| #include "aos/ipc_lib/lockless_queue.h" |
| |
| #include <sys/mman.h> |
| #include <unistd.h> |
| #include <wait.h> |
| |
| #include <chrono> |
| #include <cinttypes> |
| #include <csignal> |
| #include <memory> |
| #include <random> |
| #include <thread> |
| |
| #include "gflags/gflags.h" |
| #include "gtest/gtest.h" |
| |
| #include "aos/events/epoll.h" |
| #include "aos/ipc_lib/aos_sync.h" |
| #include "aos/ipc_lib/event.h" |
| #include "aos/ipc_lib/lockless_queue_memory.h" |
| #include "aos/ipc_lib/lockless_queue_stepping.h" |
| #include "aos/ipc_lib/queue_racer.h" |
| #include "aos/ipc_lib/signalfd.h" |
| #include "aos/realtime.h" |
| #include "aos/util/phased_loop.h" |
| |
| DEFINE_int32(min_iterations, 100, |
| "Minimum number of stress test iterations to run"); |
| DEFINE_int32(duration, 5, "Number of seconds to test for"); |
| DEFINE_int32(print_rate, 60, "Number of seconds between status prints"); |
| |
| // The roboRIO can only handle 10 threads before exploding. Set the default for |
| // ARM to 10. |
| DEFINE_int32(thread_count, |
| #if defined(__ARM_EABI__) |
| 10, |
| #else |
| 100, |
| #endif |
| "Number of threads to race"); |
| |
| namespace aos::ipc_lib::testing { |
| |
| namespace chrono = ::std::chrono; |
| |
| class LocklessQueueTest : public ::testing::Test { |
| public: |
| static constexpr monotonic_clock::duration kChannelStorageDuration = |
| std::chrono::milliseconds(500); |
| |
| LocklessQueueTest() { |
| config_.num_watchers = 10; |
| config_.num_senders = 100; |
| config_.num_pinners = 5; |
| config_.queue_size = 10000; |
| // Exercise the alignment code. This would throw off alignment. |
| config_.message_data_size = 101; |
| |
| // Since our backing store is an array of uint64_t for alignment purposes, |
| // normalize by the size. |
| memory_.resize(LocklessQueueMemorySize(config_) / sizeof(uint64_t)); |
| |
| Reset(); |
| } |
| |
| LocklessQueue queue() { |
| return LocklessQueue(reinterpret_cast<LocklessQueueMemory *>(&(memory_[0])), |
| reinterpret_cast<LocklessQueueMemory *>(&(memory_[0])), |
| config_); |
| } |
| |
| void Reset() { memset(&memory_[0], 0, LocklessQueueMemorySize(config_)); } |
| |
| // Runs until the signal is received. |
| void RunUntilWakeup(Event *ready, int priority) { |
| internal::EPoll epoll; |
| SignalFd signalfd({kWakeupSignal}); |
| |
| epoll.OnReadable(signalfd.fd(), [&signalfd, &epoll]() { |
| signalfd_siginfo result = signalfd.Read(); |
| |
| fprintf(stderr, "Got signal: %d\n", result.ssi_signo); |
| epoll.Quit(); |
| }); |
| |
| { |
| // Register to be woken up *after* the signalfd is catching the signals. |
| LocklessQueueWatcher watcher = |
| LocklessQueueWatcher::Make(queue(), priority).value(); |
| |
| // And signal we are now ready. |
| ready->Set(); |
| |
| epoll.Run(); |
| |
| // Cleanup, ensuring the watcher is destroyed before the signalfd. |
| } |
| epoll.DeleteFd(signalfd.fd()); |
| } |
| |
| // Use a type with enough alignment that we are guarenteed that everything |
| // will be aligned properly on the target platform. |
| ::std::vector<uint64_t> memory_; |
| |
| LocklessQueueConfiguration config_; |
| }; |
| |
| // Tests that wakeup doesn't do anything if nothing was registered. |
| TEST_F(LocklessQueueTest, NoWatcherWakeup) { |
| LocklessQueueWakeUpper wake_upper(queue()); |
| |
| EXPECT_EQ(wake_upper.Wakeup(7), 0); |
| } |
| |
| // Tests that wakeup doesn't do anything if a wakeup was registered and then |
| // unregistered. |
| TEST_F(LocklessQueueTest, UnregisteredWatcherWakeup) { |
| LocklessQueueWakeUpper wake_upper(queue()); |
| |
| { LocklessQueueWatcher::Make(queue(), 5).value(); } |
| |
| EXPECT_EQ(wake_upper.Wakeup(7), 0); |
| } |
| |
| // Tests that wakeup doesn't do anything if the thread dies. |
| TEST_F(LocklessQueueTest, DiedWatcherWakeup) { |
| LocklessQueueWakeUpper wake_upper(queue()); |
| |
| ::std::thread([this]() { |
| // Use placement new so the destructor doesn't get run. |
| ::std::aligned_storage<sizeof(LocklessQueueWatcher), |
| alignof(LocklessQueueWatcher)>::type data; |
| new (&data) |
| LocklessQueueWatcher(LocklessQueueWatcher::Make(queue(), 5).value()); |
| }).join(); |
| |
| EXPECT_EQ(wake_upper.Wakeup(7), 0); |
| } |
| |
| struct WatcherState { |
| ::std::thread t; |
| Event ready; |
| }; |
| |
| // Tests that too many watchers fails like expected. |
| TEST_F(LocklessQueueTest, TooManyWatchers) { |
| // This is going to be a barrel of monkeys. |
| // We need to spin up a bunch of watchers. But, they all need to be in |
| // different threads so they have different tids. |
| ::std::vector<WatcherState> queues; |
| // Reserve num_watchers WatcherState objects so the pointer value doesn't |
| // change out from under us below. |
| queues.reserve(config_.num_watchers); |
| |
| // Event used to trigger all the threads to unregister. |
| Event cleanup; |
| |
| // Start all the threads. |
| for (size_t i = 0; i < config_.num_watchers; ++i) { |
| queues.emplace_back(); |
| |
| WatcherState *s = &queues.back(); |
| queues.back().t = ::std::thread([this, &cleanup, s]() { |
| LocklessQueueWatcher q = LocklessQueueWatcher::Make(queue(), 0).value(); |
| |
| // Signal that this thread is ready. |
| s->ready.Set(); |
| |
| // And wait until we are asked to shut down. |
| cleanup.Wait(); |
| }); |
| } |
| |
| // Wait until all the threads are actually going. |
| for (WatcherState &w : queues) { |
| w.ready.Wait(); |
| } |
| |
| // Now try to allocate another one. This will fail. |
| EXPECT_FALSE(LocklessQueueWatcher::Make(queue(), 0)); |
| |
| // Trigger the threads to cleanup their resources, and wait until they are |
| // done. |
| cleanup.Set(); |
| for (WatcherState &w : queues) { |
| w.t.join(); |
| } |
| |
| // We should now be able to allocate a wakeup. |
| EXPECT_TRUE(LocklessQueueWatcher::Make(queue(), 0)); |
| } |
| |
| // Tests that too many watchers dies like expected. |
| TEST_F(LocklessQueueTest, TooManySenders) { |
| ::std::vector<LocklessQueueSender> senders; |
| for (size_t i = 0; i < config_.num_senders; ++i) { |
| senders.emplace_back( |
| LocklessQueueSender::Make(queue(), kChannelStorageDuration).value()); |
| } |
| EXPECT_FALSE(LocklessQueueSender::Make(queue(), kChannelStorageDuration)); |
| } |
| |
| // Now, start 2 threads and have them receive the signals. |
| TEST_F(LocklessQueueTest, WakeUpThreads) { |
| // Confirm that the wakeup signal is in range. |
| EXPECT_LE(kWakeupSignal, SIGRTMAX); |
| EXPECT_GE(kWakeupSignal, SIGRTMIN); |
| |
| LocklessQueueWakeUpper wake_upper(queue()); |
| |
| // Event used to make sure the thread is ready before the test starts. |
| Event ready1; |
| Event ready2; |
| |
| // Start the thread. |
| ::std::thread t1([this, &ready1]() { RunUntilWakeup(&ready1, 2); }); |
| ::std::thread t2([this, &ready2]() { RunUntilWakeup(&ready2, 1); }); |
| |
| ready1.Wait(); |
| ready2.Wait(); |
| |
| EXPECT_EQ(wake_upper.Wakeup(3), 2); |
| |
| t1.join(); |
| t2.join(); |
| |
| // Clean up afterwords. We are pretending to be RT when we are really not. |
| // So we will be PI boosted up. |
| UnsetCurrentThreadRealtimePriority(); |
| } |
| |
| // Do a simple send test. |
| TEST_F(LocklessQueueTest, Send) { |
| LocklessQueueSender sender = |
| LocklessQueueSender::Make(queue(), kChannelStorageDuration).value(); |
| LocklessQueueReader reader(queue()); |
| |
| time::PhasedLoop loop(kChannelStorageDuration / (config_.queue_size - 1), |
| monotonic_clock::now()); |
| std::function<bool(const Context &)> should_read = [](const Context &) { |
| return true; |
| }; |
| |
| // Send enough messages to wrap. |
| for (int i = 0; i < 2 * static_cast<int>(config_.queue_size); ++i) { |
| // Confirm that the queue index makes sense given the number of sends. |
| EXPECT_EQ(reader.LatestIndex().index(), |
| i == 0 ? QueueIndex::Invalid().index() : i - 1); |
| |
| // Send a trivial piece of data. |
| char data[100]; |
| size_t s = snprintf(data, sizeof(data), "foobar%d", i); |
| ASSERT_EQ(sender.Send(data, s, monotonic_clock::min_time, |
| realtime_clock::min_time, 0xffffffffu, UUID::Zero(), |
| nullptr, nullptr, nullptr), |
| LocklessQueueSender::Result::GOOD); |
| |
| // Confirm that the queue index still makes sense. This is easier since the |
| // empty case has been handled. |
| EXPECT_EQ(reader.LatestIndex().index(), i); |
| |
| // Read a result from 5 in the past. |
| monotonic_clock::time_point monotonic_sent_time; |
| realtime_clock::time_point realtime_sent_time; |
| monotonic_clock::time_point monotonic_remote_time; |
| realtime_clock::time_point realtime_remote_time; |
| uint32_t remote_queue_index; |
| UUID source_boot_uuid; |
| char read_data[1024]; |
| size_t length; |
| |
| QueueIndex index = QueueIndex::Zero(config_.queue_size); |
| if (i - 5 < 0) { |
| index = index.DecrementBy(5 - i); |
| } else { |
| index = index.IncrementBy(i - 5); |
| } |
| LocklessQueueReader::Result read_result = reader.Read( |
| index.index(), &monotonic_sent_time, &realtime_sent_time, |
| &monotonic_remote_time, &realtime_remote_time, &remote_queue_index, |
| &source_boot_uuid, &length, &(read_data[0]), std::ref(should_read)); |
| |
| // This should either return GOOD, or TOO_OLD if it is before the start of |
| // the queue. |
| if (read_result != LocklessQueueReader::Result::GOOD) { |
| ASSERT_EQ(read_result, LocklessQueueReader::Result::TOO_OLD); |
| } |
| |
| loop.SleepUntilNext(); |
| } |
| } |
| |
| // Races a bunch of sending threads to see if it all works. |
| TEST_F(LocklessQueueTest, SendRace) { |
| const size_t kNumMessages = 10000 / FLAGS_thread_count; |
| |
| ::std::mt19937 generator(0); |
| ::std::uniform_int_distribution<> write_wrap_count_distribution(0, 10); |
| ::std::bernoulli_distribution race_reads_distribution; |
| ::std::bernoulli_distribution set_should_read_distribution; |
| ::std::bernoulli_distribution should_read_result_distribution; |
| ::std::bernoulli_distribution wrap_writes_distribution; |
| |
| const chrono::seconds print_frequency(FLAGS_print_rate); |
| |
| QueueRacer racer(queue(), FLAGS_thread_count, kNumMessages); |
| const monotonic_clock::time_point start_time = monotonic_clock::now(); |
| const monotonic_clock::time_point end_time = |
| start_time + chrono::seconds(FLAGS_duration); |
| |
| monotonic_clock::time_point monotonic_now = start_time; |
| monotonic_clock::time_point next_print_time = start_time + print_frequency; |
| uint64_t messages = 0; |
| for (int i = 0; i < FLAGS_min_iterations || monotonic_now < end_time; ++i) { |
| const bool race_reads = race_reads_distribution(generator); |
| const bool set_should_read = set_should_read_distribution(generator); |
| const bool should_read_result = should_read_result_distribution(generator); |
| int write_wrap_count = write_wrap_count_distribution(generator); |
| if (!wrap_writes_distribution(generator)) { |
| write_wrap_count = 0; |
| } |
| EXPECT_NO_FATAL_FAILURE(racer.RunIteration( |
| race_reads, write_wrap_count, set_should_read, should_read_result)) |
| << ": Running with race_reads: " << race_reads |
| << ", and write_wrap_count " << write_wrap_count << " and on iteration " |
| << i; |
| |
| messages += racer.CurrentIndex(); |
| |
| monotonic_now = monotonic_clock::now(); |
| if (monotonic_now > next_print_time) { |
| double elapsed_seconds = chrono::duration_cast<chrono::duration<double>>( |
| monotonic_now - start_time) |
| .count(); |
| printf("Finished iteration %d, %f iterations/sec, %f messages/second\n", |
| i, i / elapsed_seconds, |
| static_cast<double>(messages) / elapsed_seconds); |
| next_print_time = monotonic_now + print_frequency; |
| } |
| } |
| } |
| |
| namespace { |
| |
| // Temporarily pins the current thread to the first 2 available CPUs. |
| // This speeds up the test on some machines a lot (~4x). It also preserves |
| // opportunities for the 2 threads to race each other. |
| class PinForTest { |
| public: |
| PinForTest() { |
| cpu_set_t cpus = GetCurrentThreadAffinity(); |
| old_ = cpus; |
| int number_found = 0; |
| for (int i = 0; i < CPU_SETSIZE; ++i) { |
| if (CPU_ISSET(i, &cpus)) { |
| if (number_found < 2) { |
| ++number_found; |
| } else { |
| CPU_CLR(i, &cpus); |
| } |
| } |
| } |
| SetCurrentThreadAffinity(cpus); |
| } |
| ~PinForTest() { SetCurrentThreadAffinity(old_); } |
| |
| private: |
| cpu_set_t old_; |
| }; |
| |
| } // namespace |
| |
| class LocklessQueueTestTooFast : public LocklessQueueTest { |
| public: |
| LocklessQueueTestTooFast() { |
| // Force a scenario where senders get rate limited |
| config_.num_watchers = 1000; |
| config_.num_senders = 100; |
| config_.num_pinners = 5; |
| config_.queue_size = 100; |
| // Exercise the alignment code. This would throw off alignment. |
| config_.message_data_size = 101; |
| |
| // Since our backing store is an array of uint64_t for alignment purposes, |
| // normalize by the size. |
| memory_.resize(LocklessQueueMemorySize(config_) / sizeof(uint64_t)); |
| |
| Reset(); |
| } |
| }; |
| |
| // Ensure we always return OK or MESSAGES_SENT_TOO_FAST under an extreme load |
| // on the Sender Queue. |
| TEST_F(LocklessQueueTestTooFast, MessagesSentTooFast) { |
| PinForTest pin_cpu; |
| uint64_t kNumMessages = 1000000; |
| QueueRacer racer(queue(), |
| {FLAGS_thread_count, |
| kNumMessages, |
| {LocklessQueueSender::Result::GOOD, |
| LocklessQueueSender::Result::MESSAGES_SENT_TOO_FAST}, |
| std::chrono::milliseconds(500), |
| false}); |
| |
| EXPECT_NO_FATAL_FAILURE(racer.RunIteration(false, 0, true, true)); |
| } |
| |
| // // Send enough messages to wrap the 32 bit send counter. |
| TEST_F(LocklessQueueTest, WrappedSend) { |
| PinForTest pin_cpu; |
| uint64_t kNumMessages = 0x100010000ul; |
| QueueRacer racer(queue(), 1, kNumMessages); |
| |
| const monotonic_clock::time_point start_time = monotonic_clock::now(); |
| EXPECT_NO_FATAL_FAILURE(racer.RunIteration(false, 0, false, true)); |
| const monotonic_clock::time_point monotonic_now = monotonic_clock::now(); |
| double elapsed_seconds = chrono::duration_cast<chrono::duration<double>>( |
| monotonic_now - start_time) |
| .count(); |
| printf("Took %f seconds to write %" PRIu64 " messages, %f messages/s\n", |
| elapsed_seconds, kNumMessages, |
| static_cast<double>(kNumMessages) / elapsed_seconds); |
| } |
| |
| #if defined(SUPPORTS_SHM_ROBUSTNESS_TEST) |
| |
| // Verifies that LatestIndex points to the same message as the logic from |
| // "FetchNext", which increments the index until it gets "NOTHING_NEW" back. |
| // This is so we can confirm fetchers and watchers all see the same message at |
| // the same point in time. |
| int VerifyMessages(LocklessQueue *queue, LocklessQueueMemory *memory) { |
| LocklessQueueReader reader(*queue); |
| |
| const ipc_lib::QueueIndex queue_index = reader.LatestIndex(); |
| if (!queue_index.valid()) { |
| return 0; |
| } |
| |
| // Now loop through the queue and make sure the number in the snprintf |
| // increments. |
| char last_data = '0'; |
| int i = 0; |
| |
| // Callback which isn't set so we don't exercise the conditional reading code. |
| std::function<bool(const Context &)> should_read_callback; |
| |
| // Now, read as far as we can until we get NOTHING_NEW. This simulates |
| // FetchNext. |
| while (true) { |
| monotonic_clock::time_point monotonic_sent_time; |
| realtime_clock::time_point realtime_sent_time; |
| monotonic_clock::time_point monotonic_remote_time; |
| realtime_clock::time_point realtime_remote_time; |
| uint32_t remote_queue_index; |
| UUID source_boot_uuid; |
| char read_data[1024]; |
| size_t length; |
| |
| LocklessQueueReader::Result read_result = reader.Read( |
| i, &monotonic_sent_time, &realtime_sent_time, &monotonic_remote_time, |
| &realtime_remote_time, &remote_queue_index, &source_boot_uuid, &length, |
| &(read_data[0]), should_read_callback); |
| |
| if (read_result != LocklessQueueReader::Result::GOOD) { |
| if (read_result == LocklessQueueReader::Result::TOO_OLD) { |
| ++i; |
| continue; |
| } |
| CHECK(read_result == LocklessQueueReader::Result::NOTHING_NEW) |
| << ": " << static_cast<int>(read_result); |
| break; |
| } |
| |
| EXPECT_GT(read_data[LocklessQueueMessageDataSize(memory) - length + 6], |
| last_data) |
| << ": Got " << read_data << " for " << i; |
| last_data = read_data[LocklessQueueMessageDataSize(memory) - length + 6]; |
| |
| ++i; |
| } |
| |
| // The latest queue index should match the fetched queue index. |
| if (i == 0) { |
| EXPECT_FALSE(queue_index.valid()); |
| } else { |
| EXPECT_EQ(queue_index.index(), i - 1); |
| } |
| return i; |
| } |
| |
| // Tests that at all points in the publish step, fetch == fetch next. This |
| // means that there is an atomic point at which the message is viewed as visible |
| // to consumers. Do this by killing the writer after each change to shared |
| // memory, and confirming fetch == fetch next each time. |
| TEST_F(LocklessQueueTest, FetchEqFetchNext) { |
| SharedTid tid; |
| |
| // Make a small queue so it is easier to debug. |
| LocklessQueueConfiguration config; |
| config.num_watchers = 1; |
| config.num_senders = 2; |
| config.num_pinners = 0; |
| config.queue_size = 3; |
| config.message_data_size = 32; |
| |
| TestShmRobustness( |
| config, |
| [config, &tid](void *memory) { |
| // Initialize the queue. |
| LocklessQueue( |
| reinterpret_cast<aos::ipc_lib::LocklessQueueMemory *>(memory), |
| reinterpret_cast<aos::ipc_lib::LocklessQueueMemory *>(memory), |
| config) |
| .Initialize(); |
| tid.Set(); |
| }, |
| [config](void *memory) { |
| LocklessQueue queue( |
| reinterpret_cast<aos::ipc_lib::LocklessQueueMemory *>(memory), |
| reinterpret_cast<aos::ipc_lib::LocklessQueueMemory *>(memory), |
| config); |
| // Now try to write some messages. We will get killed a bunch as this |
| // tries to happen. |
| LocklessQueueSender sender = |
| LocklessQueueSender::Make(queue, chrono::nanoseconds(1)).value(); |
| for (int i = 0; i < 5; ++i) { |
| char data[100]; |
| size_t s = snprintf(data, sizeof(data), "foobar%d", i + 1); |
| ASSERT_EQ(sender.Send(data, s + 1, monotonic_clock::min_time, |
| realtime_clock::min_time, 0xffffffffl, |
| UUID::Zero(), nullptr, nullptr, nullptr), |
| LocklessQueueSender::Result::GOOD); |
| } |
| }, |
| [config, &tid](void *raw_memory) { |
| ::aos::ipc_lib::LocklessQueueMemory *const memory = |
| reinterpret_cast<::aos::ipc_lib::LocklessQueueMemory *>(raw_memory); |
| LocklessQueue queue(memory, memory, config); |
| PretendThatOwnerIsDeadForTesting(&memory->queue_setup_lock, tid.Get()); |
| |
| if (VLOG_IS_ON(1)) { |
| PrintLocklessQueueMemory(memory); |
| } |
| |
| const int i = VerifyMessages(&queue, memory); |
| |
| LocklessQueueSender sender = |
| LocklessQueueSender::Make(queue, chrono::nanoseconds(1)).value(); |
| { |
| char data[100]; |
| size_t s = snprintf(data, sizeof(data), "foobar%d", i + 1); |
| ASSERT_EQ(sender.Send(data, s + 1, monotonic_clock::min_time, |
| realtime_clock::min_time, 0xffffffffl, |
| UUID::Zero(), nullptr, nullptr, nullptr), |
| LocklessQueueSender::Result::GOOD); |
| } |
| |
| // Now, make sure we can send 1 message and receive it to confirm we |
| // haven't corrupted next_queue_index irrevocably. |
| const int newi = VerifyMessages(&queue, memory); |
| EXPECT_EQ(newi, i + 1); |
| }); |
| } |
| |
| #endif |
| |
| } // namespace aos::ipc_lib::testing |