| #include "frc971/vision/target_mapper.h" |
| |
| #include "frc971/control_loops/control_loop.h" |
| #include "frc971/vision/ceres/angle_local_parameterization.h" |
| #include "frc971/vision/ceres/normalize_angle.h" |
| #include "frc971/vision/ceres/pose_graph_2d_error_term.h" |
| #include "frc971/vision/geometry.h" |
| |
| DEFINE_uint64(max_num_iterations, 100, |
| "Maximum number of iterations for the ceres solver"); |
| |
| namespace frc971::vision { |
| |
| Eigen::Affine3d PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d pose2d) { |
| Eigen::Affine3d H_world_pose = |
| Eigen::Translation3d(pose2d.x, pose2d.y, 0.0) * |
| Eigen::AngleAxisd(pose2d.yaw_radians, Eigen::Vector3d::UnitZ()); |
| return H_world_pose; |
| } |
| |
| ceres::examples::Pose2d PoseUtils::Affine3dToPose2d(Eigen::Affine3d H) { |
| Eigen::Vector3d T = H.translation(); |
| double heading = std::atan2(H.rotation()(1, 0), H.rotation()(0, 0)); |
| return ceres::examples::Pose2d{T[0], T[1], |
| ceres::examples::NormalizeAngle(heading)}; |
| } |
| |
| ceres::examples::Pose2d PoseUtils::ComputeRelativePose( |
| ceres::examples::Pose2d pose_1, ceres::examples::Pose2d pose_2) { |
| Eigen::Affine3d H_world_1 = Pose2dToAffine3d(pose_1); |
| Eigen::Affine3d H_world_2 = Pose2dToAffine3d(pose_2); |
| |
| // Get the location of 2 in the 1 frame |
| Eigen::Affine3d H_1_2 = H_world_1.inverse() * H_world_2; |
| return Affine3dToPose2d(H_1_2); |
| } |
| |
| ceres::examples::Pose2d PoseUtils::ComputeOffsetPose( |
| ceres::examples::Pose2d pose_1, ceres::examples::Pose2d pose_2_relative) { |
| auto H_world_1 = Pose2dToAffine3d(pose_1); |
| auto H_1_2 = Pose2dToAffine3d(pose_2_relative); |
| auto H_world_2 = H_world_1 * H_1_2; |
| |
| return Affine3dToPose2d(H_world_2); |
| } |
| |
| namespace { |
| double ExponentiatedSinTerm(double theta) { |
| return (theta == 0.0 ? 1.0 : std::sin(theta) / theta); |
| } |
| |
| double ExponentiatedCosTerm(double theta) { |
| return (theta == 0.0 ? 0.0 : (1 - std::cos(theta)) / theta); |
| } |
| } // namespace |
| |
| ceres::examples::Pose2d DataAdapter::InterpolatePose( |
| const TimestampedPose &pose_start, const TimestampedPose &pose_end, |
| aos::distributed_clock::time_point time) { |
| auto delta_pose = |
| PoseUtils::ComputeRelativePose(pose_start.pose, pose_end.pose); |
| // Time from start of period, on the scale 0-1 where 1 is the end. |
| double interpolation_scalar = |
| static_cast<double>((time - pose_start.time).count()) / |
| static_cast<double>((pose_end.time - pose_start.time).count()); |
| |
| double theta = delta_pose.yaw_radians; |
| // Take the log of the transformation matrix: |
| // https://mathoverflow.net/questions/118533/how-to-compute-se2-group-exponential-and-logarithm |
| StdFormLine dx_line = {.a = ExponentiatedSinTerm(theta), |
| .b = -ExponentiatedCosTerm(theta), |
| .c = delta_pose.x}; |
| StdFormLine dy_line = {.a = ExponentiatedCosTerm(theta), |
| .b = ExponentiatedSinTerm(theta), |
| .c = delta_pose.y}; |
| |
| std::optional<cv::Point2d> solution = dx_line.Intersection(dy_line); |
| CHECK(solution.has_value()); |
| |
| // Re-exponentiate with the new values scaled by the interpolation scalar to |
| // get an interpolated tranformation matrix |
| double a = solution->x * interpolation_scalar; |
| double b = solution->y * interpolation_scalar; |
| double alpha = theta * interpolation_scalar; |
| |
| ceres::examples::Pose2d interpolated_pose = { |
| .x = a * ExponentiatedSinTerm(theta) - b * ExponentiatedCosTerm(theta), |
| .y = a * ExponentiatedCosTerm(theta) + b * ExponentiatedSinTerm(theta), |
| .yaw_radians = alpha}; |
| |
| return PoseUtils::ComputeOffsetPose(pose_start.pose, interpolated_pose); |
| } // namespace frc971::vision |
| |
| std::pair<std::vector<ceres::examples::Constraint2d>, |
| std::vector<ceres::examples::Pose2d>> |
| DataAdapter::MatchTargetDetections( |
| const std::vector<TimestampedPose> ×tamped_robot_poses, |
| const std::vector<TimestampedDetection> ×tamped_target_detections) { |
| // Interpolate robot poses |
| std::map<aos::distributed_clock::time_point, ceres::examples::Pose2d> |
| interpolated_poses; |
| |
| CHECK_GT(timestamped_robot_poses.size(), 1ul) |
| << "Need more than 1 robot pose"; |
| auto robot_pose_it = timestamped_robot_poses.begin(); |
| for (const auto ×tamped_detection : timestamped_target_detections) { |
| aos::distributed_clock::time_point target_time = timestamped_detection.time; |
| |
| // Skip this target detection if we have no robot poses before it |
| if (robot_pose_it->time > target_time) { |
| continue; |
| } |
| |
| // Find the robot point right before this localization |
| while (robot_pose_it->time > target_time || |
| (robot_pose_it + 1)->time <= target_time) { |
| robot_pose_it++; |
| CHECK(robot_pose_it < timestamped_robot_poses.end() - 1) |
| << "Need a robot pose before and after every target detection"; |
| } |
| |
| auto start = robot_pose_it; |
| auto end = robot_pose_it + 1; |
| interpolated_poses.emplace(target_time, |
| InterpolatePose(*start, *end, target_time)); |
| } |
| |
| // In the case that all target detections were before the first robot |
| // detection, we would have no interpolated poses at this point |
| CHECK_GT(interpolated_poses.size(), 0ul) |
| << "Need a robot pose before and after every target detection"; |
| |
| // Match consecutive detections |
| std::vector<ceres::examples::Constraint2d> target_constraints; |
| std::vector<ceres::examples::Pose2d> robot_delta_poses; |
| |
| auto last_detection = timestamped_target_detections[0]; |
| auto last_robot_pose = |
| interpolated_poses[timestamped_target_detections[0].time]; |
| |
| for (auto it = timestamped_target_detections.begin() + 1; |
| it < timestamped_target_detections.end(); it++) { |
| // Skip two consecutive detections of the same target, because the solver |
| // doesn't allow this |
| if (it->id == last_detection.id) { |
| continue; |
| } |
| |
| auto robot_pose = interpolated_poses[it->time]; |
| auto robot_delta_pose = |
| PoseUtils::ComputeRelativePose(last_robot_pose, robot_pose); |
| auto confidence = ComputeConfidence(last_detection.time, it->time, |
| last_detection.distance_from_camera, |
| it->distance_from_camera); |
| |
| target_constraints.emplace_back(ComputeTargetConstraint( |
| last_detection, PoseUtils::Pose2dToAffine3d(robot_delta_pose), *it, |
| confidence)); |
| robot_delta_poses.emplace_back(robot_delta_pose); |
| |
| last_detection = *it; |
| last_robot_pose = robot_pose; |
| } |
| |
| return {target_constraints, robot_delta_poses}; |
| } |
| |
| std::vector<ceres::examples::Constraint2d> DataAdapter::MatchTargetDetections( |
| const std::vector<DataAdapter::TimestampedDetection> |
| ×tamped_target_detections, |
| aos::distributed_clock::duration max_dt) { |
| CHECK_GE(timestamped_target_detections.size(), 2ul) |
| << "Must have at least 2 detections"; |
| |
| // Match consecutive detections |
| std::vector<ceres::examples::Constraint2d> target_constraints; |
| for (auto it = timestamped_target_detections.begin() + 1; |
| it < timestamped_target_detections.end(); it++) { |
| auto last_detection = *(it - 1); |
| |
| // Skip two consecutive detections of the same target, because the solver |
| // doesn't allow this |
| if (it->id == last_detection.id) { |
| continue; |
| } |
| |
| // Don't take into account constraints too far apart in time, because the |
| // recording device could have moved too much |
| if ((it->time - last_detection.time) > max_dt) { |
| continue; |
| } |
| |
| auto confidence = ComputeConfidence(last_detection.time, it->time, |
| last_detection.distance_from_camera, |
| it->distance_from_camera); |
| target_constraints.emplace_back( |
| ComputeTargetConstraint(last_detection, *it, confidence)); |
| } |
| |
| return target_constraints; |
| } |
| |
| Eigen::Matrix3d DataAdapter::ComputeConfidence( |
| aos::distributed_clock::time_point start, |
| aos::distributed_clock::time_point end, double distance_from_camera_start, |
| double distance_from_camera_end) { |
| constexpr size_t kX = 0; |
| constexpr size_t kY = 1; |
| constexpr size_t kTheta = 2; |
| |
| // Uncertainty matrix between start and end |
| Eigen::Matrix3d P = Eigen::Matrix3d::Zero(); |
| |
| { |
| // Noise for odometry-based robot position measurements |
| Eigen::Matrix3d Q_odometry = Eigen::Matrix3d::Zero(); |
| Q_odometry(kX, kX) = std::pow(0.045, 2); |
| Q_odometry(kY, kY) = std::pow(0.045, 2); |
| Q_odometry(kTheta, kTheta) = std::pow(0.01, 2); |
| |
| // Add uncertainty for robot position measurements from start to end |
| int iterations = (end - start) / frc971::controls::kLoopFrequency; |
| P += static_cast<double>(iterations) * Q_odometry; |
| } |
| |
| { |
| // Noise for vision-based target localizations. Multiplying this matrix by |
| // the distance from camera to target squared results in the uncertainty in |
| // that measurement |
| Eigen::Matrix3d Q_vision = Eigen::Matrix3d::Zero(); |
| Q_vision(kX, kX) = std::pow(0.045, 2); |
| Q_vision(kY, kY) = std::pow(0.045, 2); |
| Q_vision(kTheta, kTheta) = std::pow(0.02, 2); |
| |
| // Add uncertainty for the 2 vision measurements (1 at start and 1 at end) |
| P += Q_vision * std::pow(distance_from_camera_start, 2); |
| P += Q_vision * std::pow(distance_from_camera_end, 2); |
| } |
| |
| return P.inverse(); |
| } |
| |
| ceres::examples::Constraint2d DataAdapter::ComputeTargetConstraint( |
| const TimestampedDetection &target_detection_start, |
| const Eigen::Affine3d &H_robotstart_robotend, |
| const TimestampedDetection &target_detection_end, |
| const Eigen::Matrix3d &confidence) { |
| // Compute the relative pose (constraint) between the two targets |
| Eigen::Affine3d H_targetstart_targetend = |
| target_detection_start.H_robot_target.inverse() * H_robotstart_robotend * |
| target_detection_end.H_robot_target; |
| ceres::examples::Pose2d target_constraint = |
| PoseUtils::Affine3dToPose2d(H_targetstart_targetend); |
| |
| return ceres::examples::Constraint2d{ |
| target_detection_start.id, target_detection_end.id, |
| target_constraint.x, target_constraint.y, |
| target_constraint.yaw_radians, confidence}; |
| } |
| |
| ceres::examples::Constraint2d DataAdapter::ComputeTargetConstraint( |
| const TimestampedDetection &target_detection_start, |
| const TimestampedDetection &target_detection_end, |
| const Eigen::Matrix3d &confidence) { |
| return ComputeTargetConstraint(target_detection_start, |
| Eigen::Affine3d(Eigen::Matrix4d::Identity()), |
| target_detection_end, confidence); |
| } |
| |
| TargetMapper::TargetMapper( |
| std::string_view target_poses_path, |
| std::vector<ceres::examples::Constraint2d> target_constraints) |
| : target_constraints_(target_constraints) { |
| aos::FlatbufferDetachedBuffer<TargetMap> target_map = |
| aos::JsonFileToFlatbuffer<TargetMap>(target_poses_path); |
| for (const auto *target_pose_fbs : *target_map.message().target_poses()) { |
| target_poses_[target_pose_fbs->id()] = ceres::examples::Pose2d{ |
| target_pose_fbs->x(), target_pose_fbs->y(), target_pose_fbs->yaw()}; |
| } |
| } |
| |
| TargetMapper::TargetMapper( |
| std::map<TargetId, ceres::examples::Pose2d> target_poses, |
| std::vector<ceres::examples::Constraint2d> target_constraints) |
| : target_poses_(target_poses), target_constraints_(target_constraints) {} |
| |
| std::optional<TargetMapper::TargetPose> TargetMapper::GetTargetPoseById( |
| std::vector<TargetMapper::TargetPose> target_poses, TargetId target_id) { |
| for (auto target_pose : target_poses) { |
| if (target_pose.id == target_id) { |
| return target_pose; |
| } |
| } |
| |
| return std::nullopt; |
| } |
| |
| // Taken from ceres/examples/slam/pose_graph_2d/pose_graph_2d.cc |
| void TargetMapper::BuildOptimizationProblem( |
| std::map<int, ceres::examples::Pose2d> *poses, |
| const std::vector<ceres::examples::Constraint2d> &constraints, |
| ceres::Problem *problem) { |
| CHECK_NOTNULL(poses); |
| CHECK_NOTNULL(problem); |
| if (constraints.empty()) { |
| LOG(WARNING) << "No constraints, no problem to optimize."; |
| return; |
| } |
| |
| ceres::LossFunction *loss_function = new ceres::HuberLoss(2.0); |
| ceres::LocalParameterization *angle_local_parameterization = |
| ceres::examples::AngleLocalParameterization::Create(); |
| |
| for (std::vector<ceres::examples::Constraint2d>::const_iterator |
| constraints_iter = constraints.begin(); |
| constraints_iter != constraints.end(); ++constraints_iter) { |
| const ceres::examples::Constraint2d &constraint = *constraints_iter; |
| |
| std::map<int, ceres::examples::Pose2d>::iterator pose_begin_iter = |
| poses->find(constraint.id_begin); |
| CHECK(pose_begin_iter != poses->end()) |
| << "Pose with ID: " << constraint.id_begin << " not found."; |
| std::map<int, ceres::examples::Pose2d>::iterator pose_end_iter = |
| poses->find(constraint.id_end); |
| CHECK(pose_end_iter != poses->end()) |
| << "Pose with ID: " << constraint.id_end << " not found."; |
| |
| const Eigen::Matrix3d sqrt_information = |
| constraint.information.llt().matrixL(); |
| // Ceres will take ownership of the pointer. |
| ceres::CostFunction *cost_function = |
| ceres::examples::PoseGraph2dErrorTerm::Create( |
| constraint.x, constraint.y, constraint.yaw_radians, |
| sqrt_information); |
| problem->AddResidualBlock( |
| cost_function, loss_function, &pose_begin_iter->second.x, |
| &pose_begin_iter->second.y, &pose_begin_iter->second.yaw_radians, |
| &pose_end_iter->second.x, &pose_end_iter->second.y, |
| &pose_end_iter->second.yaw_radians); |
| |
| problem->SetParameterization(&pose_begin_iter->second.yaw_radians, |
| angle_local_parameterization); |
| problem->SetParameterization(&pose_end_iter->second.yaw_radians, |
| angle_local_parameterization); |
| } |
| |
| // The pose graph optimization problem has three DOFs that are not fully |
| // constrained. This is typically referred to as gauge freedom. You can apply |
| // a rigid body transformation to all the nodes and the optimization problem |
| // will still have the exact same cost. The Levenberg-Marquardt algorithm has |
| // internal damping which mitigates this issue, but it is better to properly |
| // constrain the gauge freedom. This can be done by setting one of the poses |
| // as constant so the optimizer cannot change it. |
| std::map<int, ceres::examples::Pose2d>::iterator pose_start_iter = |
| poses->begin(); |
| CHECK(pose_start_iter != poses->end()) << "There are no poses."; |
| problem->SetParameterBlockConstant(&pose_start_iter->second.x); |
| problem->SetParameterBlockConstant(&pose_start_iter->second.y); |
| problem->SetParameterBlockConstant(&pose_start_iter->second.yaw_radians); |
| } |
| |
| // Taken from ceres/examples/slam/pose_graph_2d/pose_graph_2d.cc |
| bool TargetMapper::SolveOptimizationProblem(ceres::Problem *problem) { |
| CHECK_NOTNULL(problem); |
| |
| ceres::Solver::Options options; |
| options.max_num_iterations = FLAGS_max_num_iterations; |
| options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; |
| |
| ceres::Solver::Summary summary; |
| ceres::Solve(options, problem, &summary); |
| |
| LOG(INFO) << summary.FullReport() << '\n'; |
| |
| return summary.IsSolutionUsable(); |
| } |
| |
| void TargetMapper::Solve(std::string_view field_name, |
| std::optional<std::string_view> output_dir) { |
| ceres::Problem problem; |
| BuildOptimizationProblem(&target_poses_, target_constraints_, &problem); |
| |
| CHECK(SolveOptimizationProblem(&problem)) |
| << "The solve was not successful, exiting."; |
| |
| // TODO(milind): add origin to first target offset to all poses |
| |
| auto map_json = MapToJson(field_name); |
| VLOG(1) << "Solved target poses: " << map_json; |
| |
| if (output_dir.has_value()) { |
| std::string output_path = |
| absl::StrCat(output_dir.value(), "/", field_name, ".json"); |
| LOG(INFO) << "Writing map to file: " << output_path; |
| aos::util::WriteStringToFileOrDie(output_path, map_json); |
| } |
| } |
| |
| std::string TargetMapper::MapToJson(std::string_view field_name) const { |
| flatbuffers::FlatBufferBuilder fbb; |
| |
| // Convert poses to flatbuffers |
| std::vector<flatbuffers::Offset<TargetPoseFbs>> target_poses_fbs; |
| for (const auto &[id, pose] : target_poses_) { |
| TargetPoseFbs::Builder target_pose_builder(fbb); |
| target_pose_builder.add_id(id); |
| target_pose_builder.add_x(pose.x); |
| target_pose_builder.add_y(pose.y); |
| target_pose_builder.add_yaw(pose.yaw_radians); |
| |
| target_poses_fbs.emplace_back(target_pose_builder.Finish()); |
| } |
| |
| const auto field_name_offset = fbb.CreateString(field_name); |
| flatbuffers::Offset<TargetMap> target_map_offset = CreateTargetMap( |
| fbb, fbb.CreateVector(target_poses_fbs), field_name_offset); |
| |
| return aos::FlatbufferToJson( |
| flatbuffers::GetMutableTemporaryPointer(fbb, target_map_offset), |
| {.multi_line = true}); |
| } |
| |
| } // namespace frc971::vision |