| #include "aos/events/logging/log_reader.h" |
| #include "aos/events/simulated_event_loop.h" |
| #include "aos/init.h" |
| #include "frc971/control_loops/pose.h" |
| #include "frc971/vision/charuco_lib.h" |
| #include "frc971/vision/target_mapper.h" |
| #include "opencv2/aruco.hpp" |
| #include "opencv2/calib3d.hpp" |
| #include "opencv2/core/eigen.hpp" |
| #include "opencv2/features2d.hpp" |
| #include "opencv2/highgui.hpp" |
| #include "opencv2/highgui/highgui.hpp" |
| #include "opencv2/imgproc.hpp" |
| #include "y2022/control_loops/superstructure/superstructure_status_generated.h" |
| #include "y2022/vision/camera_reader.h" |
| |
| DEFINE_string(json_path, "target_map.json", |
| "Specify path for json with initial pose guesses."); |
| DEFINE_int32(team_number, 971, |
| "Use the calibration for a node with this team number"); |
| |
| DEFINE_bool( |
| use_robot_position, false, |
| "If true, use localizer output messages to get the robot position, and " |
| "superstructure status messages to get the turret angle, at the " |
| "times of target detections. Currently does not work reliably on the box " |
| "of pis."); |
| |
| DECLARE_string(image_channel); |
| |
| namespace y2022 { |
| namespace vision { |
| using frc971::vision::DataAdapter; |
| using frc971::vision::PoseUtils; |
| using frc971::vision::TargetMapper; |
| namespace superstructure = ::y2022::control_loops::superstructure; |
| |
| // Find transformation from camera to robot reference frame |
| Eigen::Affine3d CameraTransform(Eigen::Affine3d fixed_extrinsics, |
| Eigen::Affine3d turret_extrinsics, |
| double turret_position) { |
| // Calculate the pose of the camera relative to the robot origin. |
| Eigen::Affine3d H_robot_camrob = |
| fixed_extrinsics * |
| Eigen::Affine3d(frc971::control_loops::TransformationMatrixForYaw<double>( |
| turret_position)) * |
| turret_extrinsics; |
| |
| return H_robot_camrob; |
| } |
| |
| // Change reference frame from camera to robot |
| Eigen::Affine3d CameraToRobotDetection(Eigen::Affine3d H_camrob_target, |
| Eigen::Affine3d fixed_extrinsics, |
| Eigen::Affine3d turret_extrinsics, |
| double turret_position) { |
| const Eigen::Affine3d H_robot_camrob = |
| CameraTransform(fixed_extrinsics, turret_extrinsics, turret_position); |
| const Eigen::Affine3d H_robot_target = H_robot_camrob * H_camrob_target; |
| return H_robot_target; |
| } |
| |
| // Add detected apriltag poses relative to the robot to |
| // timestamped_target_detections |
| void HandleAprilTag(aos::distributed_clock::time_point pi_distributed_time, |
| std::vector<cv::Vec4i> april_ids, |
| std::vector<Eigen::Vector3d> rvecs_eigen, |
| std::vector<Eigen::Vector3d> tvecs_eigen, |
| std::vector<DataAdapter::TimestampedDetection> |
| *timestamped_target_detections, |
| std::optional<aos::Fetcher<superstructure::Status>> |
| *superstructure_status_fetcher, |
| Eigen::Affine3d fixed_extrinsics, |
| Eigen::Affine3d turret_extrinsics) { |
| double turret_position = 0.0; |
| |
| if (superstructure_status_fetcher->has_value()) { |
| CHECK(superstructure_status_fetcher->value().Fetch()); |
| turret_position = |
| superstructure_status_fetcher->value().get()->turret()->position(); |
| } |
| |
| for (size_t tag = 0; tag < april_ids.size(); tag++) { |
| Eigen::Translation3d T_camera_target = Eigen::Translation3d( |
| tvecs_eigen[tag][0], tvecs_eigen[tag][1], tvecs_eigen[tag][2]); |
| Eigen::AngleAxisd r_angle = Eigen::AngleAxisd( |
| rvecs_eigen[tag].norm(), rvecs_eigen[tag] / rvecs_eigen[tag].norm()); |
| CHECK(rvecs_eigen[tag].norm() != 0) << "rvecs norm = 0; divide by 0"; |
| |
| Eigen::Affine3d H_camcv_target = T_camera_target * r_angle; |
| // With X, Y, Z being robot axes and x, y, z being camera axes, |
| // x = -Y, y = -Z, z = X |
| static const Eigen::Affine3d H_camcv_camrob = |
| Eigen::Affine3d((Eigen::Matrix4d() << 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, |
| -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0) |
| .finished()); |
| Eigen::Affine3d H_camrob_target = H_camcv_camrob.inverse() * H_camcv_target; |
| Eigen::Affine3d H_robot_target = CameraToRobotDetection( |
| H_camrob_target, fixed_extrinsics, turret_extrinsics, turret_position); |
| |
| ceres::examples::Pose2d target_pose_camera = |
| PoseUtils::Affine3dToPose2d(H_camrob_target); |
| double distance_from_camera = std::sqrt(std::pow(target_pose_camera.x, 2) + |
| std::pow(target_pose_camera.y, 2)); |
| |
| timestamped_target_detections->emplace_back( |
| DataAdapter::TimestampedDetection{ |
| .time = pi_distributed_time, |
| .H_robot_target = H_robot_target, |
| .distance_from_camera = distance_from_camera, |
| .id = april_ids[tag][0]}); |
| } |
| } |
| |
| Eigen::Affine3d CameraFixedExtrinsics( |
| const calibration::CameraCalibration *camera_calibration) { |
| cv::Mat extrinsics( |
| 4, 4, CV_32F, |
| const_cast<void *>(static_cast<const void *>( |
| camera_calibration->fixed_extrinsics()->data()->data()))); |
| extrinsics.convertTo(extrinsics, CV_64F); |
| CHECK_EQ(extrinsics.total(), |
| camera_calibration->fixed_extrinsics()->data()->size()); |
| Eigen::Matrix4d extrinsics_eigen; |
| cv::cv2eigen(extrinsics, extrinsics_eigen); |
| return Eigen::Affine3d(extrinsics_eigen); |
| } |
| |
| Eigen::Affine3d CameraTurretExtrinsics( |
| const calibration::CameraCalibration *camera_calibration) { |
| cv::Mat extrinsics( |
| 4, 4, CV_32F, |
| const_cast<void *>(static_cast<const void *>( |
| camera_calibration->turret_extrinsics()->data()->data()))); |
| extrinsics.convertTo(extrinsics, CV_64F); |
| CHECK_EQ(extrinsics.total(), |
| camera_calibration->turret_extrinsics()->data()->size()); |
| Eigen::Matrix4d extrinsics_eigen; |
| cv::cv2eigen(extrinsics, extrinsics_eigen); |
| return Eigen::Affine3d(extrinsics_eigen); |
| } |
| |
| // Get images from pi and pass apriltag positions to HandleAprilTag() |
| void HandlePiCaptures( |
| int pi_number, aos::EventLoop *pi_event_loop, |
| aos::logger::LogReader *reader, |
| std::optional<aos::Fetcher<superstructure::Status>> |
| *superstructure_status_fetcher, |
| std::vector<DataAdapter::TimestampedDetection> |
| *timestamped_target_detections, |
| std::vector<std::unique_ptr<CharucoExtractor>> *charuco_extractors, |
| std::vector<std::unique_ptr<ImageCallback>> *image_callbacks) { |
| const aos::FlatbufferSpan<calibration::CalibrationData> calibration_data( |
| CalibrationData()); |
| const calibration::CameraCalibration *calibration = |
| CameraReader::FindCameraCalibration(&calibration_data.message(), |
| "pi" + std::to_string(pi_number), |
| FLAGS_team_number); |
| const auto turret_extrinsics = CameraTurretExtrinsics(calibration); |
| const auto fixed_extrinsics = CameraFixedExtrinsics(calibration); |
| |
| // TODO(milind): change to /camera once we log at full frequency |
| static constexpr std::string_view kImageChannel = "/camera/decimated"; |
| charuco_extractors->emplace_back(std::make_unique<CharucoExtractor>( |
| pi_event_loop, |
| "pi-" + std::to_string(FLAGS_team_number) + "-" + |
| std::to_string(pi_number), |
| TargetType::kAprilTag, kImageChannel, |
| [=](cv::Mat /*rgb_image*/, aos::monotonic_clock::time_point eof, |
| std::vector<cv::Vec4i> april_ids, |
| std::vector<std::vector<cv::Point2f>> /*april_corners*/, bool valid, |
| std::vector<Eigen::Vector3d> rvecs_eigen, |
| std::vector<Eigen::Vector3d> tvecs_eigen) { |
| aos::distributed_clock::time_point pi_distributed_time = |
| reader->event_loop_factory() |
| ->GetNodeEventLoopFactory(pi_event_loop->node()) |
| ->ToDistributedClock(eof); |
| |
| if (valid) { |
| HandleAprilTag(pi_distributed_time, april_ids, rvecs_eigen, |
| tvecs_eigen, timestamped_target_detections, |
| superstructure_status_fetcher, fixed_extrinsics, |
| turret_extrinsics); |
| } |
| })); |
| |
| image_callbacks->emplace_back(std::make_unique<ImageCallback>( |
| pi_event_loop, kImageChannel, |
| [&, charuco_extractor = |
| charuco_extractors->at(charuco_extractors->size() - 1).get()]( |
| cv::Mat rgb_image, const aos::monotonic_clock::time_point eof) { |
| charuco_extractor->HandleImage(rgb_image, eof); |
| })); |
| } |
| |
| void MappingMain(int argc, char *argv[]) { |
| std::vector<std::string> unsorted_logfiles = |
| aos::logger::FindLogs(argc, argv); |
| |
| std::vector<DataAdapter::TimestampedPose> timestamped_robot_poses; |
| std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections; |
| |
| // open logfiles |
| aos::logger::LogReader reader(aos::logger::SortParts(unsorted_logfiles)); |
| reader.Register(); |
| |
| std::optional<aos::Fetcher<superstructure::Status>> |
| superstructure_status_fetcher; |
| |
| if (FLAGS_use_robot_position) { |
| const aos::Node *imu_node = |
| aos::configuration::GetNode(reader.configuration(), "imu"); |
| std::unique_ptr<aos::EventLoop> imu_event_loop = |
| reader.event_loop_factory()->MakeEventLoop("imu", imu_node); |
| |
| imu_event_loop->MakeWatcher( |
| "/localizer", [&](const frc971::controls::LocalizerOutput &localizer) { |
| aos::monotonic_clock::time_point imu_monotonic_time = |
| aos::monotonic_clock::time_point(aos::monotonic_clock::duration( |
| localizer.monotonic_timestamp_ns())); |
| aos::distributed_clock::time_point imu_distributed_time = |
| reader.event_loop_factory() |
| ->GetNodeEventLoopFactory(imu_node) |
| ->ToDistributedClock(imu_monotonic_time); |
| |
| timestamped_robot_poses.emplace_back(DataAdapter::TimestampedPose{ |
| .time = imu_distributed_time, |
| .pose = |
| ceres::examples::Pose2d{.x = localizer.x(), |
| .y = localizer.y(), |
| .yaw_radians = localizer.theta()}}); |
| }); |
| |
| const aos::Node *roborio_node = |
| aos::configuration::GetNode(reader.configuration(), "roborio"); |
| std::unique_ptr<aos::EventLoop> roborio_event_loop = |
| reader.event_loop_factory()->MakeEventLoop("roborio", roborio_node); |
| |
| superstructure_status_fetcher = |
| roborio_event_loop->MakeFetcher<superstructure::Status>( |
| "/superstructure"); |
| } |
| |
| std::vector<std::unique_ptr<CharucoExtractor>> charuco_extractors; |
| std::vector<std::unique_ptr<ImageCallback>> image_callbacks; |
| |
| const aos::Node *pi1 = |
| aos::configuration::GetNode(reader.configuration(), "pi1"); |
| std::unique_ptr<aos::EventLoop> pi1_event_loop = |
| reader.event_loop_factory()->MakeEventLoop("pi1", pi1); |
| HandlePiCaptures( |
| 1, pi1_event_loop.get(), &reader, &superstructure_status_fetcher, |
| ×tamped_target_detections, &charuco_extractors, &image_callbacks); |
| |
| const aos::Node *pi2 = |
| aos::configuration::GetNode(reader.configuration(), "pi2"); |
| std::unique_ptr<aos::EventLoop> pi2_event_loop = |
| reader.event_loop_factory()->MakeEventLoop("pi2", pi2); |
| HandlePiCaptures( |
| 2, pi2_event_loop.get(), &reader, &superstructure_status_fetcher, |
| ×tamped_target_detections, &charuco_extractors, &image_callbacks); |
| |
| const aos::Node *pi3 = |
| aos::configuration::GetNode(reader.configuration(), "pi3"); |
| std::unique_ptr<aos::EventLoop> pi3_event_loop = |
| reader.event_loop_factory()->MakeEventLoop("pi3", pi3); |
| HandlePiCaptures( |
| 3, pi3_event_loop.get(), &reader, &superstructure_status_fetcher, |
| ×tamped_target_detections, &charuco_extractors, &image_callbacks); |
| |
| const aos::Node *pi4 = |
| aos::configuration::GetNode(reader.configuration(), "pi4"); |
| std::unique_ptr<aos::EventLoop> pi4_event_loop = |
| reader.event_loop_factory()->MakeEventLoop("pi4", pi4); |
| HandlePiCaptures( |
| 4, pi4_event_loop.get(), &reader, &superstructure_status_fetcher, |
| ×tamped_target_detections, &charuco_extractors, &image_callbacks); |
| |
| reader.event_loop_factory()->Run(); |
| |
| auto target_constraints = |
| (FLAGS_use_robot_position |
| ? DataAdapter::MatchTargetDetections(timestamped_robot_poses, |
| timestamped_target_detections) |
| .first |
| : DataAdapter::MatchTargetDetections(timestamped_target_detections)); |
| |
| frc971::vision::TargetMapper mapper(FLAGS_json_path, target_constraints); |
| mapper.Solve("rapid_react"); |
| |
| // Pointers need to be deleted to destruct all fetchers |
| for (auto &charuco_extractor_ptr : charuco_extractors) { |
| charuco_extractor_ptr.reset(); |
| } |
| |
| for (auto &image_callback_ptr : image_callbacks) { |
| image_callback_ptr.reset(); |
| } |
| } |
| |
| } // namespace vision |
| } // namespace y2022 |
| |
| int main(int argc, char **argv) { |
| aos::InitGoogle(&argc, &argv); |
| y2022::vision::MappingMain(argc, argv); |
| } |