| #include "y2022/control_loops/superstructure/catapult/catapult.h" |
| |
| #include "Eigen/Dense" |
| #include "Eigen/Sparse" |
| #include "glog/logging.h" |
| |
| #include "aos/realtime.h" |
| #include "aos/time/time.h" |
| #include "osqp++.h" |
| #include "osqp.h" |
| #include "y2022/control_loops/superstructure/catapult/catapult_plant.h" |
| |
| namespace y2022::control_loops::superstructure::catapult { |
| namespace chrono = std::chrono; |
| |
| namespace { |
| osqp::OsqpInstance MakeInstance( |
| size_t horizon, Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> P) { |
| osqp::OsqpInstance instance; |
| instance.objective_matrix = P.sparseView(); |
| |
| instance.constraint_matrix = |
| Eigen::SparseMatrix<double, Eigen::ColMajor, osqp::c_int>(horizon, |
| horizon); |
| instance.constraint_matrix.setIdentity(); |
| |
| instance.lower_bounds = |
| Eigen::Matrix<double, Eigen::Dynamic, 1>::Zero(horizon, 1); |
| instance.upper_bounds = |
| Eigen::Matrix<double, Eigen::Dynamic, 1>::Ones(horizon, 1) * 12.0; |
| return instance; |
| } |
| } // namespace |
| |
| MPCProblem::MPCProblem(size_t horizon, |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> P, |
| Eigen::Matrix<double, Eigen::Dynamic, 1> accel_q, |
| Eigen::Matrix<double, 2, 2> Af, |
| Eigen::Matrix<double, Eigen::Dynamic, 2> final_q) |
| : horizon_(horizon), |
| accel_q_(std::move(accel_q)), |
| Af_(std::move(Af)), |
| final_q_(std::move(final_q)), |
| instance_(MakeInstance(horizon, std::move(P))) { |
| // Start with a representative problem. |
| Eigen::Matrix<double, 2, 1> X_initial(0.0, 0.0); |
| Eigen::Matrix<double, 2, 1> X_final(2.0, 25.0); |
| |
| objective_vector_ = |
| X_initial(1, 0) * accel_q_ + final_q_ * (Af_ * X_initial - X_final); |
| instance_.objective_vector = objective_vector_; |
| settings_.max_iter = 25; |
| settings_.check_termination = 5; |
| settings_.warm_start = 1; |
| // TODO(austin): Do we need this scaling thing? It makes it not solve |
| // sometimes... I'm pretty certain by giving it a decently formed problem to |
| // initialize with, it will not try doing crazy things with the scaling |
| // internally. |
| settings_.scaling = 0; |
| auto status = solver_.Init(instance_, settings_); |
| CHECK(status.ok()) << status; |
| } |
| |
| void MPCProblem::SetState(Eigen::Matrix<double, 2, 1> X_initial, |
| Eigen::Matrix<double, 2, 1> X_final) { |
| X_initial_ = X_initial; |
| X_final_ = X_final; |
| // If we mark this noalias(), it won't re-allocate the vector each time. |
| objective_vector_.noalias() = |
| X_initial(1, 0) * accel_q_ + final_q_ * (Af_ * X_initial - X_final); |
| |
| auto status = solver_.SetObjectiveVector(objective_vector_); |
| CHECK(status.ok()) << status; |
| } |
| |
| bool MPCProblem::Solve() { |
| const aos::monotonic_clock::time_point start_time = |
| aos::monotonic_clock::now(); |
| osqp::OsqpExitCode exit_code = solver_.Solve(); |
| const aos::monotonic_clock::time_point end_time = aos::monotonic_clock::now(); |
| VLOG(1) << "OSQP solved in " |
| << std::chrono::duration<double>(end_time - start_time).count(); |
| solve_time_ = std::chrono::duration<double>(end_time - start_time).count(); |
| // TODO(austin): Dump the exit codes out as an enum for logging. |
| // |
| // TODO(austin): The dual problem doesn't appear to be converging on all |
| // problems. Are we phrasing something wrong? |
| |
| // TODO(austin): Set a time limit so we can't run forever, and signal back |
| // when we hit our limit. |
| return exit_code == osqp::OsqpExitCode::kOptimal; |
| } |
| |
| void MPCProblem::WarmStart(const MPCProblem &p) { |
| CHECK_GE(p.horizon(), horizon()) |
| << ": Can only copy a bigger problem's solution into a smaller problem."; |
| auto status = solver_.SetPrimalWarmStart(p.solver_.primal_solution().block( |
| p.horizon() - horizon(), 0, horizon(), 1)); |
| CHECK(status.ok()) << status; |
| status = solver_.SetDualWarmStart(p.solver_.dual_solution().block( |
| p.horizon() - horizon(), 0, horizon(), 1)); |
| CHECK(status.ok()) << status; |
| } |
| |
| CatapultProblemGenerator::CatapultProblemGenerator(size_t horizon) |
| : plant_(MakeCatapultPlant()), |
| horizon_(horizon), |
| Q_final_( |
| (Eigen::DiagonalMatrix<double, 2>().diagonal() << 10000.0, 10000.0) |
| .finished()), |
| As_(MakeAs()), |
| Bs_(MakeBs()), |
| m_(Makem()), |
| M_(MakeM()), |
| W_(MakeW()), |
| w_(Makew()), |
| Pi_(MakePi()), |
| WM_(W_ * M_), |
| Wmpw_(W_ * m_ + w_) {} |
| |
| std::unique_ptr<MPCProblem> CatapultProblemGenerator::MakeProblem( |
| size_t horizon) { |
| return std::make_unique<MPCProblem>( |
| horizon, P(horizon), accel_q(horizon), Af(horizon), |
| (2.0 * Q_final_ * Bf(horizon)).transpose()); |
| } |
| |
| const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> |
| CatapultProblemGenerator::P(size_t horizon) { |
| CHECK_GT(horizon, 0u); |
| CHECK_LE(horizon, horizon_); |
| return 2.0 * (WM_.block(0, 0, horizon, horizon).transpose() * Pi(horizon) * |
| WM_.block(0, 0, horizon, horizon) + |
| Bf(horizon).transpose() * Q_final_ * Bf(horizon)); |
| } |
| |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> CatapultProblemGenerator::q( |
| size_t horizon, Eigen::Matrix<double, 2, 1> X_initial, |
| Eigen::Matrix<double, 2, 1> X_final) { |
| CHECK_GT(horizon, 0u); |
| CHECK_LE(horizon, horizon_); |
| return 2.0 * X_initial(1, 0) * accel_q(horizon) + |
| 2.0 * ((Af(horizon) * X_initial - X_final).transpose() * Q_final_ * |
| Bf(horizon)) |
| .transpose(); |
| } |
| |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> |
| CatapultProblemGenerator::accel_q(size_t horizon) { |
| return 2.0 * ((Wmpw_.block(0, 0, horizon, 1)).transpose() * Pi(horizon) * |
| WM_.block(0, 0, horizon, horizon)) |
| .transpose(); |
| } |
| |
| const Eigen::Matrix<double, 2, 2> CatapultProblemGenerator::Af(size_t horizon) { |
| CHECK_GT(horizon, 0u); |
| CHECK_LE(horizon, horizon_); |
| return As_.block<2, 2>(2 * (horizon - 1), 0); |
| } |
| |
| const Eigen::Matrix<double, 2, Eigen::Dynamic> CatapultProblemGenerator::Bf( |
| size_t horizon) { |
| CHECK_GT(horizon, 0u); |
| CHECK_LE(horizon, horizon_); |
| return Bs_.block(2 * (horizon - 1), 0, 2, horizon); |
| } |
| |
| const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> |
| CatapultProblemGenerator::Pi(size_t horizon) { |
| CHECK_GT(horizon, 0u); |
| CHECK_LE(horizon, horizon_); |
| return Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>(Pi_).block( |
| horizon_ - horizon, horizon_ - horizon, horizon, horizon); |
| } |
| |
| Eigen::Matrix<double, Eigen::Dynamic, 2> CatapultProblemGenerator::MakeAs() { |
| Eigen::Matrix<double, Eigen::Dynamic, 2> As = |
| Eigen::Matrix<double, Eigen::Dynamic, 2>::Zero(horizon_ * 2, 2); |
| for (size_t i = 0; i < horizon_; ++i) { |
| if (i == 0) { |
| As.block<2, 2>(0, 0) = plant_.A(); |
| } else { |
| As.block<2, 2>(i * 2, 0) = plant_.A() * As.block<2, 2>((i - 1) * 2, 0); |
| } |
| } |
| return As; |
| } |
| |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> |
| CatapultProblemGenerator::MakeBs() { |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> Bs = |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Zero(horizon_ * 2, |
| horizon_); |
| for (size_t i = 0; i < horizon_; ++i) { |
| for (size_t j = 0; j < i + 1; ++j) { |
| if (i == j) { |
| Bs.block<2, 1>(i * 2, j) = plant_.B(); |
| } else { |
| Bs.block<2, 1>(i * 2, j) = |
| As_.block<2, 2>((i - j - 1) * 2, 0) * plant_.B(); |
| } |
| } |
| } |
| return Bs; |
| } |
| |
| Eigen::Matrix<double, Eigen::Dynamic, 1> CatapultProblemGenerator::Makem() { |
| Eigen::Matrix<double, Eigen::Dynamic, 1> m = |
| Eigen::Matrix<double, Eigen::Dynamic, 1>::Zero(horizon_, 1); |
| for (size_t i = 0; i < horizon_; ++i) { |
| m(i, 0) = As_(1 + 2 * i, 1); |
| } |
| return m; |
| } |
| |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> |
| CatapultProblemGenerator::MakeM() { |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> M = |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Zero(horizon_, |
| horizon_); |
| for (size_t i = 0; i < horizon_; ++i) { |
| for (size_t j = 0; j < horizon_; ++j) { |
| M(i, j) = Bs_(2 * i + 1, j); |
| } |
| } |
| return M; |
| } |
| |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> |
| CatapultProblemGenerator::MakeW() { |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> W = |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Identity(horizon_, |
| horizon_); |
| for (size_t i = 0; i < horizon_ - 1; ++i) { |
| W(i + 1, i) = -1.0; |
| } |
| W /= std::chrono::duration<double>(plant_.dt()).count(); |
| return W; |
| } |
| |
| Eigen::Matrix<double, Eigen::Dynamic, 1> CatapultProblemGenerator::Makew() { |
| Eigen::Matrix<double, Eigen::Dynamic, 1> w = |
| Eigen::Matrix<double, Eigen::Dynamic, 1>::Zero(horizon_, 1); |
| w(0, 0) = -1.0 / std::chrono::duration<double>(plant_.dt()).count(); |
| return w; |
| } |
| |
| Eigen::DiagonalMatrix<double, Eigen::Dynamic> |
| CatapultProblemGenerator::MakePi() { |
| Eigen::DiagonalMatrix<double, Eigen::Dynamic> Pi(horizon_); |
| for (size_t i = 0; i < horizon_; ++i) { |
| Pi.diagonal()(i) = |
| std::pow(0.01, 2.0) + |
| std::pow(0.02 * std::max(0.0, (20 - ((int)horizon_ - (int)i)) / 20.), |
| 2.0); |
| } |
| return Pi; |
| } |
| |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> |
| CatapultProblemGenerator::MakeP() { |
| return 2.0 * (M_.transpose() * W_.transpose() * Pi_ * W_ * M_ + |
| Bf(horizon_).transpose() * Q_final_ * Bf(horizon_)); |
| } |
| |
| CatapultController::CatapultController(size_t horizon) : generator_(horizon) { |
| problems_.reserve(generator_.horizon()); |
| for (size_t i = generator_.horizon(); i > 0; --i) { |
| problems_.emplace_back(generator_.MakeProblem(i)); |
| } |
| |
| Reset(); |
| } |
| |
| void CatapultController::Reset() { |
| current_controller_ = 0; |
| solve_time_ = 0.0; |
| } |
| |
| void CatapultController::SetState(Eigen::Matrix<double, 2, 1> X_initial, |
| Eigen::Matrix<double, 2, 1> X_final) { |
| if (current_controller_ >= problems_.size()) { |
| return; |
| } |
| problems_[current_controller_]->SetState(X_initial, X_final); |
| } |
| |
| bool CatapultController::Solve() { |
| if (current_controller_ >= problems_.size()) { |
| return true; |
| } |
| const bool result = problems_[current_controller_]->Solve(); |
| solve_time_ = problems_[current_controller_]->solve_time(); |
| return result; |
| } |
| |
| std::optional<double> CatapultController::Next() { |
| if (current_controller_ >= problems_.size()) { |
| return std::nullopt; |
| } |
| |
| double u; |
| size_t solution_number = 0; |
| if (current_controller_ == 0u) { |
| while (solution_number < problems_[current_controller_]->horizon() && |
| problems_[current_controller_]->U(solution_number) < 0.01) { |
| u = problems_[current_controller_]->U(solution_number); |
| ++solution_number; |
| } |
| } |
| u = problems_[current_controller_]->U(solution_number); |
| |
| if (current_controller_ + 1u + solution_number < problems_.size()) { |
| problems_[current_controller_ + solution_number + 1]->WarmStart( |
| *problems_[current_controller_]); |
| } |
| current_controller_ += 1u + solution_number; |
| return u; |
| } |
| |
| const flatbuffers::Offset< |
| frc971::control_loops::PotAndAbsoluteEncoderProfiledJointStatus> |
| Catapult::Iterate(const CatapultGoal *catapult_goal, const Position *position, |
| double battery_voltage, double *catapult_voltage, bool fire, |
| flatbuffers::FlatBufferBuilder *fbb) { |
| const frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystemGoal |
| *return_goal = |
| catapult_goal != nullptr && catapult_goal->has_return_position() |
| ? catapult_goal->return_position() |
| : nullptr; |
| |
| const bool catapult_disabled = catapult_.Correct( |
| return_goal, position->catapult(), catapult_voltage == nullptr); |
| |
| if (catapult_disabled) { |
| catapult_state_ = CatapultState::PROFILE; |
| } else if (catapult_.running() && catapult_goal != nullptr && fire && |
| !last_firing_) { |
| catapult_state_ = CatapultState::FIRING; |
| latched_shot_position = catapult_goal->shot_position(); |
| latched_shot_velocity = catapult_goal->shot_velocity(); |
| } |
| |
| // Don't update last_firing_ if the catapult is disabled, so that we actually |
| // end up firing once it's enabled |
| if (catapult_.running() && !catapult_disabled) { |
| last_firing_ = fire; |
| } |
| |
| use_profile_ = true; |
| |
| switch (catapult_state_) { |
| case CatapultState::FIRING: { |
| // Select the ball controller. We should only be firing if we have a |
| // ball, or at least should only care about the shot accuracy. |
| catapult_.set_controller_index(0); |
| // Ok, so we've now corrected. Next step is to run the MPC. |
| // |
| // Since there is a unit delay between when we ask for a U and the |
| // hardware applies it, we need to run the optimizer for the position at |
| // the *next* control loop cycle. |
| |
| Eigen::Vector3d next_X = catapult_.estimated_state(); |
| for (int i = catapult_.controller().plant().coefficients().delayed_u; |
| i > 1; --i) { |
| next_X = catapult_.controller().plant().A() * next_X + |
| catapult_.controller().plant().B() * |
| catapult_.controller().observer().last_U(i - 1); |
| } |
| |
| catapult_mpc_.SetState( |
| next_X.block<2, 1>(0, 0), |
| Eigen::Vector2d(latched_shot_position, latched_shot_velocity)); |
| |
| const bool solved = catapult_mpc_.Solve(); |
| current_horizon_ = catapult_mpc_.current_horizon(); |
| const bool started = catapult_mpc_.started(); |
| if (solved || started) { |
| std::optional<double> solution = catapult_mpc_.Next(); |
| |
| if (!solution.has_value()) { |
| CHECK_NOTNULL(catapult_voltage); |
| *catapult_voltage = 0.0; |
| if (catapult_mpc_.started()) { |
| ++shot_count_; |
| // Finished the catapult, time to fire. |
| catapult_state_ = CatapultState::RESETTING; |
| } |
| } else { |
| // TODO(austin): Voltage error? |
| CHECK_NOTNULL(catapult_voltage); |
| if (current_horizon_ == 1) { |
| battery_voltage = 12.0; |
| } |
| *catapult_voltage = std::max( |
| 0.0, std::min(12.0, (*solution - 0.0 * next_X(2, 0)) * 12.0 / |
| std::max(battery_voltage, 8.0))); |
| use_profile_ = false; |
| } |
| } else { |
| if (!fire) { |
| // Eh, didn't manage to solve before it was time to fire. Give up. |
| catapult_state_ = CatapultState::PROFILE; |
| } |
| } |
| |
| if (!use_profile_) { |
| catapult_.ForceGoal(catapult_.estimated_position(), |
| catapult_.estimated_velocity()); |
| } |
| } |
| if (catapult_state_ != CatapultState::RESETTING) { |
| break; |
| } else { |
| [[fallthrough]]; |
| } |
| |
| case CatapultState::RESETTING: |
| if (catapult_.controller().R(1, 0) > 7.0) { |
| catapult_.AdjustProfile(7.0, 2000.0); |
| } else if (catapult_.controller().R(1, 0) > 0.0) { |
| catapult_.AdjustProfile(7.0, 1000.0); |
| } else { |
| catapult_state_ = CatapultState::PROFILE; |
| } |
| [[fallthrough]]; |
| |
| case CatapultState::PROFILE: |
| break; |
| } |
| |
| if (use_profile_) { |
| if (catapult_state_ != CatapultState::FIRING) { |
| catapult_mpc_.Reset(); |
| } |
| // Select the controller designed for when we have no ball. |
| catapult_.set_controller_index(1); |
| |
| current_horizon_ = 0u; |
| const double output_voltage = catapult_.UpdateController(catapult_disabled); |
| if (catapult_voltage != nullptr) { |
| *catapult_voltage = output_voltage; |
| } |
| } |
| |
| catapult_.UpdateObserver(catapult_voltage != nullptr |
| ? (*catapult_voltage * battery_voltage / 12.0) |
| : 0.0); |
| |
| return catapult_.MakeStatus(fbb); |
| } |
| |
| } // namespace y2022::control_loops::superstructure::catapult |