blob: 37b037b194600cad8a585caf81d2f53948e3beb5 [file] [log] [blame]
#include "frc971/vision/target_mapper.h"
#include <random>
#include "aos/events/simulated_event_loop.h"
#include "aos/testing/random_seed.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
namespace frc971::vision {
namespace {
constexpr double kToleranceMeters = 0.05;
constexpr double kToleranceRadians = 0.05;
} // namespace
#define EXPECT_POSE_NEAR(pose1, pose2) \
EXPECT_NEAR(pose1.x, pose2.x, kToleranceMeters); \
EXPECT_NEAR(pose1.y, pose2.y, kToleranceMeters); \
EXPECT_NEAR(pose1.yaw_radians, pose2.yaw_radians, kToleranceRadians);
#define EXPECT_POSE_EQ(pose1, pose2) \
EXPECT_DOUBLE_EQ(pose1.x, pose2.x); \
EXPECT_DOUBLE_EQ(pose1.y, pose2.y); \
EXPECT_DOUBLE_EQ(pose1.yaw_radians, pose2.yaw_radians);
#define EXPECT_BETWEEN_EXCLUSIVE(value, a, b) \
{ \
auto low = std::min(a, b); \
auto high = std::max(a, b); \
EXPECT_GT(value, low); \
EXPECT_LT(value, high); \
}
namespace {
// Expects angles to be normalized
double DeltaAngle(double a, double b) {
double delta = std::abs(a - b);
return std::min(delta, (2.0 * M_PI) - delta);
}
} // namespace
// Expects angles to be normalized
#define EXPECT_ANGLE_BETWEEN_EXCLUSIVE(theta, a, b) \
EXPECT_LT(DeltaAngle(a, theta), DeltaAngle(a, b)); \
EXPECT_LT(DeltaAngle(b, theta), DeltaAngle(a, b));
#define EXPECT_POSE_IN_RANGE(interpolated_pose, pose_start, pose_end) \
EXPECT_BETWEEN_EXCLUSIVE(interpolated_pose.x, pose_start.x, pose_end.x); \
EXPECT_BETWEEN_EXCLUSIVE(interpolated_pose.y, pose_start.y, pose_end.y); \
EXPECT_ANGLE_BETWEEN_EXCLUSIVE(interpolated_pose.yaw_radians, \
pose_start.yaw_radians, \
pose_end.yaw_radians);
// Both confidence matrixes should have the same dimensions and be square
#define EXPECT_CONFIDENCE_GT(confidence1, confidence2) \
{ \
ASSERT_EQ(confidence1.rows(), confidence2.rows()); \
ASSERT_EQ(confidence1.rows(), confidence1.cols()); \
ASSERT_EQ(confidence2.rows(), confidence2.cols()); \
for (size_t i = 0; i < confidence1.rows(); i++) { \
EXPECT_GT(confidence1(i, i), confidence2(i, i)); \
} \
}
namespace {
ceres::examples::Pose2d MakePose(double x, double y, double yaw_radians) {
return ceres::examples::Pose2d{x, y, yaw_radians};
}
bool TargetIsInView(TargetMapper::TargetPose target_detection) {
// And check if it is within the fov of the robot /
// camera, assuming camera is pointing in the
// positive x-direction of the robot
double angle_to_target =
atan2(target_detection.pose.y, target_detection.pose.x);
// Simulated camera field of view, in radians
constexpr double kCameraFov = M_PI_2;
if (fabs(angle_to_target) <= kCameraFov / 2.0) {
VLOG(2) << "Found target in view, based on T = " << target_detection.pose.x
<< ", " << target_detection.pose.y << " with angle "
<< angle_to_target;
return true;
} else {
return false;
}
}
aos::distributed_clock::time_point TimeInMs(size_t ms) {
return aos::distributed_clock::time_point(std::chrono::milliseconds(ms));
}
} // namespace
TEST(DataAdapterTest, Interpolation) {
std::vector<DataAdapter::TimestampedPose> timestamped_robot_poses = {
{TimeInMs(0), ceres::examples::Pose2d{1.0, 2.0, 0.0}},
{TimeInMs(5), ceres::examples::Pose2d{1.0, 2.0, 0.0}},
{TimeInMs(10), ceres::examples::Pose2d{3.0, 1.0, M_PI_2}},
{TimeInMs(15), ceres::examples::Pose2d{5.0, -2.0, -M_PI}},
{TimeInMs(20), ceres::examples::Pose2d{5.0, -2.0, -M_PI}},
{TimeInMs(25), ceres::examples::Pose2d{10.0, -32.0, M_PI_2}},
{TimeInMs(30), ceres::examples::Pose2d{-15.0, 12.0, 0.0}},
{TimeInMs(35), ceres::examples::Pose2d{-15.0, 12.0, 0.0}}};
std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections =
{{TimeInMs(5),
PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -4.0, 0.0}),
0},
{TimeInMs(9),
PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -4.0, 0.0}),
1},
{TimeInMs(9),
PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -4.0, 0.0}),
2},
{TimeInMs(15),
PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -4.0, 0.0}),
0},
{TimeInMs(16),
PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -4.0, 0.0}),
2},
{TimeInMs(27),
PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -4.0, 0.0}),
1}};
auto [target_constraints, robot_delta_poses] =
DataAdapter::MatchTargetDetections(timestamped_robot_poses,
timestamped_target_detections);
// Check that target constraints got inserted in the
// correct spots
EXPECT_EQ(target_constraints.size(),
timestamped_target_detections.size() - 1);
for (auto it = target_constraints.begin(); it < target_constraints.end();
it++) {
auto timestamped_it = timestamped_target_detections.begin() +
(it - target_constraints.begin());
EXPECT_EQ(it->id_begin, timestamped_it->id);
EXPECT_EQ(it->id_end, (timestamped_it + 1)->id);
}
// Check that poses were interpolated correctly.
// Keep track of the computed robot pose by adding the delta poses
auto computed_robot_pose = timestamped_robot_poses[1].pose;
computed_robot_pose =
PoseUtils::ComputeOffsetPose(computed_robot_pose, robot_delta_poses[0]);
EXPECT_POSE_IN_RANGE(computed_robot_pose, timestamped_robot_poses[1].pose,
timestamped_robot_poses[2].pose);
computed_robot_pose =
PoseUtils::ComputeOffsetPose(computed_robot_pose, robot_delta_poses[1]);
EXPECT_POSE_IN_RANGE(computed_robot_pose, timestamped_robot_poses[1].pose,
timestamped_robot_poses[2].pose);
EXPECT_POSE_EQ(robot_delta_poses[1], MakePose(0.0, 0.0, 0.0));
computed_robot_pose =
PoseUtils::ComputeOffsetPose(computed_robot_pose, robot_delta_poses[2]);
EXPECT_POSE_EQ(computed_robot_pose, timestamped_robot_poses[3].pose);
computed_robot_pose =
PoseUtils::ComputeOffsetPose(computed_robot_pose, robot_delta_poses[3]);
EXPECT_POSE_EQ(computed_robot_pose, timestamped_robot_poses[4].pose);
computed_robot_pose =
PoseUtils::ComputeOffsetPose(computed_robot_pose, robot_delta_poses[4]);
EXPECT_POSE_IN_RANGE(computed_robot_pose, timestamped_robot_poses[5].pose,
timestamped_robot_poses[6].pose);
// Check the confidence matrices. Don't check the actual values
// in case the constants change, just check the confidence of contraints
// relative to each other, as constraints over longer time periods should have
// lower confidence.
const auto confidence_0ms =
DataAdapter::ComputeConfidence(TimeInMs(0), TimeInMs(0));
const auto confidence_1ms =
DataAdapter::ComputeConfidence(TimeInMs(0), TimeInMs(1));
const auto confidence_4ms =
DataAdapter::ComputeConfidence(TimeInMs(0), TimeInMs(4));
const auto confidence_6ms =
DataAdapter::ComputeConfidence(TimeInMs(0), TimeInMs(6));
const auto confidence_11ms =
DataAdapter::ComputeConfidence(TimeInMs(0), TimeInMs(11));
// Check relative magnitude of different confidences.
// Confidences for 0-5ms, 5-10ms, and 10-15ms periods are equal
// because they fit within one control loop iteration.
EXPECT_EQ(confidence_0ms, confidence_1ms);
EXPECT_EQ(confidence_1ms, confidence_4ms);
EXPECT_CONFIDENCE_GT(confidence_4ms, confidence_6ms);
EXPECT_CONFIDENCE_GT(confidence_6ms, confidence_11ms);
// Check that confidences (information) of actual constraints are correct
EXPECT_EQ(target_constraints[0].information, confidence_4ms);
EXPECT_EQ(target_constraints[1].information, confidence_0ms);
EXPECT_EQ(target_constraints[2].information, confidence_6ms);
EXPECT_EQ(target_constraints[3].information, confidence_1ms);
EXPECT_EQ(target_constraints[4].information, confidence_11ms);
}
TEST(TargetMapperTest, TwoTargetsOneConstraint) {
std::map<TargetMapper::TargetId, ceres::examples::Pose2d> target_poses;
target_poses[0] = ceres::examples::Pose2d{5.0, 0.0, M_PI};
target_poses[1] = ceres::examples::Pose2d{-5.0, 0.0, 0.0};
std::vector<DataAdapter::TimestampedPose> timestamped_robot_poses = {
{TimeInMs(5), ceres::examples::Pose2d{2.0, 0.0, 0.0}},
{TimeInMs(10), ceres::examples::Pose2d{-1.0, 0.0, 0.0}},
{TimeInMs(15), ceres::examples::Pose2d{-1.0, 0.0, 0.0}}};
std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections =
{{TimeInMs(5),
PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{3.0, 0.0, M_PI}),
0},
{TimeInMs(10),
PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{-4.0, 0.0, 0.0}),
1}};
auto target_constraints =
DataAdapter::MatchTargetDetections(timestamped_robot_poses,
timestamped_target_detections)
.first;
frc971::vision::TargetMapper mapper(target_poses, target_constraints);
mapper.Solve();
ASSERT_EQ(mapper.target_poses().size(), 2);
EXPECT_POSE_NEAR(mapper.target_poses()[0], MakePose(5.0, 0.0, M_PI));
EXPECT_POSE_NEAR(mapper.target_poses()[1], MakePose(-5.0, 0.0, 0.0));
}
TEST(TargetMapperTest, TwoTargetsTwoConstraints) {
std::map<TargetMapper::TargetId, ceres::examples::Pose2d> target_poses;
target_poses[0] = ceres::examples::Pose2d{5.0, 0.0, M_PI};
target_poses[1] = ceres::examples::Pose2d{-5.0, 0.0, -M_PI_2};
std::vector<DataAdapter::TimestampedPose> timestamped_robot_poses = {
{TimeInMs(5), ceres::examples::Pose2d{-1.0, 0.0, 0.0}},
{TimeInMs(10), ceres::examples::Pose2d{3.0, 0.0, 0.0}},
{TimeInMs(15), ceres::examples::Pose2d{4.0, 0.0, 0.0}},
{TimeInMs(20), ceres::examples::Pose2d{-1.0, 0.0, 0.0}}};
std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections =
{{TimeInMs(5),
PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{6.0, 0.0, M_PI}),
0},
{TimeInMs(10),
PoseUtils::Pose2dToAffine3d(
ceres::examples::Pose2d{-8.0, 0.0, -M_PI_2}),
1},
{TimeInMs(15),
PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{1.0, 0.0, M_PI}),
0}};
auto target_constraints =
DataAdapter::MatchTargetDetections(timestamped_robot_poses,
timestamped_target_detections)
.first;
frc971::vision::TargetMapper mapper(target_poses, target_constraints);
mapper.Solve();
ASSERT_EQ(mapper.target_poses().size(), 2);
EXPECT_POSE_NEAR(mapper.target_poses()[0], MakePose(5.0, 0.0, M_PI));
EXPECT_POSE_NEAR(mapper.target_poses()[1], MakePose(-5.0, 0.0, -M_PI_2));
}
TEST(TargetMapperTest, TwoTargetsOneNoisyConstraint) {
std::map<TargetMapper::TargetId, ceres::examples::Pose2d> target_poses;
target_poses[0] = ceres::examples::Pose2d{5.0, 0.0, M_PI};
target_poses[1] = ceres::examples::Pose2d{-5.0, 0.0, 0.0};
std::vector<DataAdapter::TimestampedPose> timestamped_robot_poses = {
{TimeInMs(5), ceres::examples::Pose2d{1.99, 0.0, 0.0}},
{TimeInMs(10), ceres::examples::Pose2d{-1.0, 0.0, 0.0}},
{TimeInMs(15), ceres::examples::Pose2d{-1.01, -0.01, 0.004}}};
std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections =
{{TimeInMs(5),
PoseUtils::Pose2dToAffine3d(
ceres::examples::Pose2d{3.01, 0.001, M_PI - 0.001}),
0},
{TimeInMs(10),
PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{-4.01, 0.0, 0.0}),
1}};
auto target_constraints =
DataAdapter::MatchTargetDetections(timestamped_robot_poses,
timestamped_target_detections)
.first;
frc971::vision::TargetMapper mapper(target_poses, target_constraints);
mapper.Solve();
ASSERT_EQ(mapper.target_poses().size(), 2);
EXPECT_POSE_NEAR(mapper.target_poses()[0], MakePose(5.0, 0.0, M_PI));
EXPECT_POSE_NEAR(mapper.target_poses()[1], MakePose(-5.0, 0.0, 0.0));
}
TEST(TargetMapperTest, MultiTargetCircleMotion) {
// Build set of target locations wrt global origin
// For simplicity, do this on a grid of the field
double field_half_length = 7.5; // half length of the field
double field_half_width = 5.0; // half width of the field
std::map<TargetMapper::TargetId, ceres::examples::Pose2d> target_poses;
std::vector<TargetMapper::TargetPose> actual_target_poses;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
TargetMapper::TargetId target_id = i * 3 + j;
TargetMapper::TargetPose target_pose{
target_id, ceres::examples::Pose2d{field_half_length * (1 - i),
field_half_width * (1 - j), 0.0}};
actual_target_poses.emplace_back(target_pose);
target_poses[target_id] = target_pose.pose;
VLOG(2) << "VERTEX_SE2 " << target_id << " " << target_pose.pose.x << " "
<< target_pose.pose.y << " " << target_pose.pose.yaw_radians;
}
}
// Now, create a bunch of robot poses and target
// observations
size_t dt = 1;
std::vector<DataAdapter::TimestampedPose> timestamped_robot_poses;
std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections;
constexpr size_t kTotalSteps = 100;
for (size_t step_count = 0; step_count < kTotalSteps; step_count++) {
size_t t = dt * step_count;
// Circle clockwise around the center of the field
double robot_theta = t;
double robot_x = (field_half_length / 2.0) * cos(robot_theta);
double robot_y = (-field_half_width / 2.0) * sin(robot_theta);
ceres::examples::Pose2d robot_pose{robot_x, robot_y, robot_theta};
for (TargetMapper::TargetPose target_pose : actual_target_poses) {
TargetMapper::TargetPose target_detection = {
.id = target_pose.id,
.pose = PoseUtils::ComputeRelativePose(robot_pose, target_pose.pose)};
if (TargetIsInView(target_detection)) {
// Define random generator with Gaussian
// distribution
const double mean = 0.0;
const double stddev = 1.0;
// Can play with this to see how it impacts
// randomness
constexpr double kNoiseScale = 0.01;
std::default_random_engine generator(aos::testing::RandomSeed());
std::normal_distribution<double> dist(mean, stddev);
target_detection.pose.x += dist(generator) * kNoiseScale;
target_detection.pose.y += dist(generator) * kNoiseScale;
robot_pose.x += dist(generator) * kNoiseScale;
robot_pose.y += dist(generator) * kNoiseScale;
auto time_point =
aos::distributed_clock::time_point(std::chrono::milliseconds(t));
timestamped_robot_poses.emplace_back(DataAdapter::TimestampedPose{
.time = time_point, .pose = robot_pose});
timestamped_target_detections.emplace_back(
DataAdapter::TimestampedDetection{
.time = time_point,
.H_robot_target =
PoseUtils::Pose2dToAffine3d(target_detection.pose),
.id = target_detection.id});
}
}
}
{
// Add in a robot pose after all target poses
auto final_robot_pose =
timestamped_robot_poses[timestamped_robot_poses.size() - 1];
timestamped_robot_poses.emplace_back(DataAdapter::TimestampedPose{
.time = final_robot_pose.time + std::chrono::milliseconds(dt),
.pose = final_robot_pose.pose});
}
auto target_constraints =
DataAdapter::MatchTargetDetections(timestamped_robot_poses,
timestamped_target_detections)
.first;
frc971::vision::TargetMapper mapper(target_poses, target_constraints);
mapper.Solve();
for (auto [target_pose_id, mapper_target_pose] : mapper.target_poses()) {
TargetMapper::TargetPose actual_target_pose =
TargetMapper::GetTargetPoseById(actual_target_poses, target_pose_id)
.value();
EXPECT_POSE_NEAR(mapper_target_pose, actual_target_pose.pose);
}
//
// See what happens when we don't start with the
// correct values
//
for (auto [target_id, target_pose] : target_poses) {
// Skip first pose, since that needs to be correct
// and is fixed in the solver
if (target_id != 0) {
ceres::examples::Pose2d bad_pose{0.0, 0.0, M_PI / 2.0};
target_poses[target_id] = bad_pose;
}
}
frc971::vision::TargetMapper mapper_bad_poses(target_poses,
target_constraints);
mapper_bad_poses.Solve();
for (auto [target_pose_id, mapper_target_pose] :
mapper_bad_poses.target_poses()) {
TargetMapper::TargetPose actual_target_pose =
TargetMapper::GetTargetPoseById(actual_target_poses, target_pose_id)
.value();
EXPECT_POSE_NEAR(mapper_target_pose, actual_target_pose.pose);
}
}
} // namespace frc971::vision