blob: e5c681396d542c8ec3695251611810d5cf676b19 [file] [log] [blame]
#include <unistd.h>
#include <memory>
#include <random>
#include "gtest/gtest.h"
#include "frc971/zeroing/zeroing.h"
#include "frc971/control_loops/control_loops.q.h"
#include "aos/testing/test_shm.h"
#include "aos/common/util/thread.h"
#include "aos/common/die.h"
#include "frc971/control_loops/position_sensor_sim.h"
namespace frc971 {
namespace zeroing {
using control_loops::PositionSensorSimulator;
using constants::PotAndIndexPulseZeroingConstants;
using constants::PotAndAbsoluteEncoderZeroingConstants;
using constants::EncoderPlusIndexZeroingConstants;
static const size_t kSampleSize = 30;
static const double kAcceptableUnzeroedError = 0.2;
static const double kIndexErrorFraction = 0.3;
static const size_t kMovingBufferSize = 3;
class ZeroingTest : public ::testing::Test {
protected:
void SetUp() override { aos::SetDieTestMode(true); }
void MoveTo(PositionSensorSimulator *simulator,
PotAndIndexPulseZeroingEstimator *estimator,
double new_position) {
PotAndIndexPosition sensor_values;
simulator->MoveTo(new_position);
simulator->GetSensorValues(&sensor_values);
estimator->UpdateEstimate(sensor_values);
}
void MoveTo(PositionSensorSimulator *simulator,
PotAndAbsEncoderZeroingEstimator *estimator,
double new_position) {
PotAndAbsolutePosition sensor_values_;
simulator->MoveTo(new_position);
simulator->GetSensorValues(&sensor_values_);
estimator->UpdateEstimate(sensor_values_);
}
void MoveTo(PositionSensorSimulator *simulator,
PulseIndexZeroingEstimator *estimator, double new_position) {
IndexPosition sensor_values_;
simulator->MoveTo(new_position);
simulator->GetSensorValues(&sensor_values_);
estimator->UpdateEstimate(sensor_values_);
}
::aos::testing::TestSharedMemory my_shm_;
};
TEST_F(ZeroingTest, TestMovingAverageFilter) {
const double index_diff = 1.0;
PositionSensorSimulator sim(index_diff);
sim.Initialize(3.6 * index_diff, index_diff / 3.0);
PotAndIndexPulseZeroingEstimator estimator(PotAndIndexPulseZeroingConstants{
kSampleSize, index_diff, 0.0, kIndexErrorFraction});
// The zeroing code is supposed to perform some filtering on the difference
// between the potentiometer value and the encoder value. We assume that 300
// samples are sufficient to have updated the filter.
for (int i = 0; i < 300; i++) {
MoveTo(&sim, &estimator, 3.3 * index_diff);
}
ASSERT_NEAR(3.3 * index_diff, estimator.GetEstimatorState().position,
kAcceptableUnzeroedError * index_diff);
for (int i = 0; i < 300; i++) {
MoveTo(&sim, &estimator, 3.9 * index_diff);
}
ASSERT_NEAR(3.9 * index_diff, estimator.GetEstimatorState().position,
kAcceptableUnzeroedError * index_diff);
}
TEST_F(ZeroingTest, NotZeroedBeforeEnoughSamplesCollected) {
double index_diff = 0.5;
double position = 3.6 * index_diff;
PositionSensorSimulator sim(index_diff);
sim.Initialize(position, index_diff / 3.0);
PotAndIndexPulseZeroingEstimator estimator(PotAndIndexPulseZeroingConstants{
kSampleSize, index_diff, 0.0, kIndexErrorFraction});
// Make sure that the zeroing code does not consider itself zeroed until we
// collect a good amount of samples. In this case we're waiting until the
// moving average filter is full.
for (unsigned int i = 0; i < kSampleSize - 1; i++) {
MoveTo(&sim, &estimator, position += index_diff);
ASSERT_FALSE(estimator.zeroed());
}
MoveTo(&sim, &estimator, position);
ASSERT_TRUE(estimator.zeroed());
}
TEST_F(ZeroingTest, TestLotsOfMovement) {
double index_diff = 1.0;
PositionSensorSimulator sim(index_diff);
sim.Initialize(3.6, index_diff / 3.0);
PotAndIndexPulseZeroingEstimator estimator(PotAndIndexPulseZeroingConstants{
kSampleSize, index_diff, 0.0, kIndexErrorFraction});
// The zeroing code is supposed to perform some filtering on the difference
// between the potentiometer value and the encoder value. We assume that 300
// samples are sufficient to have updated the filter.
for (int i = 0; i < 300; i++) {
MoveTo(&sim, &estimator, 3.6);
}
ASSERT_NEAR(3.6, estimator.GetEstimatorState().position,
kAcceptableUnzeroedError * index_diff);
// With a single index pulse the zeroing estimator should be able to lock
// onto the true value of the position.
MoveTo(&sim, &estimator, 4.01);
ASSERT_NEAR(4.01, estimator.GetEstimatorState().position, 0.001);
MoveTo(&sim, &estimator, 4.99);
ASSERT_NEAR(4.99, estimator.GetEstimatorState().position, 0.001);
MoveTo(&sim, &estimator, 3.99);
ASSERT_NEAR(3.99, estimator.GetEstimatorState().position, 0.001);
MoveTo(&sim, &estimator, 3.01);
ASSERT_NEAR(3.01, estimator.GetEstimatorState().position, 0.001);
MoveTo(&sim, &estimator, 13.55);
ASSERT_NEAR(13.55, estimator.GetEstimatorState().position, 0.001);
}
TEST_F(ZeroingTest, TestDifferentIndexDiffs) {
double index_diff = 0.89;
PositionSensorSimulator sim(index_diff);
sim.Initialize(3.5 * index_diff, index_diff / 3.0);
PotAndIndexPulseZeroingEstimator estimator(PotAndIndexPulseZeroingConstants{
kSampleSize, index_diff, 0.0, kIndexErrorFraction});
// The zeroing code is supposed to perform some filtering on the difference
// between the potentiometer value and the encoder value. We assume that 300
// samples are sufficient to have updated the filter.
for (int i = 0; i < 300; i++) {
MoveTo(&sim, &estimator, 3.5 * index_diff);
}
ASSERT_NEAR(3.5 * index_diff, estimator.GetEstimatorState().position,
kAcceptableUnzeroedError * index_diff);
// With a single index pulse the zeroing estimator should be able to lock
// onto the true value of the position.
MoveTo(&sim, &estimator, 4.01);
ASSERT_NEAR(4.01, estimator.GetEstimatorState().position, 0.001);
MoveTo(&sim, &estimator, 4.99);
ASSERT_NEAR(4.99, estimator.GetEstimatorState().position, 0.001);
MoveTo(&sim, &estimator, 3.99);
ASSERT_NEAR(3.99, estimator.GetEstimatorState().position, 0.001);
MoveTo(&sim, &estimator, 3.01);
ASSERT_NEAR(3.01, estimator.GetEstimatorState().position, 0.001);
MoveTo(&sim, &estimator, 13.55);
ASSERT_NEAR(13.55, estimator.GetEstimatorState().position, 0.001);
}
TEST_F(ZeroingTest, TestPercentage) {
double index_diff = 0.89;
PositionSensorSimulator sim(index_diff);
sim.Initialize(3.5 * index_diff, index_diff / 3.0);
PotAndIndexPulseZeroingEstimator estimator(PotAndIndexPulseZeroingConstants{
kSampleSize, index_diff, 0.0, kIndexErrorFraction});
for (unsigned int i = 0; i < kSampleSize / 2; i++) {
MoveTo(&sim, &estimator, 3.5 * index_diff);
}
ASSERT_NEAR(0.5, estimator.offset_ratio_ready(), 0.001);
ASSERT_FALSE(estimator.offset_ready());
for (unsigned int i = 0; i < kSampleSize / 2; i++) {
MoveTo(&sim, &estimator, 3.5 * index_diff);
}
ASSERT_NEAR(1.0, estimator.offset_ratio_ready(), 0.001);
ASSERT_TRUE(estimator.offset_ready());
}
TEST_F(ZeroingTest, TestOffset) {
double index_diff = 0.89;
PositionSensorSimulator sim(index_diff);
sim.Initialize(3.1 * index_diff, index_diff / 3.0);
PotAndIndexPulseZeroingEstimator estimator(PotAndIndexPulseZeroingConstants{
kSampleSize, index_diff, 0.0, kIndexErrorFraction});
MoveTo(&sim, &estimator, 3.1 * index_diff);
for (unsigned int i = 0; i < kSampleSize; i++) {
MoveTo(&sim, &estimator, 5.0 * index_diff);
}
ASSERT_NEAR(3.1 * index_diff, estimator.offset(), 0.001);
}
TEST_F(ZeroingTest, WaitForIndexPulseAfterReset) {
double index_diff = 0.6;
PositionSensorSimulator sim(index_diff);
sim.Initialize(3.1 * index_diff, index_diff / 3.0);
PotAndIndexPulseZeroingEstimator estimator(PotAndIndexPulseZeroingConstants{
kSampleSize, index_diff, 0.0, kIndexErrorFraction});
// Make sure to fill up the averaging filter with samples.
for (unsigned int i = 0; i < kSampleSize; i++) {
MoveTo(&sim, &estimator, 3.1 * index_diff);
}
// Make sure we're not zeroed until we hit an index pulse.
ASSERT_FALSE(estimator.zeroed());
// Trigger an index pulse; we should now be zeroed.
MoveTo(&sim, &estimator, 4.5 * index_diff);
ASSERT_TRUE(estimator.zeroed());
// Reset the zeroing logic and supply a bunch of samples within the current
// index segment.
estimator.Reset();
for (unsigned int i = 0; i < kSampleSize; i++) {
MoveTo(&sim, &estimator, 4.2 * index_diff);
}
// Make sure we're not zeroed until we hit an index pulse.
ASSERT_FALSE(estimator.zeroed());
// Trigger another index pulse; we should be zeroed again.
MoveTo(&sim, &estimator, 3.1 * index_diff);
ASSERT_TRUE(estimator.zeroed());
}
TEST_F(ZeroingTest, TestNonZeroIndexPulseOffsets) {
const double index_diff = 0.9;
const double known_index_pos = 3.5 * index_diff;
PositionSensorSimulator sim(index_diff);
sim.Initialize(3.3 * index_diff, index_diff / 3.0, known_index_pos);
PotAndIndexPulseZeroingEstimator estimator(PotAndIndexPulseZeroingConstants{
kSampleSize, index_diff, known_index_pos, kIndexErrorFraction});
// Make sure to fill up the averaging filter with samples.
for (unsigned int i = 0; i < kSampleSize; i++) {
MoveTo(&sim, &estimator, 3.3 * index_diff);
}
// Make sure we're not zeroed until we hit an index pulse.
ASSERT_FALSE(estimator.zeroed());
// Trigger an index pulse; we should now be zeroed.
MoveTo(&sim, &estimator, 3.7 * index_diff);
ASSERT_TRUE(estimator.zeroed());
ASSERT_DOUBLE_EQ(3.3 * index_diff, estimator.offset());
ASSERT_DOUBLE_EQ(3.7 * index_diff, estimator.GetEstimatorState().position);
// Trigger one more index pulse and check the offset.
MoveTo(&sim, &estimator, 4.7 * index_diff);
ASSERT_DOUBLE_EQ(3.3 * index_diff, estimator.offset());
ASSERT_DOUBLE_EQ(4.7 * index_diff, estimator.GetEstimatorState().position);
}
TEST_F(ZeroingTest, BasicErrorAPITest) {
const double index_diff = 1.0;
PotAndIndexPulseZeroingEstimator estimator(PotAndIndexPulseZeroingConstants{
kSampleSize, index_diff, 0.0, kIndexErrorFraction});
PositionSensorSimulator sim(index_diff);
sim.Initialize(1.5 * index_diff, index_diff / 3.0, 0.0);
// Perform a simple move and make sure that no error occured.
MoveTo(&sim, &estimator, 3.5 * index_diff);
ASSERT_FALSE(estimator.error());
// Trigger an error and make sure it's reported.
estimator.TriggerError();
ASSERT_TRUE(estimator.error());
// Make sure that it can recover after a reset.
estimator.Reset();
ASSERT_FALSE(estimator.error());
MoveTo(&sim, &estimator, 4.5 * index_diff);
MoveTo(&sim, &estimator, 5.5 * index_diff);
ASSERT_FALSE(estimator.error());
}
// I want to test that the the zeroing class can
// detect an error when the starting position
// changes too much. I do so by creating the
// simulator at an 'X' positon, making sure
// that the estimator is zeroed, and then
// initializing the simulator at another
// position. After making sure it's zeroed,
// if the error() function returns true,
// then, it works.
TEST_F(ZeroingTest, TestOffsetError) {
const double index_diff = 0.8;
const double known_index_pos = 2 * index_diff;
const size_t sample_size = 30;
PositionSensorSimulator sim(index_diff);
sim.Initialize(10 * index_diff, index_diff / 3.0, known_index_pos);
PotAndIndexPulseZeroingEstimator estimator(PotAndIndexPulseZeroingConstants{
sample_size, index_diff, known_index_pos, kIndexErrorFraction});
for (size_t i = 0; i < sample_size; i++) {
MoveTo(&sim, &estimator, 13 * index_diff);
}
MoveTo(&sim, &estimator, 8 * index_diff);
ASSERT_TRUE(estimator.zeroed());
ASSERT_FALSE(estimator.error());
sim.Initialize(9.0 * index_diff + 0.31 * index_diff, index_diff / 3.0,
known_index_pos);
MoveTo(&sim, &estimator, 9 * index_diff);
ASSERT_TRUE(estimator.zeroed());
ASSERT_TRUE(estimator.error());
}
// Makes sure that using an absolute encoder lets us zero without moving.
TEST_F(ZeroingTest, TestAbsoluteEncoderZeroingWithoutMovement) {
const double index_diff = 1.0;
PositionSensorSimulator sim(index_diff);
const double start_pos = 2.1;
double measured_absolute_position = 0.3 * index_diff;
PotAndAbsoluteEncoderZeroingConstants constants{kSampleSize, index_diff,
measured_absolute_position,
0.1, kMovingBufferSize};
sim.Initialize(start_pos, index_diff / 3.0, 0.0,
constants.measured_absolute_position);
PotAndAbsEncoderZeroingEstimator estimator(constants);
for (size_t i = 0; i < kSampleSize + kMovingBufferSize - 1; ++i) {
MoveTo(&sim, &estimator, start_pos);
ASSERT_FALSE(estimator.zeroed());
}
MoveTo(&sim, &estimator, start_pos);
ASSERT_TRUE(estimator.zeroed());
EXPECT_DOUBLE_EQ(start_pos, estimator.offset());
}
// Makes sure that using an absolute encoder doesn't let us zero while moving.
TEST_F(ZeroingTest, TestAbsoluteEncoderZeroingWithMovement) {
const double index_diff = 1.0;
PositionSensorSimulator sim(index_diff);
const double start_pos = 10 * index_diff;
double measured_absolute_position = 0.3 * index_diff;
PotAndAbsoluteEncoderZeroingConstants constants{kSampleSize, index_diff,
measured_absolute_position,
0.1, kMovingBufferSize};
sim.Initialize(start_pos, index_diff / 3.0, 0.0,
constants.measured_absolute_position);
PotAndAbsEncoderZeroingEstimator estimator(constants);
for (size_t i = 0; i < kSampleSize + kMovingBufferSize - 1; ++i) {
MoveTo(&sim, &estimator, start_pos + i * index_diff);
ASSERT_FALSE(estimator.zeroed());
}
MoveTo(&sim, &estimator, start_pos + 10 * index_diff);
MoveTo(&sim, &estimator, start_pos);
ASSERT_FALSE(estimator.zeroed());
}
// Makes sure we detect an error if the ZeroingEstimator gets sent a NaN.
TEST_F(ZeroingTest, TestAbsoluteEncoderZeroingWithNaN) {
PotAndAbsoluteEncoderZeroingConstants constants{
kSampleSize, 1, 0.3, 0.1, kMovingBufferSize};
PotAndAbsEncoderZeroingEstimator estimator(constants);
PotAndAbsolutePosition sensor_values_;
sensor_values_.absolute_encoder = ::std::numeric_limits<double>::quiet_NaN();
sensor_values_.encoder = 0.0;
sensor_values_.pot = 0.0;
estimator.UpdateEstimate(sensor_values_);
ASSERT_TRUE(estimator.error());
}
// Makes sure that using only a relative encoder with index pulses allows us to
// successfully zero.
// We pretend that there are index pulses at 10, 20, and 30.
TEST_F(ZeroingTest, TestRelativeEncoderZeroing) {
EncoderPlusIndexZeroingConstants constants;
constants.index_pulse_count = 3;
constants.index_difference = 10.0;
constants.measured_index_position = 20.0;
constants.known_index_pulse = 1;
PositionSensorSimulator sim(constants.index_difference);
const double start_pos = 2.5 * constants.index_difference;
sim.Initialize(start_pos, constants.index_difference / 3.0,
constants.measured_index_position);
PulseIndexZeroingEstimator estimator(constants);
// Should not be zeroed when we stand still.
for (int i = 0; i < 300; ++i) {
MoveTo(&sim, &estimator, start_pos);
ASSERT_FALSE(estimator.zeroed());
}
// Move to 1.5 constants.index_difference and we should still not be zeroed.
MoveTo(&sim, &estimator, 1.5 * constants.index_difference);
ASSERT_FALSE(estimator.zeroed());
// Move to 0.5 constants.index_difference and we should still not be zeroed.
MoveTo(&sim, &estimator, 0.5 * constants.index_difference);
ASSERT_FALSE(estimator.zeroed());
// Move back to 1.5 constants.index_difference and we should still not be
// zeroed.
MoveTo(&sim, &estimator, 1.5 * constants.index_difference);
ASSERT_FALSE(estimator.zeroed());
// Move back to 2.5 constants.index_difference and we should still not be
// zeroed.
MoveTo(&sim, &estimator, 2.5 * constants.index_difference);
ASSERT_FALSE(estimator.zeroed());
// Move back to 3.5 constants.index_difference and we should now be zeroed.
MoveTo(&sim, &estimator, 3.5 * constants.index_difference);
ASSERT_TRUE(estimator.zeroed());
ASSERT_DOUBLE_EQ(start_pos, estimator.offset());
ASSERT_DOUBLE_EQ(3.5 * constants.index_difference,
estimator.GetEstimatorState().position);
MoveTo(&sim, &estimator, 0.5 * constants.index_difference);
ASSERT_DOUBLE_EQ(0.5 * constants.index_difference,
estimator.GetEstimatorState().position);
}
} // namespace zeroing
} // namespace frc971