blob: 7fad9ebb298cc0616a52df6df10ad419024d6a2c [file] [log] [blame]
/*----------------------------------------------------------------------------*/
/* Copyright (c) FIRST 2008-2017. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in the root directory of */
/* the project. */
/*----------------------------------------------------------------------------*/
#include "Encoder.h"
#include "DigitalInput.h"
#include "HAL/HAL.h"
#include "LiveWindow/LiveWindow.h"
#include "WPIErrors.h"
using namespace frc;
/**
* Common initialization code for Encoders.
*
* This code allocates resources for Encoders and is common to all constructors.
*
* The counter will start counting immediately.
*
* @param reverseDirection If true, counts down instead of up (this is all
* relative)
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
* decoding. If 4X is selected, then an encoder FPGA
* object is used and the returned counts will be 4x
* the encoder spec'd value since all rising and
* falling edges are counted. If 1X or 2X are selected
* then a counter object will be used and the returned
* value will either exactly match the spec'd count or
* be double (2x) the spec'd count.
*/
void Encoder::InitEncoder(bool reverseDirection, EncodingType encodingType) {
int32_t status = 0;
m_encoder = HAL_InitializeEncoder(
m_aSource->GetPortHandleForRouting(),
(HAL_AnalogTriggerType)m_aSource->GetAnalogTriggerTypeForRouting(),
m_bSource->GetPortHandleForRouting(),
(HAL_AnalogTriggerType)m_bSource->GetAnalogTriggerTypeForRouting(),
reverseDirection, (HAL_EncoderEncodingType)encodingType, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
HAL_Report(HALUsageReporting::kResourceType_Encoder, GetFPGAIndex(),
encodingType);
LiveWindow::GetInstance()->AddSensor("Encoder", m_aSource->GetChannel(),
this);
}
/**
* Encoder constructor.
*
* Construct a Encoder given a and b channels.
*
* The counter will start counting immediately.
*
* @param aChannel The a channel DIO channel. 0-9 are on-board, 10-25
* are on the MXP port
* @param bChannel The b channel DIO channel. 0-9 are on-board, 10-25
* are on the MXP port
* @param reverseDirection represents the orientation of the encoder and
* inverts the output values if necessary so forward
* represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
* decoding. If 4X is selected, then an encoder FPGA
* object is used and the returned counts will be 4x
* the encoder spec'd value since all rising and
* falling edges are counted. If 1X or 2X are selected
* then a counter object will be used and the returned
* value will either exactly match the spec'd count or
* be double (2x) the spec'd count.
*/
Encoder::Encoder(int aChannel, int bChannel, bool reverseDirection,
EncodingType encodingType) {
m_aSource = std::make_shared<DigitalInput>(aChannel);
m_bSource = std::make_shared<DigitalInput>(bChannel);
InitEncoder(reverseDirection, encodingType);
}
/**
* Encoder constructor.
*
* Construct a Encoder given a and b channels as digital inputs. This is used in
* the case where the digital inputs are shared. The Encoder class will not
* allocate the digital inputs and assume that they already are counted.
*
* The counter will start counting immediately.
*
* @param aSource The source that should be used for the a channel.
* @param bSource the source that should be used for the b channel.
* @param reverseDirection represents the orientation of the encoder and
* inverts the output values if necessary so forward
* represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
* decoding. If 4X is selected, then an encoder FPGA
* object is used and the returned counts will be 4x
* the encoder spec'd value since all rising and
* falling edges are counted. If 1X or 2X are selected
* then a counter object will be used and the returned
* value will either exactly match the spec'd count or
* be double (2x) the spec'd count.
*/
Encoder::Encoder(DigitalSource* aSource, DigitalSource* bSource,
bool reverseDirection, EncodingType encodingType)
: m_aSource(aSource, NullDeleter<DigitalSource>()),
m_bSource(bSource, NullDeleter<DigitalSource>()) {
if (m_aSource == nullptr || m_bSource == nullptr)
wpi_setWPIError(NullParameter);
else
InitEncoder(reverseDirection, encodingType);
}
Encoder::Encoder(std::shared_ptr<DigitalSource> aSource,
std::shared_ptr<DigitalSource> bSource, bool reverseDirection,
EncodingType encodingType)
: m_aSource(aSource), m_bSource(bSource) {
if (m_aSource == nullptr || m_bSource == nullptr)
wpi_setWPIError(NullParameter);
else
InitEncoder(reverseDirection, encodingType);
}
/**
* Encoder constructor.
*
* Construct a Encoder given a and b channels as digital inputs. This is used in
* the case where the digital inputs are shared. The Encoder class will not
* allocate the digital inputs and assume that they already are counted.
*
* The counter will start counting immediately.
*
* @param aSource The source that should be used for the a channel.
* @param bSource the source that should be used for the b channel.
* @param reverseDirection represents the orientation of the encoder and
* inverts the output values if necessary so forward
* represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
* decoding. If 4X is selected, then an encoder FPGA
* object is used and the returned counts will be 4x
* the encoder spec'd value since all rising and
* falling edges are counted. If 1X or 2X are selected
* then a counter object will be used and the returned
* value will either exactly match the spec'd count or
* be double (2x) the spec'd count.
*/
Encoder::Encoder(DigitalSource& aSource, DigitalSource& bSource,
bool reverseDirection, EncodingType encodingType)
: m_aSource(&aSource, NullDeleter<DigitalSource>()),
m_bSource(&bSource, NullDeleter<DigitalSource>()) {
InitEncoder(reverseDirection, encodingType);
}
/**
* Free the resources for an Encoder.
*
* Frees the FPGA resources associated with an Encoder.
*/
Encoder::~Encoder() {
int32_t status = 0;
HAL_FreeEncoder(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
}
/**
* The encoding scale factor 1x, 2x, or 4x, per the requested encodingType.
*
* Used to divide raw edge counts down to spec'd counts.
*/
int Encoder::GetEncodingScale() const {
int32_t status = 0;
int val = HAL_GetEncoderEncodingScale(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return val;
}
/**
* Gets the raw value from the encoder.
*
* The raw value is the actual count unscaled by the 1x, 2x, or 4x scale
* factor.
*
* @return Current raw count from the encoder
*/
int Encoder::GetRaw() const {
if (StatusIsFatal()) return 0;
int32_t status = 0;
int value = HAL_GetEncoderRaw(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return value;
}
/**
* Gets the current count.
*
* Returns the current count on the Encoder. This method compensates for the
* decoding type.
*
* @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale
* factor.
*/
int Encoder::Get() const {
if (StatusIsFatal()) return 0;
int32_t status = 0;
int value = HAL_GetEncoder(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return value;
}
/**
* Reset the Encoder distance to zero.
*
* Resets the current count to zero on the encoder.
*/
void Encoder::Reset() {
if (StatusIsFatal()) return;
int32_t status = 0;
HAL_ResetEncoder(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
}
/**
* Returns the period of the most recent pulse.
*
* Returns the period of the most recent Encoder pulse in seconds.
* This method compensates for the decoding type.
*
* @deprecated Use GetRate() in favor of this method. This returns unscaled
* periods and GetRate() scales using value from
* SetDistancePerPulse().
*
* @return Period in seconds of the most recent pulse.
*/
double Encoder::GetPeriod() const {
if (StatusIsFatal()) return 0.0;
int32_t status = 0;
double value = HAL_GetEncoderPeriod(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return value;
}
/**
* Sets the maximum period for stopped detection.
*
* Sets the value that represents the maximum period of the Encoder before it
* will assume that the attached device is stopped. This timeout allows users
* to determine if the wheels or other shaft has stopped rotating.
* This method compensates for the decoding type.
*
* @deprecated Use SetMinRate() in favor of this method. This takes unscaled
* periods and SetMinRate() scales using value from
* SetDistancePerPulse().
*
* @param maxPeriod The maximum time between rising and falling edges before
* the FPGA will report the device stopped. This is expressed
* in seconds.
*/
void Encoder::SetMaxPeriod(double maxPeriod) {
if (StatusIsFatal()) return;
int32_t status = 0;
HAL_SetEncoderMaxPeriod(m_encoder, maxPeriod, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
}
/**
* Determine if the encoder is stopped.
*
* Using the MaxPeriod value, a boolean is returned that is true if the encoder
* is considered stopped and false if it is still moving. A stopped encoder is
* one where the most recent pulse width exceeds the MaxPeriod.
*
* @return True if the encoder is considered stopped.
*/
bool Encoder::GetStopped() const {
if (StatusIsFatal()) return true;
int32_t status = 0;
bool value = HAL_GetEncoderStopped(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return value;
}
/**
* The last direction the encoder value changed.
*
* @return The last direction the encoder value changed.
*/
bool Encoder::GetDirection() const {
if (StatusIsFatal()) return false;
int32_t status = 0;
bool value = HAL_GetEncoderDirection(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return value;
}
/**
* The scale needed to convert a raw counter value into a number of encoder
* pulses.
*/
double Encoder::DecodingScaleFactor() const {
if (StatusIsFatal()) return 0.0;
int32_t status = 0;
double val = HAL_GetEncoderDecodingScaleFactor(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return val;
}
/**
* Get the distance the robot has driven since the last reset.
*
* @return The distance driven since the last reset as scaled by the value from
* SetDistancePerPulse().
*/
double Encoder::GetDistance() const {
if (StatusIsFatal()) return 0.0;
int32_t status = 0;
double value = HAL_GetEncoderDistance(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return value;
}
/**
* Get the current rate of the encoder.
*
* Units are distance per second as scaled by the value from
* SetDistancePerPulse().
*
* @return The current rate of the encoder.
*/
double Encoder::GetRate() const {
if (StatusIsFatal()) return 0.0;
int32_t status = 0;
double value = HAL_GetEncoderRate(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return value;
}
/**
* Set the minimum rate of the device before the hardware reports it stopped.
*
* @param minRate The minimum rate. The units are in distance per second as
* scaled by the value from SetDistancePerPulse().
*/
void Encoder::SetMinRate(double minRate) {
if (StatusIsFatal()) return;
int32_t status = 0;
HAL_SetEncoderMinRate(m_encoder, minRate, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
}
/**
* Set the distance per pulse for this encoder.
*
* This sets the multiplier used to determine the distance driven based on the
* count value from the encoder.
*
* Do not include the decoding type in this scale. The library already
* compensates for the decoding type.
*
* Set this value based on the encoder's rated Pulses per Revolution and
* factor in gearing reductions following the encoder shaft.
*
* This distance can be in any units you like, linear or angular.
*
* @param distancePerPulse The scale factor that will be used to convert pulses
* to useful units.
*/
void Encoder::SetDistancePerPulse(double distancePerPulse) {
if (StatusIsFatal()) return;
int32_t status = 0;
HAL_SetEncoderDistancePerPulse(m_encoder, distancePerPulse, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
}
/**
* Set the direction sensing for this encoder.
*
* This sets the direction sensing on the encoder so that it could count in the
* correct software direction regardless of the mounting.
*
* @param reverseDirection true if the encoder direction should be reversed
*/
void Encoder::SetReverseDirection(bool reverseDirection) {
if (StatusIsFatal()) return;
int32_t status = 0;
HAL_SetEncoderReverseDirection(m_encoder, reverseDirection, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
}
/**
* Set the Samples to Average which specifies the number of samples of the timer
* to average when calculating the period.
*
* Perform averaging to account for mechanical imperfections or as oversampling
* to increase resolution.
*
* @param samplesToAverage The number of samples to average from 1 to 127.
*/
void Encoder::SetSamplesToAverage(int samplesToAverage) {
if (samplesToAverage < 1 || samplesToAverage > 127) {
wpi_setWPIErrorWithContext(
ParameterOutOfRange,
"Average counter values must be between 1 and 127");
return;
}
int32_t status = 0;
HAL_SetEncoderSamplesToAverage(m_encoder, samplesToAverage, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
}
/**
* Get the Samples to Average which specifies the number of samples of the timer
* to average when calculating the period.
*
* Perform averaging to account for mechanical imperfections or as oversampling
* to increase resolution.
*
* @return The number of samples being averaged (from 1 to 127)
*/
int Encoder::GetSamplesToAverage() const {
int32_t status = 0;
int result = HAL_GetEncoderSamplesToAverage(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return result;
}
/**
* Implement the PIDSource interface.
*
* @return The current value of the selected source parameter.
*/
double Encoder::PIDGet() {
if (StatusIsFatal()) return 0.0;
switch (GetPIDSourceType()) {
case PIDSourceType::kDisplacement:
return GetDistance();
case PIDSourceType::kRate:
return GetRate();
default:
return 0.0;
}
}
/**
* Set the index source for the encoder.
*
* When this source is activated, the encoder count automatically resets.
*
* @param channel A DIO channel to set as the encoder index
* @param type The state that will cause the encoder to reset
*/
void Encoder::SetIndexSource(int channel, Encoder::IndexingType type) {
// Force digital input if just given an index
m_indexSource = std::make_unique<DigitalInput>(channel);
SetIndexSource(m_indexSource.get(), type);
}
/**
* Set the index source for the encoder.
*
* When this source is activated, the encoder count automatically resets.
*
* @param channel A digital source to set as the encoder index
* @param type The state that will cause the encoder to reset
*/
WPI_DEPRECATED("Use pass-by-reference instead.")
void Encoder::SetIndexSource(DigitalSource* source,
Encoder::IndexingType type) {
SetIndexSource(*source, type);
}
/**
* Set the index source for the encoder.
*
* When this source is activated, the encoder count automatically resets.
*
* @param channel A digital source to set as the encoder index
* @param type The state that will cause the encoder to reset
*/
void Encoder::SetIndexSource(const DigitalSource& source,
Encoder::IndexingType type) {
int32_t status = 0;
HAL_SetEncoderIndexSource(
m_encoder, source.GetPortHandleForRouting(),
(HAL_AnalogTriggerType)source.GetAnalogTriggerTypeForRouting(),
(HAL_EncoderIndexingType)type, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
}
int Encoder::GetFPGAIndex() const {
int32_t status = 0;
int val = HAL_GetEncoderFPGAIndex(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return val;
}
void Encoder::UpdateTable() {
if (m_table != nullptr) {
m_table->PutNumber("Speed", GetRate());
m_table->PutNumber("Distance", GetDistance());
int32_t status = 0;
double distancePerPulse =
HAL_GetEncoderDistancePerPulse(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
m_table->PutNumber("Distance per Tick", distancePerPulse);
}
}
void Encoder::StartLiveWindowMode() {}
void Encoder::StopLiveWindowMode() {}
std::string Encoder::GetSmartDashboardType() const {
int32_t status = 0;
HAL_EncoderEncodingType type = HAL_GetEncoderEncodingType(m_encoder, &status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
if (type == HAL_EncoderEncodingType::HAL_Encoder_k4X)
return "Quadrature Encoder";
else
return "Encoder";
}
void Encoder::InitTable(std::shared_ptr<ITable> subTable) {
m_table = subTable;
UpdateTable();
}
std::shared_ptr<ITable> Encoder::GetTable() const { return m_table; }