Squashed 'third_party/allwpilib_2017/' content from commit 35ac87d

Change-Id: I7bb6f5556c30d3f5a092e68de0be9c710c60c9f4
git-subtree-dir: third_party/allwpilib_2017
git-subtree-split: 35ac87d6ff8b7f061c4f18c9ea316e5dccd4888a
diff --git a/hal/lib/athena/Counter.cpp b/hal/lib/athena/Counter.cpp
new file mode 100644
index 0000000..9273ea9
--- /dev/null
+++ b/hal/lib/athena/Counter.cpp
@@ -0,0 +1,466 @@
+/*----------------------------------------------------------------------------*/
+/* Copyright (c) FIRST 2016-2017. All Rights Reserved.                        */
+/* Open Source Software - may be modified and shared by FRC teams. The code   */
+/* must be accompanied by the FIRST BSD license file in the root directory of */
+/* the project.                                                               */
+/*----------------------------------------------------------------------------*/
+
+#include "HAL/Counter.h"
+
+#include "ConstantsInternal.h"
+#include "DigitalInternal.h"
+#include "HAL/HAL.h"
+#include "HAL/handles/LimitedHandleResource.h"
+#include "PortsInternal.h"
+
+using namespace hal;
+
+namespace {
+struct Counter {
+  std::unique_ptr<tCounter> counter;
+  uint8_t index;
+};
+}
+
+static LimitedHandleResource<HAL_CounterHandle, Counter, kNumCounters,
+                             HAL_HandleEnum::Counter>
+    counterHandles;
+
+extern "C" {
+HAL_CounterHandle HAL_InitializeCounter(HAL_Counter_Mode mode, int32_t* index,
+                                        int32_t* status) {
+  auto handle = counterHandles.Allocate();
+  if (handle == HAL_kInvalidHandle) {  // out of resources
+    *status = NO_AVAILABLE_RESOURCES;
+    return HAL_kInvalidHandle;
+  }
+  auto counter = counterHandles.Get(handle);
+  if (counter == nullptr) {  // would only occur on thread issues
+    *status = HAL_HANDLE_ERROR;
+    return HAL_kInvalidHandle;
+  }
+  counter->index = static_cast<uint8_t>(getHandleIndex(handle));
+  *index = counter->index;
+
+  counter->counter.reset(tCounter::create(counter->index, status));
+  counter->counter->writeConfig_Mode(mode, status);
+  counter->counter->writeTimerConfig_AverageSize(1, status);
+  return handle;
+}
+
+void HAL_FreeCounter(HAL_CounterHandle counterHandle, int32_t* status) {
+  counterHandles.Free(counterHandle);
+}
+
+void HAL_SetCounterAverageSize(HAL_CounterHandle counterHandle, int32_t size,
+                               int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  counter->counter->writeTimerConfig_AverageSize(size, status);
+}
+
+/**
+ * Set the source object that causes the counter to count up.
+ * Set the up counting DigitalSource.
+ */
+void HAL_SetCounterUpSource(HAL_CounterHandle counterHandle,
+                            HAL_Handle digitalSourceHandle,
+                            HAL_AnalogTriggerType analogTriggerType,
+                            int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+
+  bool routingAnalogTrigger = false;
+  uint8_t routingChannel = 0;
+  uint8_t routingModule = 0;
+  bool success =
+      remapDigitalSource(digitalSourceHandle, analogTriggerType, routingChannel,
+                         routingModule, routingAnalogTrigger);
+  if (!success) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+
+  counter->counter->writeConfig_UpSource_Module(routingModule, status);
+  counter->counter->writeConfig_UpSource_Channel(routingChannel, status);
+  counter->counter->writeConfig_UpSource_AnalogTrigger(routingAnalogTrigger,
+                                                       status);
+
+  if (counter->counter->readConfig_Mode(status) == HAL_Counter_kTwoPulse ||
+      counter->counter->readConfig_Mode(status) ==
+          HAL_Counter_kExternalDirection) {
+    HAL_SetCounterUpSourceEdge(counterHandle, true, false, status);
+  }
+  counter->counter->strobeReset(status);
+}
+
+/**
+ * Set the edge sensitivity on an up counting source.
+ * Set the up source to either detect rising edges or falling edges.
+ */
+void HAL_SetCounterUpSourceEdge(HAL_CounterHandle counterHandle,
+                                HAL_Bool risingEdge, HAL_Bool fallingEdge,
+                                int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  counter->counter->writeConfig_UpRisingEdge(risingEdge, status);
+  counter->counter->writeConfig_UpFallingEdge(fallingEdge, status);
+}
+
+/**
+ * Disable the up counting source to the counter.
+ */
+void HAL_ClearCounterUpSource(HAL_CounterHandle counterHandle,
+                              int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  counter->counter->writeConfig_UpFallingEdge(false, status);
+  counter->counter->writeConfig_UpRisingEdge(false, status);
+  // Index 0 of digital is always 0.
+  counter->counter->writeConfig_UpSource_Channel(0, status);
+  counter->counter->writeConfig_UpSource_AnalogTrigger(false, status);
+}
+
+/**
+ * Set the source object that causes the counter to count down.
+ * Set the down counting DigitalSource.
+ */
+void HAL_SetCounterDownSource(HAL_CounterHandle counterHandle,
+                              HAL_Handle digitalSourceHandle,
+                              HAL_AnalogTriggerType analogTriggerType,
+                              int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  uint8_t mode = counter->counter->readConfig_Mode(status);
+  if (mode != HAL_Counter_kTwoPulse && mode != HAL_Counter_kExternalDirection) {
+    // TODO: wpi_setWPIErrorWithContext(ParameterOutOfRange, "Counter only
+    // supports DownSource in TwoPulse and ExternalDirection modes.");
+    *status = PARAMETER_OUT_OF_RANGE;
+    return;
+  }
+
+  bool routingAnalogTrigger = false;
+  uint8_t routingChannel = 0;
+  uint8_t routingModule = 0;
+  bool success =
+      remapDigitalSource(digitalSourceHandle, analogTriggerType, routingChannel,
+                         routingModule, routingAnalogTrigger);
+  if (!success) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+
+  counter->counter->writeConfig_DownSource_Module(routingModule, status);
+  counter->counter->writeConfig_DownSource_Channel(routingChannel, status);
+  counter->counter->writeConfig_DownSource_AnalogTrigger(routingAnalogTrigger,
+                                                         status);
+
+  HAL_SetCounterDownSourceEdge(counterHandle, true, false, status);
+  counter->counter->strobeReset(status);
+}
+
+/**
+ * Set the edge sensitivity on a down counting source.
+ * Set the down source to either detect rising edges or falling edges.
+ */
+void HAL_SetCounterDownSourceEdge(HAL_CounterHandle counterHandle,
+                                  HAL_Bool risingEdge, HAL_Bool fallingEdge,
+                                  int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  counter->counter->writeConfig_DownRisingEdge(risingEdge, status);
+  counter->counter->writeConfig_DownFallingEdge(fallingEdge, status);
+}
+
+/**
+ * Disable the down counting source to the counter.
+ */
+void HAL_ClearCounterDownSource(HAL_CounterHandle counterHandle,
+                                int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  counter->counter->writeConfig_DownFallingEdge(false, status);
+  counter->counter->writeConfig_DownRisingEdge(false, status);
+  // Index 0 of digital is always 0.
+  counter->counter->writeConfig_DownSource_Channel(0, status);
+  counter->counter->writeConfig_DownSource_AnalogTrigger(false, status);
+}
+
+/**
+ * Set standard up / down counting mode on this counter.
+ * Up and down counts are sourced independently from two inputs.
+ */
+void HAL_SetCounterUpDownMode(HAL_CounterHandle counterHandle,
+                              int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  counter->counter->writeConfig_Mode(HAL_Counter_kTwoPulse, status);
+}
+
+/**
+ * Set external direction mode on this counter.
+ * Counts are sourced on the Up counter input.
+ * The Down counter input represents the direction to count.
+ */
+void HAL_SetCounterExternalDirectionMode(HAL_CounterHandle counterHandle,
+                                         int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  counter->counter->writeConfig_Mode(HAL_Counter_kExternalDirection, status);
+}
+
+/**
+ * Set Semi-period mode on this counter.
+ * Counts up on both rising and falling edges.
+ */
+void HAL_SetCounterSemiPeriodMode(HAL_CounterHandle counterHandle,
+                                  HAL_Bool highSemiPeriod, int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  counter->counter->writeConfig_Mode(HAL_Counter_kSemiperiod, status);
+  counter->counter->writeConfig_UpRisingEdge(highSemiPeriod, status);
+  HAL_SetCounterUpdateWhenEmpty(counterHandle, false, status);
+}
+
+/**
+ * Configure the counter to count in up or down based on the length of the input
+ * pulse.
+ * This mode is most useful for direction sensitive gear tooth sensors.
+ * @param threshold The pulse length beyond which the counter counts the
+ * opposite direction.  Units are seconds.
+ */
+void HAL_SetCounterPulseLengthMode(HAL_CounterHandle counterHandle,
+                                   double threshold, int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  counter->counter->writeConfig_Mode(HAL_Counter_kPulseLength, status);
+  counter->counter->writeConfig_PulseLengthThreshold(
+      static_cast<uint32_t>(threshold * 1.0e6) *
+          kSystemClockTicksPerMicrosecond,
+      status);
+}
+
+/**
+ * Get the Samples to Average which specifies the number of samples of the timer
+ * to
+ * average when calculating the period. Perform averaging to account for
+ * mechanical imperfections or as oversampling to increase resolution.
+ * @return SamplesToAverage The number of samples being averaged (from 1 to 127)
+ */
+int32_t HAL_GetCounterSamplesToAverage(HAL_CounterHandle counterHandle,
+                                       int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return 0;
+  }
+  return counter->counter->readTimerConfig_AverageSize(status);
+}
+
+/**
+ * Set the Samples to Average which specifies the number of samples of the timer
+ * to average when calculating the period. Perform averaging to account for
+ * mechanical imperfections or as oversampling to increase resolution.
+ * @param samplesToAverage The number of samples to average from 1 to 127.
+ */
+void HAL_SetCounterSamplesToAverage(HAL_CounterHandle counterHandle,
+                                    int32_t samplesToAverage, int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  if (samplesToAverage < 1 || samplesToAverage > 127) {
+    *status = PARAMETER_OUT_OF_RANGE;
+  }
+  counter->counter->writeTimerConfig_AverageSize(samplesToAverage, status);
+}
+
+/**
+ * Reset the Counter to zero.
+ * Set the counter value to zero. This doesn't effect the running state of the
+ * counter, just sets the current value to zero.
+ */
+void HAL_ResetCounter(HAL_CounterHandle counterHandle, int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  counter->counter->strobeReset(status);
+}
+
+/**
+ * Read the current counter value.
+ * Read the value at this instant. It may still be running, so it reflects the
+ * current value. Next time it is read, it might have a different value.
+ */
+int32_t HAL_GetCounter(HAL_CounterHandle counterHandle, int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return 0;
+  }
+  int32_t value = counter->counter->readOutput_Value(status);
+  return value;
+}
+
+/*
+ * Get the Period of the most recent count.
+ * Returns the time interval of the most recent count. This can be used for
+ * velocity calculations to determine shaft speed.
+ * @returns The period of the last two pulses in units of seconds.
+ */
+double HAL_GetCounterPeriod(HAL_CounterHandle counterHandle, int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return 0.0;
+  }
+  tCounter::tTimerOutput output = counter->counter->readTimerOutput(status);
+  double period;
+  if (output.Stalled) {
+    // Return infinity
+    double zero = 0.0;
+    period = 1.0 / zero;
+  } else {
+    // output.Period is a fixed point number that counts by 2 (24 bits, 25
+    // integer bits)
+    period = static_cast<double>(output.Period << 1) /
+             static_cast<double>(output.Count);
+  }
+  return static_cast<double>(period *
+                             2.5e-8);  // result * timebase (currently 25ns)
+}
+
+/**
+ * Set the maximum period where the device is still considered "moving".
+ * Sets the maximum period where the device is considered moving. This value is
+ * used to determine the "stopped" state of the counter using the GetStopped
+ * method.
+ * @param maxPeriod The maximum period where the counted device is considered
+ * moving in seconds.
+ */
+void HAL_SetCounterMaxPeriod(HAL_CounterHandle counterHandle, double maxPeriod,
+                             int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  counter->counter->writeTimerConfig_StallPeriod(
+      static_cast<uint32_t>(maxPeriod * 4.0e8), status);
+}
+
+/**
+ * Select whether you want to continue updating the event timer output when
+ * there are no samples captured. The output of the event timer has a buffer of
+ * periods that are averaged and posted to a register on the FPGA.  When the
+ * timer detects that the event source has stopped (based on the MaxPeriod) the
+ * buffer of samples to be averaged is emptied.  If you enable the update when
+ * empty, you will be notified of the stopped source and the event time will
+ * report 0 samples.  If you disable update when empty, the most recent average
+ * will remain on the output until a new sample is acquired.  You will never see
+ * 0 samples output (except when there have been no events since an FPGA reset)
+ * and you will likely not see the stopped bit become true (since it is updated
+ * at the end of an average and there are no samples to average).
+ */
+void HAL_SetCounterUpdateWhenEmpty(HAL_CounterHandle counterHandle,
+                                   HAL_Bool enabled, int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  counter->counter->writeTimerConfig_UpdateWhenEmpty(enabled, status);
+}
+
+/**
+ * Determine if the clock is stopped.
+ * Determine if the clocked input is stopped based on the MaxPeriod value set
+ * using the SetMaxPeriod method. If the clock exceeds the MaxPeriod, then the
+ * device (and counter) are assumed to be stopped and it returns true.
+ * @return Returns true if the most recent counter period exceeds the MaxPeriod
+ * value set by SetMaxPeriod.
+ */
+HAL_Bool HAL_GetCounterStopped(HAL_CounterHandle counterHandle,
+                               int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return false;
+  }
+  return counter->counter->readTimerOutput_Stalled(status);
+}
+
+/**
+ * The last direction the counter value changed.
+ * @return The last direction the counter value changed.
+ */
+HAL_Bool HAL_GetCounterDirection(HAL_CounterHandle counterHandle,
+                                 int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return false;
+  }
+  bool value = counter->counter->readOutput_Direction(status);
+  return value;
+}
+
+/**
+ * Set the Counter to return reversed sensing on the direction.
+ * This allows counters to change the direction they are counting in the case of
+ * 1X and 2X quadrature encoding only. Any other counter mode isn't supported.
+ * @param reverseDirection true if the value counted should be negated.
+ */
+void HAL_SetCounterReverseDirection(HAL_CounterHandle counterHandle,
+                                    HAL_Bool reverseDirection,
+                                    int32_t* status) {
+  auto counter = counterHandles.Get(counterHandle);
+  if (counter == nullptr) {
+    *status = HAL_HANDLE_ERROR;
+    return;
+  }
+  if (counter->counter->readConfig_Mode(status) ==
+      HAL_Counter_kExternalDirection) {
+    if (reverseDirection)
+      HAL_SetCounterDownSourceEdge(counterHandle, true, true, status);
+    else
+      HAL_SetCounterDownSourceEdge(counterHandle, false, true, status);
+  }
+}
+}