = 'precision highp float;' + |
| 'uniform vec4 color;' + |
| 'void main() {' + |
| ' gl_FragColor = color;' + |
| '}'; |
| |
| const compiledVertex = |
| this.loadShader(this.ctx.VERTEX_SHADER, vertexShader); |
| const compiledFragment = |
| this.loadShader(this.ctx.FRAGMENT_SHADER, fragmentShader); |
| const program = this.ctx.createProgram(); |
| this.ctx.attachShader(program, compiledVertex); |
| this.ctx.attachShader(program, compiledFragment); |
| this.ctx.linkProgram(program); |
| if (!this.ctx.getProgramParameter(program, this.ctx.LINK_STATUS)) { |
| alert( |
| 'Unable to link the shaders: ' + this.ctx.getProgramInfoLog(program)); |
| return null; |
| } |
| return program; |
| } |
| |
| addLine(useColorCycle: boolean = true): Line { |
| this.lines.push( |
| new Line(this.ctx, this.program, this.vertexBuffer, this.baseZoom)); |
| const line = this.lines[this.lines.length - 1]; |
| if (useColorCycle) { |
| line.setColor(LineDrawer.COLOR_CYCLE[this.colorCycleIndex++]); |
| } |
| return line; |
| } |
| |
| minValues(): number[] { |
| let minValues = [Infinity, Infinity]; |
| for (let line of this.lines) { |
| minValues = cwiseOp(minValues, line.minValues(), Math.min); |
| } |
| return minValues; |
| } |
| |
| maxValues(): number[] { |
| let maxValues = [-Infinity, -Infinity]; |
| for (let line of this.lines) { |
| maxValues = cwiseOp(maxValues, line.maxValues(), Math.max); |
| } |
| return maxValues; |
| } |
| |
| reset(): void { |
| // Set the background color |
| this.ctx.clearColor(0.5, 0.5, 0.5, 1.0); |
| this.ctx.clearDepth(1.0); |
| this.ctx.enable(this.ctx.DEPTH_TEST); |
| this.ctx.depthFunc(this.ctx.LEQUAL); |
| this.ctx.clear(this.ctx.COLOR_BUFFER_BIT | this.ctx.DEPTH_BUFFER_BIT); |
| |
| this.ctx.useProgram(this.program); |
| |
| // Check for whether the zoom parameters have changed significantly; if so, |
| // update the base zoom. |
| // These thresholds are somewhat arbitrary. |
| const scaleDiff = divideVec(this.zoom.scale, this.baseZoom.scale); |
| const scaleChanged = scaleDiff[0] < 0.9 || scaleDiff[0] > 1.1 || |
| scaleDiff[1] < 0.9 || scaleDiff[1] > 1.1; |
| const offsetDiff = subtractVec(this.zoom.offset, this.baseZoom.offset); |
| // Note that offset is in the canvas coordinate frame and so just using |
| // hard-coded constants is fine. |
| const offsetChanged = |
| Math.abs(offsetDiff[0]) > 0.1 || Math.abs(offsetDiff[1]) > 0.1; |
| if (scaleChanged || offsetChanged) { |
| this.baseZoom = this.zoom.copy(); |
| for (const line of this.lines) { |
| line.updateBaseZoom(this.baseZoom); |
| } |
| for (const line of this.xGridLines) { |
| line.updateBaseZoom(this.baseZoom); |
| } |
| for (const line of this.yGridLines) { |
| line.updateBaseZoom(this.baseZoom); |
| } |
| } |
| |
| // all the points in the lines will be pre-scaled by this.baseZoom, so |
| // we need to remove its effects before passing it in. |
| // zoom.scale * pos + zoom.offset = scale * (baseZoom.scale * pos + baseZoom.offset) + offset |
| // zoom.scale = scale * baseZoom.scale |
| // scale = zoom.scale / baseZoom.scale |
| // zoom.offset = scale * baseZoom.offset + offset |
| // offset = zoom.offset - scale * baseZoom.offset |
| const scale = divideVec(this.zoom.scale, this.baseZoom.scale); |
| const offset = |
| subtractVec(this.zoom.offset, multVec(scale, this.baseZoom.offset)); |
| this.ctx.uniform2f( |
| this.scaleLocation, scale[0], scale[1]); |
| this.ctx.uniform2f( |
| this.offsetLocation, offset[0], offset[1]); |
| } |
| } |
| |
| // Class to store how much whitespace we put between the edges of the WebGL |
| // canvas (where we draw all the lines) and the edge of the plot. This gives |
| // us space to, e.g., draw axis labels, the plot title, etc. |
| class WhitespaceBuffers { |
| constructor( |
| public left: number, public right: number, public top: number, |
| public bottom: number) {} |
| } |
| |
| // Class to manage all the annotations associated with the plot--the axis/tick |
| // labels and the plot title. |
| class AxisLabels { |
| private readonly INCREMENTS: number[] = [2, 4, 5, 10]; |
| // Space to leave to create some visual space around the text. |
| private readonly TEXT_BUFFER: number = 5; |
| private title: string = ""; |
| private xlabel: string = ""; |
| private ylabel: string = ""; |
| constructor( |
| private ctx: CanvasRenderingContext2D, private drawer: LineDrawer, |
| private graphBuffers: WhitespaceBuffers) {} |
| |
| numberToLabel(num: number): string { |
| return num.toPrecision(5); |
| } |
| |
| textWidth(str: string): number { |
| return this.ctx.measureText(str).actualBoundingBoxRight; |
| } |
| |
| textHeight(str: string): number { |
| return this.ctx.measureText(str).actualBoundingBoxAscent; |
| } |
| |
| textDepth(str: string): number { |
| return this.ctx.measureText(str).actualBoundingBoxDescent; |
| } |
| |
| setTitle(title: string) { |
| this.title = title; |
| } |
| |
| setXLabel(xlabel: string) { |
| this.xlabel = xlabel; |
| } |
| |
| setYLabel(ylabel: string) { |
| this.ylabel = ylabel; |
| } |
| |
| getIncrement(range: number[]): number { |
| const diff = Math.abs(range[1] - range[0]); |
| const minDiff = diff / this.drawer.MAX_GRID_LINES; |
| const incrementsRatio = this.INCREMENTS[this.INCREMENTS.length - 1]; |
| const order = Math.pow( |
| incrementsRatio, |
| Math.floor(Math.log(minDiff) / Math.log(incrementsRatio))); |
| const normalizedDiff = minDiff / order; |
| for (let increment of this.INCREMENTS) { |
| if (increment > normalizedDiff) { |
| return increment * order; |
| } |
| } |
| return 1.0; |
| } |
| |
| getTicks(range: number[]): number[] { |
| const increment = this.getIncrement(range); |
| const start = Math.ceil(range[0] / increment) * increment; |
| const values = [start]; |
| for (let ii = 0; ii < this.drawer.MAX_GRID_LINES - 1; ++ii) { |
| const nextValue = values[ii] + increment; |
| if (nextValue > range[1]) { |
| break; |
| } |
| values.push(nextValue); |
| } |
| return values; |
| } |
| |
| plotToCanvasCoordinates(plotPos: number[]): number[] { |
| const webglCoord = this.drawer.plotToCanvasCoordinates(plotPos); |
| const webglX = (webglCoord[0] + 1.0) / 2.0 * this.drawer.ctx.canvas.width; |
| const webglY = (1.0 - webglCoord[1]) / 2.0 * this.drawer.ctx.canvas.height; |
| return [webglX + this.graphBuffers.left, webglY + this.graphBuffers.top]; |
| } |
| |
| drawXTick(x: number) { |
| const text = this.numberToLabel(x); |
| const height = this.textHeight(text); |
| const xpos = this.plotToCanvasCoordinates([x, 0])[0]; |
| this.ctx.textAlign = "center"; |
| this.ctx.fillText( |
| text, xpos, |
| this.ctx.canvas.height - this.graphBuffers.bottom + height + |
| this.TEXT_BUFFER); |
| } |
| |
| drawYTick(y: number) { |
| const text = this.numberToLabel(y); |
| const height = this.textHeight(text); |
| const ypos = this.plotToCanvasCoordinates([0, y])[1]; |
| this.ctx.textAlign = "right"; |
| this.ctx.fillText( |
| text, this.graphBuffers.left - this.TEXT_BUFFER, |
| ypos + height / 2.0); |
| } |
| |
| drawTitle() { |
| if (this.title) { |
| this.ctx.textAlign = 'center'; |
| this.ctx.fillText( |
| this.title, this.ctx.canvas.width / 2.0, |
| this.graphBuffers.top - this.TEXT_BUFFER); |
| } |
| } |
| |
| drawXLabel() { |
| if (this.xlabel) { |
| this.ctx.textAlign = 'center'; |
| this.ctx.fillText( |
| this.xlabel, this.ctx.canvas.width / 2.0, |
| this.ctx.canvas.height - this.TEXT_BUFFER); |
| } |
| } |
| |
| drawYLabel() { |
| this.ctx.save(); |
| if (this.ylabel) { |
| this.ctx.textAlign = 'center'; |
| const height = this.textHeight(this.ylabel); |
| this.ctx.translate( |
| height + this.TEXT_BUFFER, this.ctx.canvas.height / 2.0); |
| this.ctx.rotate(-Math.PI / 2.0); |
| this.ctx.fillText(this.ylabel, 0, 0); |
| } |
| this.ctx.restore(); |
| } |
| |
| draw() { |
| this.ctx.fillStyle = 'black'; |
| const minValues = this.drawer.minVisiblePoint(); |
| const maxValues = this.drawer.maxVisiblePoint(); |
| let text = this.numberToLabel(maxValues[1]); |
| this.drawYTick(maxValues[1]); |
| this.drawYTick(minValues[1]); |
| this.drawXTick(minValues[0]); |
| this.drawXTick(maxValues[0]); |
| this.ctx.strokeStyle = 'black'; |
| this.ctx.strokeRect( |
| this.graphBuffers.left, this.graphBuffers.top, |
| this.drawer.ctx.canvas.width, this.drawer.ctx.canvas.height); |
| this.ctx.strokeRect( |
| 0, 0, |
| this.ctx.canvas.width, this.ctx.canvas.height); |
| const xTicks = this.getTicks([minValues[0], maxValues[0]]); |
| this.drawer.setXTicks(xTicks); |
| const yTicks = this.getTicks([minValues[1], maxValues[1]]); |
| this.drawer.setYTicks(yTicks); |
| |
| for (let x of xTicks) { |
| this.drawXTick(x); |
| } |
| |
| for (let y of yTicks) { |
| this.drawYTick(y); |
| } |
| |
| this.drawTitle(); |
| this.drawXLabel(); |
| this.drawYLabel(); |
| } |
| |
| // Draws the current mouse position in the bottom-right of the plot. |
| drawMousePosition(mousePos: number[]) { |
| const plotPos = this.drawer.canvasToPlotCoordinates(mousePos); |
| |
| const text = |
| `(${plotPos[0].toPrecision(10)}, ${plotPos[1].toPrecision(10)})`; |
| const textDepth = this.textDepth(text); |
| this.ctx.textAlign = 'right'; |
| this.ctx.fillText( |
| text, this.ctx.canvas.width - this.graphBuffers.right, |
| this.ctx.canvas.height - this.graphBuffers.bottom - textDepth); |
| } |
| } |
| |
| // This class manages the entirety of a single plot. Most of the logic in |
| // this class is around handling mouse/keyboard events for interacting with |
| // the plot. |
| export class Plot { |
| private canvas = document.createElement('canvas'); |
| private textCanvas = document.createElement('canvas'); |
| private legendDiv = document.createElement('div'); |
| private lineDrawerContext: WebGLRenderingContext; |
| private drawer: LineDrawer; |
| private static keysPressed: |
| object = {'x': false, 'y': false, 'Escape': false}; |
| // List of all plots to use for propagating key-press events to. |
| private static allPlots: Plot[] = []; |
| // In canvas coordinates (the +/-1 square). |
| private lastMousePanPosition: number[]|null = null; |
| private rectangleStartPosition: number[]|null = null; |
| private axisLabelBuffer: WhitespaceBuffers = |
| new WhitespaceBuffers(50, 20, 20, 30); |
| private axisLabels: AxisLabels; |
| private legend: Legend; |
| private lastMousePosition: number[] = [0.0, 0.0]; |
| private autoFollow: boolean = true; |
| private linkedXAxes: Plot[] = []; |
| private lastTimeMs: number = 0; |
| private defaultYRange: number[]|null = null; |
| private zoomRectangle: Line; |
| |
| constructor(wrapperDiv: HTMLDivElement) { |
| wrapperDiv.appendChild(this.canvas); |
| wrapperDiv.appendChild(this.textCanvas); |
| this.legendDiv.classList.add('aos_legend'); |
| wrapperDiv.appendChild(this.legendDiv); |
| this.lastTimeMs = (new Date()).getTime(); |
| |
| this.canvas.style.paddingLeft = this.axisLabelBuffer.left.toString() + "px"; |
| this.canvas.style.paddingRight = this.axisLabelBuffer.right.toString() + "px"; |
| this.canvas.style.paddingTop = this.axisLabelBuffer.top.toString() + "px"; |
| this.canvas.style.paddingBottom = this.axisLabelBuffer.bottom.toString() + "px"; |
| this.canvas.classList.add('aos_plot'); |
| |
| this.lineDrawerContext = this.canvas.getContext('webgl'); |
| this.drawer = new LineDrawer(this.lineDrawerContext); |
| |
| this.textCanvas.classList.add('aos_plot_text'); |
| |
| this.canvas.addEventListener('dblclick', (e) => { |
| this.handleDoubleClick(e); |
| }); |
| this.canvas.onwheel = (e) => { |
| this.handleWheel(e); |
| e.preventDefault(); |
| }; |
| this.canvas.onmousedown = (e) => { |
| this.handleMouseDown(e); |
| }; |
| this.canvas.onmouseup = (e) => { |
| this.handleMouseUp(e); |
| }; |
| this.canvas.onmousemove = (e) => { |
| this.handleMouseMove(e); |
| }; |
| this.canvas.addEventListener('contextmenu', event => event.preventDefault()); |
| // Note: To handle the fact that only one keypress handle can be registered |
| // per browser tab, we share key-press handlers across all plot instances. |
| Plot.allPlots.push(this); |
| document.onkeydown = (e) => { |
| Plot.handleKeyDown(e); |
| }; |
| document.onkeyup = (e) => { |
| Plot.handleKeyUp(e); |
| }; |
| |
| const textCtx = this.textCanvas.getContext("2d"); |
| this.axisLabels = |
| new AxisLabels(textCtx, this.drawer, this.axisLabelBuffer); |
| this.legend = new Legend(this.drawer.getLines(), this.legendDiv); |
| |
| this.zoomRectangle = this.getDrawer().addLine(false); |
| this.zoomRectangle.setColor(Colors.WHITE); |
| this.zoomRectangle.setPointSize(0); |
| |
| this.draw(); |
| } |
| |
| handleDoubleClick(event: MouseEvent) { |
| this.resetZoom(); |
| } |
| |
| mouseCanvasLocation(event: MouseEvent): number[] { |
| const computedStyle = window.getComputedStyle(this.canvas); |
| const paddingLeftStr = computedStyle.getPropertyValue('padding-left'); |
| const paddingTopStr = computedStyle.getPropertyValue('padding-top'); |
| if (paddingLeftStr.substring(paddingLeftStr.length - 2) != "px") { |
| throw new Error("Left padding should be specified in pixels."); |
| } |
| if (paddingTopStr.substring(paddingTopStr.length - 2) != "px") { |
| throw new Error("Left padding should be specified in pixels."); |
| } |
| // Javascript will just ignore the extra "px". |
| const paddingLeft = Number.parseInt(paddingLeftStr); |
| const paddingTop = Number.parseInt(paddingTopStr); |
| |
| return [ |
| (event.offsetX - paddingLeft) * 2.0 / this.canvas.width - 1.0, |
| -(event.offsetY - paddingTop) * 2.0 / this.canvas.height + 1.0 |
| ]; |
| } |
| |
| mousePlotLocation(event: MouseEvent): number[] { |
| return this.drawer.canvasToPlotCoordinates(this.mouseCanvasLocation(event)); |
| } |
| |
| handleWheel(event: WheelEvent) { |
| if (event.deltaMode !== event.DOM_DELTA_PIXEL) { |
| return; |
| } |
| const mousePosition = this.mouseCanvasLocation(event); |
| const kWheelTuningScalar = 1.5; |
| const zoom = -kWheelTuningScalar * event.deltaY / this.canvas.height; |
| let zoomScalar = 1.0 + Math.abs(zoom); |
| if (zoom < 0.0) { |
| zoomScalar = 1.0 / zoomScalar; |
| } |
| const scale = scaleVec(this.drawer.getZoom().scale, zoomScalar); |
| const offset = addVec( |
| scaleVec(mousePosition, 1.0 - zoomScalar), |
| scaleVec(this.drawer.getZoom().offset, zoomScalar)); |
| this.setZoom(scale, offset); |
| } |
| |
| handleMouseDown(event: MouseEvent) { |
| for (let plot of this.linkedXAxes) { |
| plot.autoFollow = false; |
| } |
| this.autoFollow = false; |
| |
| const button = transitionButton(event); |
| switch (button) { |
| case PAN_BUTTON: |
| this.lastMousePanPosition = this.mouseCanvasLocation(event); |
| break; |
| case RECTANGLE_BUTTON: |
| this.rectangleStartPosition = this.mousePlotLocation(event); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| handleMouseUp(event: MouseEvent) { |
| const button = transitionButton(event); |
| switch (button) { |
| case PAN_BUTTON: |
| this.lastMousePanPosition = null; |
| break; |
| case RECTANGLE_BUTTON: |
| if (this.rectangleStartPosition === null) { |
| // We got a right-button release without ever seeing the mouse-down; |
| // just return. |
| return; |
| } |
| this.finishRectangleZoom(event); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| private finishRectangleZoom(event: MouseEvent) { |
| const currentPosition = this.mousePlotLocation(event); |
| this.setZoomCorners(this.rectangleStartPosition, currentPosition); |
| this.rectangleStartPosition = null; |
| this.zoomRectangle.setPoints([]); |
| } |
| |
| handleMouseMove(event: MouseEvent) { |
| const mouseLocation = this.mouseCanvasLocation(event); |
| if (buttonPressed(event, PAN_BUTTON) && |
| (this.lastMousePanPosition !== null)) { |
| const mouseDiff = |
| addVec(mouseLocation, scaleVec(this.lastMousePanPosition, -1)); |
| this.setZoom( |
| this.drawer.getZoom().scale, |
| addVec(this.drawer.getZoom().offset, mouseDiff)); |
| this.lastMousePanPosition = mouseLocation; |
| } |
| if (this.rectangleStartPosition !== null) { |
| if (buttonPressed(event, RECTANGLE_BUTTON)) { |
| // p0 and p1 are the two corners of the rectangle to draw. |
| const p0 = [...this.rectangleStartPosition]; |
| const p1 = [...this.mousePlotLocation(event)]; |
| const minVisible = this.drawer.minVisiblePoint(); |
| const maxVisible = this.drawer.maxVisiblePoint(); |
| // Modify the rectangle corners to display correctly if we are limiting |
| // the zoom to the x/y axis. |
| const x_pressed = Plot.keysPressed['x']; |
| const y_pressed = Plot.keysPressed["y"]; |
| if (x_pressed && !y_pressed) { |
| p0[1] = minVisible[1]; |
| p1[1] = maxVisible[1]; |
| } else if (!x_pressed && y_pressed) { |
| p0[0] = minVisible[0]; |
| p1[0] = maxVisible[0]; |
| } |
| this.zoomRectangle.setPoints([ |
| new Point(p0[0], p0[1]), new Point(p0[0], p1[1]), |
| new Point(p1[0], p1[1]), new Point(p1[0], p0[1]), |
| new Point(p0[0], p0[1]) |
| ]); |
| } else { |
| this.finishRectangleZoom(event); |
| } |
| } else { |
| this.zoomRectangle.setPoints([]); |
| } |
| this.lastMousePosition = mouseLocation; |
| } |
| |
| setZoom(scale: number[], offset: number[]) { |
| if (!isFinite(scale[0]) || !isFinite(scale[1])) { |
| throw new Error("Doesn't support non-finite scales due to singularities."); |
| } |
| const x_pressed = Plot.keysPressed["x"]; |
| const y_pressed = Plot.keysPressed["y"]; |
| const zoom = this.drawer.getZoom(); |
| if (x_pressed && !y_pressed) { |
| zoom.scale[0] = scale[0]; |
| zoom.offset[0] = offset[0]; |
| } else if (y_pressed && !x_pressed) { |
| zoom.scale[1] = scale[1]; |
| zoom.offset[1] = offset[1]; |
| } else { |
| zoom.scale = scale; |
| zoom.offset = offset; |
| } |
| |
| for (let plot of this.linkedXAxes) { |
| const otherZoom = plot.drawer.getZoom(); |
| otherZoom.scale[0] = zoom.scale[0]; |
| otherZoom.offset[0] = zoom.offset[0]; |
| plot.drawer.setZoom(otherZoom); |
| plot.autoFollow = false; |
| } |
| this.drawer.setZoom(zoom); |
| this.autoFollow = false; |
| } |
| |
| |
| setZoomCorners(c1: number[], c2: number[]) { |
| const scale = cwiseOp(c1, c2, (a, b) => { |
| return 2.0 / Math.abs(a - b); |
| }); |
| const offset = cwiseOp(scale, cwiseOp(c1, c2, Math.max), (a, b) => { |
| return 1.0 - a * b; |
| }); |
| this.setZoom(scale, offset); |
| } |
| |
| setDefaultYRange(range: number[]|null) { |
| if (range == null) { |
| this.defaultYRange = null; |
| return; |
| } |
| if (range.length != 2) { |
| throw new Error('Range should contain exactly two values.'); |
| } |
| this.defaultYRange = range; |
| } |
| |
| resetZoom() { |
| const minValues = this.drawer.minValues(); |
| const maxValues = this.drawer.maxValues(); |
| const kScalar = 0.05; |
| for (const plot of this.linkedXAxes) { |
| const otherMin = plot.drawer.minValues(); |
| const otherMax = plot.drawer.maxValues(); |
| // For linked x-axes, only adjust the x limits. |
| minValues[0] = Math.min(minValues[0], otherMin[0]); |
| maxValues[0] = Math.max(maxValues[0], otherMax[0]); |
| } |
| if (!isFinite(minValues[0]) || !isFinite(maxValues[0])) { |
| minValues[0] = 0; |
| maxValues[0] = 0; |
| } |
| if (!isFinite(minValues[1]) || !isFinite(maxValues[1])) { |
| minValues[1] = 0; |
| maxValues[1] = 0; |
| } |
| if (minValues[0] == maxValues[0]) { |
| minValues[0] -= 1; |
| maxValues[0] += 1; |
| } else { |
| const width = maxValues[0] - minValues[0]; |
| maxValues[0] += width * kScalar; |
| minValues[0] -= width * kScalar; |
| } |
| if (minValues[1] == maxValues[1]) { |
| minValues[1] -= 1; |
| maxValues[1] += 1; |
| } else { |
| const height = maxValues[1] - minValues[1]; |
| maxValues[1] += height * kScalar; |
| minValues[1] -= height * kScalar; |
| } |
| if (this.defaultYRange != null) { |
| minValues[1] = this.defaultYRange[0]; |
| maxValues[1] = this.defaultYRange[1]; |
| } |
| this.setZoomCorners(minValues, maxValues); |
| this.autoFollow = true; |
| for (let plot of this.linkedXAxes) { |
| plot.autoFollow = true; |
| } |
| } |
| |
| static handleKeyUp(event: KeyboardEvent) { |
| Plot.keysPressed[event.key] = false; |
| } |
| |
| static handleKeyDown(event: KeyboardEvent) { |
| Plot.keysPressed[event.key] = true; |
| for (const plot of this.allPlots) { |
| if (Plot.keysPressed['Escape']) { |
| // Cancel zoom/pan operations on escape. |
| plot.lastMousePanPosition = null; |
| plot.rectangleStartPosition = null; |
| plot.zoomRectangle.setPoints([]); |
| } |
| } |
| } |
| |
| draw() { |
| window.requestAnimationFrame(() => this.draw()); |
| const curTime = (new Date()).getTime(); |
| const frameRate = 1000.0 / (curTime - this.lastTimeMs); |
| this.lastTimeMs = curTime; |
| const parentWidth = this.textCanvas.parentElement.offsetWidth; |
| const parentHeight = this.textCanvas.parentElement.offsetHeight; |
| this.textCanvas.width = parentWidth; |
| this.textCanvas.height = parentHeight; |
| this.canvas.width = |
| parentWidth - this.axisLabelBuffer.left - this.axisLabelBuffer.right; |
| this.canvas.height = |
| parentHeight - this.axisLabelBuffer.top - this.axisLabelBuffer.bottom; |
| this.lineDrawerContext.viewport( |
| 0, 0, this.lineDrawerContext.drawingBufferWidth, |
| this.lineDrawerContext.drawingBufferHeight); |
| |
| // Clear the overlay. |
| const textCtx = this.textCanvas.getContext("2d"); |
| textCtx.clearRect(0, 0, this.textCanvas.width, this.textCanvas.height); |
| |
| this.axisLabels.draw(); |
| this.axisLabels.drawMousePosition(this.lastMousePosition); |
| this.legend.draw(); |
| |
| this.drawer.draw(); |
| |
| if (this.autoFollow) { |
| this.resetZoom(); |
| } |
| } |
| |
| getDrawer(): LineDrawer { |
| return this.drawer; |
| } |
| |
| getLegend(): Legend { |
| return this.legend; |
| } |
| |
| getAxisLabels(): AxisLabels { |
| return this.axisLabels; |
| } |
| |
| // Links this plot's x-axis with that of another Plot (e.g., to share time |
| // axes). |
| linkXAxis(other: Plot) { |
| this.linkedXAxes.push(other); |
| other.linkedXAxes.push(this); |
| } |
| } |