blob: fd91d955eae8cba7552b0d4d0f4b3c097dbf363b [file] [log] [blame]
/*----------------------------------------------------------------------------*/
/* Copyright (c) FIRST 2008-2017. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in the root directory of */
/* the project. */
/*----------------------------------------------------------------------------*/
#include "DriverStation.h"
#include <chrono>
#include "AnalogInput.h"
#include "FRC_NetworkCommunication/FRCComm.h"
#include "HAL/HAL.h"
#include "HAL/Power.h"
#include "HAL/cpp/Log.h"
#include "MotorSafetyHelper.h"
#include "Timer.h"
#include "Utility.h"
#include "WPIErrors.h"
#include "llvm/SmallString.h"
using namespace frc;
const double JOYSTICK_UNPLUGGED_MESSAGE_INTERVAL = 1.0;
const int DriverStation::kJoystickPorts;
DriverStation::~DriverStation() {
m_isRunning = false;
m_dsThread.join();
}
/**
* Return a pointer to the singleton DriverStation.
*
* @return Pointer to the DS instance
*/
DriverStation& DriverStation::GetInstance() {
static DriverStation instance;
return instance;
}
/**
* Report an error to the DriverStation messages window.
*
* The error is also printed to the program console.
*/
void DriverStation::ReportError(llvm::StringRef error) {
llvm::SmallString<128> temp;
HAL_SendError(1, 1, 0, error.c_str(temp), "", "", 1);
}
/**
* Report a warning to the DriverStation messages window.
*
* The warning is also printed to the program console.
*/
void DriverStation::ReportWarning(llvm::StringRef error) {
llvm::SmallString<128> temp;
HAL_SendError(0, 1, 0, error.c_str(temp), "", "", 1);
}
/**
* Report an error to the DriverStation messages window.
*
* The error is also printed to the program console.
*/
void DriverStation::ReportError(bool is_error, int32_t code,
llvm::StringRef error, llvm::StringRef location,
llvm::StringRef stack) {
llvm::SmallString<128> errorTemp;
llvm::SmallString<128> locationTemp;
llvm::SmallString<128> stackTemp;
HAL_SendError(is_error, code, 0, error.c_str(errorTemp),
location.c_str(locationTemp), stack.c_str(stackTemp), 1);
}
/**
* Get the value of the axis on a joystick.
*
* This depends on the mapping of the joystick connected to the specified port.
*
* @param stick The joystick to read.
* @param axis The analog axis value to read from the joystick.
* @return The value of the axis on the joystick.
*/
double DriverStation::GetStickAxis(int stick, int axis) {
if (stick >= kJoystickPorts) {
wpi_setWPIError(BadJoystickIndex);
return 0;
}
std::unique_lock<priority_mutex> lock(m_joystickDataMutex);
if (axis >= m_joystickAxes[stick].count) {
// Unlock early so error printing isn't locked.
m_joystickDataMutex.unlock();
lock.release();
if (axis >= HAL_kMaxJoystickAxes)
wpi_setWPIError(BadJoystickAxis);
else
ReportJoystickUnpluggedWarning(
"Joystick Axis missing, check if all controllers are plugged in");
return 0.0;
}
return m_joystickAxes[stick].axes[axis];
}
/**
* Get the state of a POV on the joystick.
*
* @return the angle of the POV in degrees, or -1 if the POV is not pressed.
*/
int DriverStation::GetStickPOV(int stick, int pov) {
if (stick >= kJoystickPorts) {
wpi_setWPIError(BadJoystickIndex);
return -1;
}
std::unique_lock<priority_mutex> lock(m_joystickDataMutex);
if (pov >= m_joystickPOVs[stick].count) {
// Unlock early so error printing isn't locked.
lock.unlock();
if (pov >= HAL_kMaxJoystickPOVs)
wpi_setWPIError(BadJoystickAxis);
else
ReportJoystickUnpluggedWarning(
"Joystick POV missing, check if all controllers are plugged in");
return -1;
}
return m_joystickPOVs[stick].povs[pov];
}
/**
* The state of the buttons on the joystick.
*
* @param stick The joystick to read.
* @return The state of the buttons on the joystick.
*/
int DriverStation::GetStickButtons(int stick) const {
if (stick >= kJoystickPorts) {
wpi_setWPIError(BadJoystickIndex);
return 0;
}
std::lock_guard<priority_mutex> lock(m_joystickDataMutex);
return m_joystickButtons[stick].buttons;
}
/**
* The state of one joystick button. Button indexes begin at 1.
*
* @param stick The joystick to read.
* @param button The button index, beginning at 1.
* @return The state of the joystick button.
*/
bool DriverStation::GetStickButton(int stick, int button) {
if (stick >= kJoystickPorts) {
wpi_setWPIError(BadJoystickIndex);
return false;
}
if (button == 0) {
ReportJoystickUnpluggedError(
"ERROR: Button indexes begin at 1 in WPILib for C++ and Java");
return false;
}
std::unique_lock<priority_mutex> lock(m_joystickDataMutex);
if (button > m_joystickButtons[stick].count) {
// Unlock early so error printing isn't locked.
lock.unlock();
ReportJoystickUnpluggedWarning(
"Joystick Button missing, check if all controllers are "
"plugged in");
return false;
}
return ((0x1 << (button - 1)) & m_joystickButtons[stick].buttons) != 0;
}
/**
* Returns the number of axes on a given joystick port.
*
* @param stick The joystick port number
* @return The number of axes on the indicated joystick
*/
int DriverStation::GetStickAxisCount(int stick) const {
if (stick >= kJoystickPorts) {
wpi_setWPIError(BadJoystickIndex);
return 0;
}
std::lock_guard<priority_mutex> lock(m_joystickDataMutex);
return m_joystickAxes[stick].count;
}
/**
* Returns the number of POVs on a given joystick port.
*
* @param stick The joystick port number
* @return The number of POVs on the indicated joystick
*/
int DriverStation::GetStickPOVCount(int stick) const {
if (stick >= kJoystickPorts) {
wpi_setWPIError(BadJoystickIndex);
return 0;
}
std::lock_guard<priority_mutex> lock(m_joystickDataMutex);
return m_joystickPOVs[stick].count;
}
/**
* Returns the number of buttons on a given joystick port.
*
* @param stick The joystick port number
* @return The number of buttons on the indicated joystick
*/
int DriverStation::GetStickButtonCount(int stick) const {
if (stick >= kJoystickPorts) {
wpi_setWPIError(BadJoystickIndex);
return 0;
}
std::lock_guard<priority_mutex> lock(m_joystickDataMutex);
return m_joystickButtons[stick].count;
}
/**
* Returns a boolean indicating if the controller is an xbox controller.
*
* @param stick The joystick port number
* @return A boolean that is true if the controller is an xbox controller.
*/
bool DriverStation::GetJoystickIsXbox(int stick) const {
if (stick >= kJoystickPorts) {
wpi_setWPIError(BadJoystickIndex);
return false;
}
std::lock_guard<priority_mutex> lock(m_joystickDataMutex);
return static_cast<bool>(m_joystickDescriptor[stick].isXbox);
}
/**
* Returns the type of joystick at a given port.
*
* @param stick The joystick port number
* @return The HID type of joystick at the given port
*/
int DriverStation::GetJoystickType(int stick) const {
if (stick >= kJoystickPorts) {
wpi_setWPIError(BadJoystickIndex);
return -1;
}
std::lock_guard<priority_mutex> lock(m_joystickDataMutex);
return static_cast<int>(m_joystickDescriptor[stick].type);
}
/**
* Returns the name of the joystick at the given port.
*
* @param stick The joystick port number
* @return The name of the joystick at the given port
*/
std::string DriverStation::GetJoystickName(int stick) const {
if (stick >= kJoystickPorts) {
wpi_setWPIError(BadJoystickIndex);
}
std::lock_guard<priority_mutex> lock(m_joystickDataMutex);
std::string retVal(m_joystickDescriptor[stick].name);
return retVal;
}
/**
* Returns the types of Axes on a given joystick port.
*
* @param stick The joystick port number and the target axis
* @return What type of axis the axis is reporting to be
*/
int DriverStation::GetJoystickAxisType(int stick, int axis) const {
if (stick >= kJoystickPorts) {
wpi_setWPIError(BadJoystickIndex);
return -1;
}
std::lock_guard<priority_mutex> lock(m_joystickDataMutex);
return m_joystickDescriptor[stick].axisTypes[axis];
}
/**
* Check if the DS has enabled the robot.
*
* @return True if the robot is enabled and the DS is connected
*/
bool DriverStation::IsEnabled() const {
HAL_ControlWord controlWord;
UpdateControlWord(false, controlWord);
return controlWord.enabled && controlWord.dsAttached;
}
/**
* Check if the robot is disabled.
*
* @return True if the robot is explicitly disabled or the DS is not connected
*/
bool DriverStation::IsDisabled() const {
HAL_ControlWord controlWord;
UpdateControlWord(false, controlWord);
return !(controlWord.enabled && controlWord.dsAttached);
}
/**
* Check if the DS is commanding autonomous mode.
*
* @return True if the robot is being commanded to be in autonomous mode
*/
bool DriverStation::IsAutonomous() const {
HAL_ControlWord controlWord;
UpdateControlWord(false, controlWord);
return controlWord.autonomous;
}
/**
* Check if the DS is commanding teleop mode.
*
* @return True if the robot is being commanded to be in teleop mode
*/
bool DriverStation::IsOperatorControl() const {
HAL_ControlWord controlWord;
UpdateControlWord(false, controlWord);
return !(controlWord.autonomous || controlWord.test);
}
/**
* Check if the DS is commanding test mode.
*
* @return True if the robot is being commanded to be in test mode
*/
bool DriverStation::IsTest() const {
HAL_ControlWord controlWord;
UpdateControlWord(false, controlWord);
return controlWord.test;
}
/**
* Check if the DS is attached.
*
* @return True if the DS is connected to the robot
*/
bool DriverStation::IsDSAttached() const {
HAL_ControlWord controlWord;
UpdateControlWord(false, controlWord);
return controlWord.dsAttached;
}
/**
* Has a new control packet from the driver station arrived since the last time
* this function was called?
*
* Warning: If you call this function from more than one place at the same time,
* you will not get the intended behavior.
*
* @return True if the control data has been updated since the last call.
*/
bool DriverStation::IsNewControlData() const {
return m_newControlData.exchange(false);
}
/**
* Is the driver station attached to a Field Management System?
*
* @return True if the robot is competing on a field being controlled by a Field
* Management System
*/
bool DriverStation::IsFMSAttached() const {
HAL_ControlWord controlWord;
UpdateControlWord(false, controlWord);
return controlWord.fmsAttached;
}
/**
* Check if the FPGA outputs are enabled.
*
* The outputs may be disabled if the robot is disabled or e-stopped, the
* watchdog has expired, or if the roboRIO browns out.
*
* @return True if the FPGA outputs are enabled.
*/
bool DriverStation::IsSysActive() const {
int32_t status = 0;
bool retVal = HAL_GetSystemActive(&status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return retVal;
}
/**
* Check if the system is browned out.
*
* @return True if the system is browned out
*/
bool DriverStation::IsBrownedOut() const {
int32_t status = 0;
bool retVal = HAL_GetBrownedOut(&status);
wpi_setErrorWithContext(status, HAL_GetErrorMessage(status));
return retVal;
}
/**
* Return the alliance that the driver station says it is on.
*
* This could return kRed or kBlue.
*
* @return The Alliance enum (kRed, kBlue or kInvalid)
*/
DriverStation::Alliance DriverStation::GetAlliance() const {
int32_t status = 0;
auto allianceStationID = HAL_GetAllianceStation(&status);
switch (allianceStationID) {
case HAL_AllianceStationID_kRed1:
case HAL_AllianceStationID_kRed2:
case HAL_AllianceStationID_kRed3:
return kRed;
case HAL_AllianceStationID_kBlue1:
case HAL_AllianceStationID_kBlue2:
case HAL_AllianceStationID_kBlue3:
return kBlue;
default:
return kInvalid;
}
}
/**
* Return the driver station location on the field.
*
* This could return 1, 2, or 3.
*
* @return The location of the driver station (1-3, 0 for invalid)
*/
int DriverStation::GetLocation() const {
int32_t status = 0;
auto allianceStationID = HAL_GetAllianceStation(&status);
switch (allianceStationID) {
case HAL_AllianceStationID_kRed1:
case HAL_AllianceStationID_kBlue1:
return 1;
case HAL_AllianceStationID_kRed2:
case HAL_AllianceStationID_kBlue2:
return 2;
case HAL_AllianceStationID_kRed3:
case HAL_AllianceStationID_kBlue3:
return 3;
default:
return 0;
}
}
/**
* Wait until a new packet comes from the driver station.
*
* This blocks on a semaphore, so the waiting is efficient.
*
* This is a good way to delay processing until there is new driver station data
* to act on.
*/
void DriverStation::WaitForData() { WaitForData(0); }
/**
* Wait until a new packet comes from the driver station, or wait for a timeout.
*
* If the timeout is less then or equal to 0, wait indefinitely.
*
* Timeout is in milliseconds
*
* This blocks on a semaphore, so the waiting is efficient.
*
* This is a good way to delay processing until there is new driver station data
* to act on.
*
* @param timeout Timeout time in seconds
*
* @return true if new data, otherwise false
*/
bool DriverStation::WaitForData(double timeout) {
#if defined(_MSC_VER) && _MSC_VER < 1900
auto timeoutTime = std::chrono::steady_clock::now() +
std::chrono::duration<int64_t, std::nano>(
static_cast<int64_t>(timeout * 1e9));
#else
auto timeoutTime =
std::chrono::steady_clock::now() + std::chrono::duration<double>(timeout);
#endif
std::unique_lock<priority_mutex> lock(m_waitForDataMutex);
while (!m_waitForDataPredicate) {
if (timeout > 0) {
auto timedOut = m_waitForDataCond.wait_until(lock, timeoutTime);
if (timedOut == std::cv_status::timeout) {
return false;
}
} else {
m_waitForDataCond.wait(lock);
}
}
m_waitForDataPredicate = false;
return true;
}
/**
* Return the approximate match time.
*
* The FMS does not send an official match time to the robots, but does send an
* approximate match time. The value will count down the time remaining in the
* current period (auto or teleop).
*
* Warning: This is not an official time (so it cannot be used to dispute ref
* calls or guarantee that a function will trigger before the match ends).
*
* The Practice Match function of the DS approximates the behaviour seen on the
* field.
*
* @return Time remaining in current match period (auto or teleop)
*/
double DriverStation::GetMatchTime() const {
int32_t status;
return HAL_GetMatchTime(&status);
}
/**
* Read the battery voltage.
*
* @return The battery voltage in Volts.
*/
double DriverStation::GetBatteryVoltage() const {
int32_t status = 0;
double voltage = HAL_GetVinVoltage(&status);
wpi_setErrorWithContext(status, "getVinVoltage");
return voltage;
}
/**
* Copy data from the DS task for the user.
*
* If no new data exists, it will just be returned, otherwise
* the data will be copied from the DS polling loop.
*/
void DriverStation::GetData() {
// Get the status of all of the joysticks, and save to the cache
for (uint8_t stick = 0; stick < kJoystickPorts; stick++) {
HAL_GetJoystickAxes(stick, &m_joystickAxesCache[stick]);
HAL_GetJoystickPOVs(stick, &m_joystickPOVsCache[stick]);
HAL_GetJoystickButtons(stick, &m_joystickButtonsCache[stick]);
HAL_GetJoystickDescriptor(stick, &m_joystickDescriptorCache[stick]);
}
// Force a control word update, to make sure the data is the newest.
HAL_ControlWord controlWord;
UpdateControlWord(true, controlWord);
// Obtain a write lock on the data, swap the cached data into the
// main data arrays
std::lock_guard<priority_mutex> lock(m_joystickDataMutex);
m_joystickAxes.swap(m_joystickAxesCache);
m_joystickPOVs.swap(m_joystickPOVsCache);
m_joystickButtons.swap(m_joystickButtonsCache);
m_joystickDescriptor.swap(m_joystickDescriptorCache);
}
/**
* DriverStation constructor.
*
* This is only called once the first time GetInstance() is called
*/
DriverStation::DriverStation() {
m_joystickAxes = std::make_unique<HAL_JoystickAxes[]>(kJoystickPorts);
m_joystickPOVs = std::make_unique<HAL_JoystickPOVs[]>(kJoystickPorts);
m_joystickButtons = std::make_unique<HAL_JoystickButtons[]>(kJoystickPorts);
m_joystickDescriptor =
std::make_unique<HAL_JoystickDescriptor[]>(kJoystickPorts);
m_joystickAxesCache = std::make_unique<HAL_JoystickAxes[]>(kJoystickPorts);
m_joystickPOVsCache = std::make_unique<HAL_JoystickPOVs[]>(kJoystickPorts);
m_joystickButtonsCache =
std::make_unique<HAL_JoystickButtons[]>(kJoystickPorts);
m_joystickDescriptorCache =
std::make_unique<HAL_JoystickDescriptor[]>(kJoystickPorts);
// All joysticks should default to having zero axes, povs and buttons, so
// uninitialized memory doesn't get sent to speed controllers.
for (unsigned int i = 0; i < kJoystickPorts; i++) {
m_joystickAxes[i].count = 0;
m_joystickPOVs[i].count = 0;
m_joystickButtons[i].count = 0;
m_joystickDescriptor[i].isXbox = 0;
m_joystickDescriptor[i].type = -1;
m_joystickDescriptor[i].name[0] = '\0';
m_joystickAxesCache[i].count = 0;
m_joystickPOVsCache[i].count = 0;
m_joystickButtonsCache[i].count = 0;
m_joystickDescriptorCache[i].isXbox = 0;
m_joystickDescriptorCache[i].type = -1;
m_joystickDescriptorCache[i].name[0] = '\0';
}
m_dsThread = std::thread(&DriverStation::Run, this);
}
/**
* Reports errors related to unplugged joysticks
* Throttles the errors so that they don't overwhelm the DS
*/
void DriverStation::ReportJoystickUnpluggedError(llvm::StringRef message) {
double currentTime = Timer::GetFPGATimestamp();
if (currentTime > m_nextMessageTime) {
ReportError(message);
m_nextMessageTime = currentTime + JOYSTICK_UNPLUGGED_MESSAGE_INTERVAL;
}
}
/**
* Reports errors related to unplugged joysticks.
*
* Throttles the errors so that they don't overwhelm the DS.
*/
void DriverStation::ReportJoystickUnpluggedWarning(llvm::StringRef message) {
double currentTime = Timer::GetFPGATimestamp();
if (currentTime > m_nextMessageTime) {
ReportWarning(message);
m_nextMessageTime = currentTime + JOYSTICK_UNPLUGGED_MESSAGE_INTERVAL;
}
}
void DriverStation::Run() {
m_isRunning = true;
int period = 0;
while (m_isRunning) {
HAL_WaitForDSData();
GetData();
// notify IsNewControlData variables
m_newControlData = true;
// notify WaitForData block
{
std::lock_guard<priority_mutex> lock(m_waitForDataMutex);
m_waitForDataPredicate = true;
}
m_waitForDataCond.notify_all();
if (++period >= 4) {
MotorSafetyHelper::CheckMotors();
period = 0;
}
if (m_userInDisabled) HAL_ObserveUserProgramDisabled();
if (m_userInAutonomous) HAL_ObserveUserProgramAutonomous();
if (m_userInTeleop) HAL_ObserveUserProgramTeleop();
if (m_userInTest) HAL_ObserveUserProgramTest();
}
}
/**
* Gets ControlWord data from the cache. If 50ms has passed, or the force
* parameter is set, the cached data is updated. Otherwise the data is just
* copied from the cache.
*
* @param force True to force an update to the cache, otherwise update if 50ms
* have passed.
* @param controlWord Structure to put the return control word data into.
*/
void DriverStation::UpdateControlWord(bool force,
HAL_ControlWord& controlWord) const {
auto now = std::chrono::steady_clock::now();
std::lock_guard<priority_mutex> lock(m_controlWordMutex);
// Update every 50 ms or on force.
if ((now - m_lastControlWordUpdate > std::chrono::milliseconds(50)) ||
force) {
HAL_GetControlWord(&m_controlWordCache);
m_lastControlWordUpdate = now;
}
controlWord = m_controlWordCache;
}