| #include "aos/vision/blob/threshold.h" |
| |
| #include "aos/logging/logging.h" |
| |
| namespace aos { |
| namespace vision { |
| namespace { |
| |
| constexpr int kChunkSize = 8; |
| |
| } // namespace |
| |
| // At a high level, the algorithm is the same as the slow thresholding, except |
| // it operates in kChunkSize-pixel chunks. |
| RangeImage FastYuyvYThreshold(ImageFormat fmt, const char *data, |
| uint8_t value) { |
| CHECK_EQ(0, fmt.w % kChunkSize); |
| std::vector<std::vector<ImageRange>> result; |
| result.reserve(fmt.h); |
| |
| // Iterate through each row. |
| for (int y = 0; y < fmt.h; ++y) { |
| // The start of the data for the current row. |
| const char *const current_row = fmt.w * y * 2 + data; |
| bool in_range = false; |
| int current_range_start = -1; |
| std::vector<ImageRange> current_row_ranges; |
| // Iterate through each kChunkSize-pixel chunk |
| for (int x = 0; x < fmt.w / kChunkSize; ++x) { |
| // The per-channel (YUYV) values in the current chunk. |
| uint8_t chunk_channels[2 * kChunkSize]; |
| memcpy(&chunk_channels[0], current_row + x * kChunkSize * 2, 2 * kChunkSize); |
| |
| for (int i = 0; i < kChunkSize; ++i) { |
| if ((chunk_channels[i * 2] > value) != in_range) { |
| const int here = x * kChunkSize + i; |
| if (in_range) { |
| current_row_ranges.emplace_back(ImageRange(current_range_start, here)); |
| } else { |
| current_range_start = here; |
| } |
| in_range = !in_range; |
| } |
| } |
| } |
| if (in_range) { |
| current_row_ranges.emplace_back(ImageRange(current_range_start, fmt.w)); |
| } |
| result.push_back(current_row_ranges); |
| } |
| return RangeImage(0, std::move(result)); |
| } |
| |
| } // namespace vision |
| } // namespace aos |