| #include <string.h> |
| |
| #include <memory> |
| |
| #include "aos/common/inttypes.h" |
| #include "aos/atom_code/init.h" |
| #include "aos/common/logging/logging.h" |
| #include "aos/common/time.h" |
| #include "aos/common/glibusb/glibusb.h" |
| #include "aos/common/glibusb/gbuffer.h" |
| #include "aos/common/util/wrapping_counter.h" |
| #include "aos/common/control_loop/ControlLoop.h" |
| |
| #include "frc971/control_loops/drivetrain/drivetrain.q.h" |
| #include "frc971/control_loops/wrist/wrist_motor.q.h" |
| #include "frc971/control_loops/angle_adjust/angle_adjust_motor.q.h" |
| #include "frc971/control_loops/index/index_motor.q.h" |
| #include "frc971/control_loops/shooter/shooter_motor.q.h" |
| #include "frc971/input/gyro_board_data.h" |
| #include "frc971/queues/GyroAngle.q.h" |
| |
| #ifndef M_PI |
| #define M_PI 3.14159265358979323846 |
| #endif |
| |
| using ::frc971::control_loops::drivetrain; |
| using ::frc971::control_loops::wrist; |
| using ::frc971::control_loops::angle_adjust; |
| using ::frc971::control_loops::shooter; |
| using ::frc971::control_loops::index_loop; |
| using ::frc971::sensors::gyro; |
| using ::aos::util::WrappingCounter; |
| |
| namespace frc971 { |
| namespace { |
| |
| inline double drivetrain_translate(int32_t in) { |
| return static_cast<double>(in) / (256.0 /*cpr*/ * 4.0 /*quad*/) * |
| (19.0 / 50.0) /*output reduction*/ * (64.0 / 24.0) /*encoder gears*/ * |
| (3.5 /*wheel diameter*/ * 2.54 / 100.0 * M_PI); |
| } |
| |
| inline double wrist_translate(int32_t in) { |
| return static_cast<double>(in) / (256.0 /*cpr*/ * 4.0 /*quad*/) * |
| (14.0 / 50.0 * 20.0 / 84.0) /*gears*/ * (2 * M_PI); |
| } |
| |
| inline double angle_adjust_translate(int32_t in) { |
| static const double kCableDiameter = 0.060; |
| return -static_cast<double>(in) / (256.0 /*cpr*/ * 4.0 /*quad*/) * |
| ((0.75 + kCableDiameter) / (16.61125 + kCableDiameter)) /*pulleys*/ * |
| (2 * M_PI); |
| } |
| |
| inline double shooter_translate(int32_t in) { |
| return static_cast<double>(in) / (32.0 /*cpr*/ * 4.0 /*quad*/) * |
| (15.0 / 34.0) /*gears*/ * (2 * M_PI); |
| } |
| |
| inline double index_translate(int32_t in) { |
| return -static_cast<double>(in) / (128.0 /*cpr*/ * 4.0 /*quad*/) * |
| (1.0) /*gears*/ * (2 * M_PI); |
| } |
| |
| } // namespace |
| |
| class GyroSensorReceiver { |
| public: |
| GyroSensorReceiver() { |
| Reset(); |
| } |
| |
| void RunIteration() { |
| if (ReceiveData()) { |
| Reset(); |
| } else { |
| const ::aos::time::Time received_time = ::aos::time::Time::Now(); |
| if (phase_locker_.IsCurrentPacketGood(received_time, sequence_.count())) { |
| ProcessData(); |
| } |
| } |
| } |
| |
| private: |
| static const unsigned char kEndpoint = 0x83; |
| // 0 is unlimited |
| static constexpr ::aos::time::Time kReadTimeout = |
| ::aos::time::Time::InSeconds(1.5); |
| static constexpr ::glibusb::VendorProductId kDeviceId = |
| ::glibusb::VendorProductId(0x1424 /* vendor ID */, |
| 0xd243 /* product ID */); |
| |
| static const int kPacketsPerLoopCycle = 10; |
| |
| // Contains all of the complicated state and logic for locking onto the the |
| // correct phase. |
| class { |
| public: |
| void Reset() { |
| last_guessed_time_ = ::aos::time::Time(0, 0); |
| good_phase_ = guess_phase_ = kUnknownPhase; |
| guess_phase_good_ = guess_phase_bad_ = 0; |
| good_phase_early_ = good_phase_late_ = 0; |
| } |
| |
| // Gets called for every packet received. |
| // Returns whether or not to process the values from this packet. |
| bool IsCurrentPacketGood(const ::aos::time::Time &received_time, |
| int32_t sequence) { |
| // How often we (should) receive packets. |
| static const ::aos::time::Time kPacketFrequency = |
| ::aos::control_loops::kLoopFrequency / kPacketsPerLoopCycle; |
| |
| // When we want to receive a packet for the next cycle of control loops. |
| const ::aos::time::Time next_desired = |
| ::aos::control_loops::NextLoopTime(received_time + kDesiredOffset); |
| // How far off of when we want the next packet this one is. |
| const ::aos::time::Time offset = next_desired - received_time; |
| |
| const int received_phase = sequence % kPacketsPerLoopCycle; |
| |
| assert(!(good_phase_early_ != 0 && good_phase_late_ != 0)); |
| |
| if (guess_phase_good_ > kMinGoodGuessCycles) { |
| good_phase_ = guess_phase_; |
| if (guess_phase_offset_ < kPacketFrequency * -0.5) { |
| ++good_phase_; |
| } else if (guess_phase_offset_ > kPacketFrequency * 0.5) { |
| --good_phase_; |
| } |
| } else if (guess_phase_bad_ > kMaxBadGuessCycles) { |
| Reset(); |
| } |
| if (good_phase_early_ > kSwitchCycles) { |
| good_phase_early_ = 0; |
| --good_phase_; |
| } else if (good_phase_late_ > kSwitchCycles) { |
| good_phase_late_ = 0; |
| ++good_phase_; |
| } |
| if (good_phase_ == kUnknownPhase) { |
| LOG(INFO, "guessing which packet is good\n"); |
| |
| // If we're going to call this packet a good guess. |
| bool guess_is_good = false; |
| // If it's close to the right time. |
| if (offset.abs() < kPacketFrequency * 0.65) { |
| // If we didn't (also) guess that the previous one was good. |
| if (received_time - last_guessed_time_ > kPacketFrequency * 2) { |
| guess_is_good = true; |
| } |
| if (guess_phase_ == kUnknownPhase) { |
| if (offset.abs() < kPacketFrequency * 0.55) { |
| guess_phase_ = received_phase; |
| guess_phase_offset_ = offset; |
| } |
| } else if (received_phase == guess_phase_) { |
| ++guess_phase_good_; |
| guess_phase_bad_ = 0; |
| guess_phase_offset_ = (guess_phase_offset_ * 9 + offset) / 10; |
| } |
| } else if (guess_phase_ != kUnknownPhase && |
| received_phase == guess_phase_) { |
| ++guess_phase_bad_; |
| guess_phase_good_ = ::std::max(0, guess_phase_good_ - |
| (kMinGoodGuessCycles / 10)); |
| } |
| if (guess_is_good) { |
| last_guessed_time_ = received_time; |
| return true; |
| } else { |
| return false; |
| } |
| } else { // we know what phase we're looking for |
| // Deal with it if the above logic for tweaking the phase that we're |
| // using wrapped it around. |
| if (good_phase_ == -1) { |
| good_phase_ = kPacketsPerLoopCycle; |
| } else if (good_phase_ == kPacketsPerLoopCycle) { |
| good_phase_ = 0; |
| } |
| assert(good_phase_ >= 0); |
| assert(good_phase_ < kPacketsPerLoopCycle); |
| |
| if (received_phase == good_phase_) { |
| if (offset < kPacketFrequency * -0.6) { |
| ++good_phase_early_; |
| good_phase_late_ = 0; |
| } else if (offset > kPacketFrequency * 0.6) { |
| ++good_phase_late_; |
| good_phase_early_ = 0; |
| } else { |
| good_phase_early_ = good_phase_late_ = 0; |
| } |
| return true; |
| } else { |
| return false; |
| } |
| } |
| } |
| |
| private: |
| // How long before the control loops run we want to use a packet. |
| static constexpr ::aos::time::Time kDesiredOffset = |
| ::aos::time::Time::InSeconds(-0.0025); |
| |
| // How many times the packet we guessed has to be close to right to use the |
| // guess. |
| static const int kMinGoodGuessCycles = 30; |
| // How many times in a row we have to guess the wrong packet before trying |
| // again. |
| static const int kMaxBadGuessCycles = 3; |
| |
| // How many times in a row a different packet has to be better than the one |
| // that we're using befor switching to it. |
| static const int kSwitchCycles = 15; |
| |
| ::aos::time::Time last_guessed_time_{0, 0}; |
| |
| const int kUnknownPhase = -11; |
| // kUnknownPhase or the sequence number (%kPacketsPerLoopCycle) to |
| // use or think about using. |
| // If not kUnknownPhase, 0 <= these < kPacketsPerLoopCycle. |
| int good_phase_, guess_phase_; |
| int guess_phase_good_, guess_phase_bad_; |
| ::aos::time::Time guess_phase_offset_{0, 0}; |
| int good_phase_early_, good_phase_late_; |
| } phase_locker_; |
| |
| // Returns true if receiving failed and we should try a Reset(). |
| bool ReceiveData() { |
| // Loop and then return once we get a good one. |
| while (true) { |
| using ::glibusb::UsbEndpoint; |
| UsbEndpoint::IoStatus result = |
| endpoint_->ReadAtMostWithTimeout(sizeof(GyroBoardData), |
| kReadTimeout.ToMSec(), |
| &buffer_); |
| switch (result) { |
| case UsbEndpoint::kSuccess: |
| break; |
| case UsbEndpoint::kTimeout: |
| LOG(WARNING, "read timed out\n"); |
| return true; |
| case UsbEndpoint::kNoDevice: |
| LOG(ERROR, "no device\n"); |
| return true; |
| case UsbEndpoint::kUnknown: |
| case UsbEndpoint::kFail: |
| case UsbEndpoint::kAbort: |
| LOG(ERROR, "read failed\n"); |
| continue; |
| } |
| } |
| sequence_.Update(data()->sequence); |
| return false; |
| } |
| |
| GyroBoardData *data() { |
| return static_cast<GyroBoardData *>( |
| buffer_.GetBufferPointer(sizeof(GyroBoardData))); |
| } |
| |
| void Reset() { |
| // Make sure to delete the endpoint before its device. |
| endpoint_.reset(); |
| device_ = ::std::unique_ptr< ::glibusb::UsbDevice>( |
| libusb_.FindSingleMatchingDeviceOrLose(kDeviceId)); |
| CHECK(device_); |
| endpoint_ = ::std::unique_ptr< ::glibusb::UsbInEndpoint>( |
| device_->InEndpoint(kEndpoint)); |
| sequence_.Reset(); |
| phase_locker_.Reset(); |
| } |
| |
| void ProcessData() { |
| if (data()->robot_id != 0) { |
| LOG(ERROR, "gyro board sent data for robot id %hhd!" |
| " dip switches are %x\n", |
| data()->robot_id, data()->base_status & 0xF); |
| return; |
| } else { |
| LOG(DEBUG, "processing a packet dip switches %x\n", |
| data()->base_status & 0xF); |
| } |
| |
| static ::aos::time::Time last_time = ::aos::time::Time::Now(); |
| if ((last_time - ::aos::time::Time::Now()) > |
| ::aos::time::Time::InMS(0.0011)) { |
| LOG(INFO, "missed one\n"); |
| } |
| |
| gyro.MakeWithBuilder() |
| .angle(data()->gyro_angle / 16.0 / 1000.0 / 180.0 * M_PI) |
| .Send(); |
| |
| drivetrain.position.MakeWithBuilder() |
| .right_encoder(drivetrain_translate(data()->main.right_drive)) |
| .left_encoder(-drivetrain_translate(data()->main.left_drive)) |
| .Send(); |
| |
| wrist.position.MakeWithBuilder() |
| .pos(wrist_translate(data()->main.wrist)) |
| .hall_effect(!data()->main.wrist_hall_effect) |
| .calibration(wrist_translate(data()->main.capture_wrist_rise)) |
| .Send(); |
| |
| angle_adjust.position.MakeWithBuilder() |
| .angle(angle_adjust_translate(data()->main.shooter_angle)) |
| .bottom_hall_effect(!data()->main.angle_adjust_bottom_hall_effect) |
| .middle_hall_effect(false) |
| .bottom_calibration(angle_adjust_translate( |
| data()->main.capture_shooter_angle_rise)) |
| .middle_calibration(angle_adjust_translate( |
| 0)) |
| .Send(); |
| |
| shooter.position.MakeWithBuilder() |
| .position(shooter_translate(data()->main.shooter)) |
| .Send(); |
| |
| index_loop.position.MakeWithBuilder() |
| .index_position(index_translate(data()->main.indexer)) |
| .top_disc_detect(!data()->main.top_disc) |
| .top_disc_posedge_count(top_rise_.Update(data()->main.top_rise_count)) |
| .top_disc_posedge_position( |
| index_translate(data()->main.capture_top_rise)) |
| .top_disc_negedge_count(top_fall_.Update(data()->main.top_fall_count)) |
| .top_disc_negedge_position( |
| index_translate(data()->main.capture_top_fall)) |
| .bottom_disc_detect(!data()->main.bottom_disc) |
| .bottom_disc_posedge_count( |
| bottom_rise_.Update(data()->main.bottom_rise_count)) |
| .bottom_disc_negedge_count( |
| bottom_fall_.Update(data()->main.bottom_fall_count)) |
| .bottom_disc_negedge_wait_position(index_translate( |
| data()->main.capture_bottom_fall_delay)) |
| .bottom_disc_negedge_wait_count( |
| bottom_fall_delay_.Update(data()->main.bottom_fall_delay_count)) |
| .loader_top(data()->main.loader_top) |
| .loader_bottom(data()->main.loader_bottom) |
| .Send(); |
| } |
| |
| ::std::unique_ptr< ::glibusb::UsbDevice> device_; |
| ::std::unique_ptr< ::glibusb::UsbInEndpoint> endpoint_; |
| ::glibusb::Buffer buffer_; |
| |
| WrappingCounter sequence_; |
| |
| ::glibusb::Libusb libusb_; |
| |
| WrappingCounter top_rise_; |
| WrappingCounter top_fall_; |
| WrappingCounter bottom_rise_; |
| WrappingCounter bottom_fall_delay_; |
| WrappingCounter bottom_fall_; |
| }; |
| constexpr ::glibusb::VendorProductId GyroSensorReceiver::kDeviceId; |
| constexpr ::aos::time::Time GyroSensorReceiver::kReadTimeout; |
| |
| } // namespace frc971 |
| |
| int main() { |
| ::aos::Init(); |
| ::frc971::GyroSensorReceiver receiver; |
| while (true) { |
| receiver.RunIteration(); |
| } |
| ::aos::Cleanup(); |
| } |