| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define TEST_ENABLE_TEMPORARY_TRACKING |
| #define EIGEN_NO_STATIC_ASSERT |
| |
| #include "main.h" |
| |
| template<typename ArrayType> void vectorwiseop_array(const ArrayType& m) |
| { |
| typedef typename ArrayType::Scalar Scalar; |
| typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; |
| typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| Index r = internal::random<Index>(0, rows-1), |
| c = internal::random<Index>(0, cols-1); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols), |
| m2(rows, cols), |
| m3(rows, cols); |
| |
| ColVectorType colvec = ColVectorType::Random(rows); |
| RowVectorType rowvec = RowVectorType::Random(cols); |
| |
| // test addition |
| |
| m2 = m1; |
| m2.colwise() += colvec; |
| VERIFY_IS_APPROX(m2, m1.colwise() + colvec); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); |
| |
| VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); |
| VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); |
| |
| m2 = m1; |
| m2.rowwise() += rowvec; |
| VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); |
| |
| VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); |
| VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); |
| |
| // test substraction |
| |
| m2 = m1; |
| m2.colwise() -= colvec; |
| VERIFY_IS_APPROX(m2, m1.colwise() - colvec); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); |
| |
| VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); |
| VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); |
| |
| m2 = m1; |
| m2.rowwise() -= rowvec; |
| VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); |
| |
| VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); |
| VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); |
| |
| // test multiplication |
| |
| m2 = m1; |
| m2.colwise() *= colvec; |
| VERIFY_IS_APPROX(m2, m1.colwise() * colvec); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec); |
| |
| VERIFY_RAISES_ASSERT(m2.colwise() *= colvec.transpose()); |
| VERIFY_RAISES_ASSERT(m1.colwise() * colvec.transpose()); |
| |
| m2 = m1; |
| m2.rowwise() *= rowvec; |
| VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec); |
| |
| VERIFY_RAISES_ASSERT(m2.rowwise() *= rowvec.transpose()); |
| VERIFY_RAISES_ASSERT(m1.rowwise() * rowvec.transpose()); |
| |
| // test quotient |
| |
| m2 = m1; |
| m2.colwise() /= colvec; |
| VERIFY_IS_APPROX(m2, m1.colwise() / colvec); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec); |
| |
| VERIFY_RAISES_ASSERT(m2.colwise() /= colvec.transpose()); |
| VERIFY_RAISES_ASSERT(m1.colwise() / colvec.transpose()); |
| |
| m2 = m1; |
| m2.rowwise() /= rowvec; |
| VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec); |
| |
| VERIFY_RAISES_ASSERT(m2.rowwise() /= rowvec.transpose()); |
| VERIFY_RAISES_ASSERT(m1.rowwise() / rowvec.transpose()); |
| |
| m2 = m1; |
| // yes, there might be an aliasing issue there but ".rowwise() /=" |
| // is supposed to evaluate " m2.colwise().sum()" into a temporary to avoid |
| // evaluating the reduction multiple times |
| if(ArrayType::RowsAtCompileTime>2 || ArrayType::RowsAtCompileTime==Dynamic) |
| { |
| m2.rowwise() /= m2.colwise().sum(); |
| VERIFY_IS_APPROX(m2, m1.rowwise() / m1.colwise().sum()); |
| } |
| |
| // all/any |
| Array<bool,Dynamic,Dynamic> mb(rows,cols); |
| mb = (m1.real()<=0.7).colwise().all(); |
| VERIFY( (mb.col(c) == (m1.real().col(c)<=0.7).all()).all() ); |
| mb = (m1.real()<=0.7).rowwise().all(); |
| VERIFY( (mb.row(r) == (m1.real().row(r)<=0.7).all()).all() ); |
| |
| mb = (m1.real()>=0.7).colwise().any(); |
| VERIFY( (mb.col(c) == (m1.real().col(c)>=0.7).any()).all() ); |
| mb = (m1.real()>=0.7).rowwise().any(); |
| VERIFY( (mb.row(r) == (m1.real().row(r)>=0.7).any()).all() ); |
| } |
| |
| template<typename MatrixType> void vectorwiseop_matrix(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; |
| typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealColVectorType; |
| typedef Matrix<RealScalar, 1, MatrixType::ColsAtCompileTime> RealRowVectorType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| Index r = internal::random<Index>(0, rows-1), |
| c = internal::random<Index>(0, cols-1); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2(rows, cols), |
| m3(rows, cols); |
| |
| ColVectorType colvec = ColVectorType::Random(rows); |
| RowVectorType rowvec = RowVectorType::Random(cols); |
| RealColVectorType rcres; |
| RealRowVectorType rrres; |
| |
| // test addition |
| |
| m2 = m1; |
| m2.colwise() += colvec; |
| VERIFY_IS_APPROX(m2, m1.colwise() + colvec); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); |
| |
| if(rows>1) |
| { |
| VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); |
| VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); |
| } |
| |
| m2 = m1; |
| m2.rowwise() += rowvec; |
| VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); |
| |
| if(cols>1) |
| { |
| VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); |
| VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); |
| } |
| |
| // test substraction |
| |
| m2 = m1; |
| m2.colwise() -= colvec; |
| VERIFY_IS_APPROX(m2, m1.colwise() - colvec); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); |
| |
| if(rows>1) |
| { |
| VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); |
| VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); |
| } |
| |
| m2 = m1; |
| m2.rowwise() -= rowvec; |
| VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); |
| |
| if(cols>1) |
| { |
| VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); |
| VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); |
| } |
| |
| // test norm |
| rrres = m1.colwise().norm(); |
| VERIFY_IS_APPROX(rrres(c), m1.col(c).norm()); |
| rcres = m1.rowwise().norm(); |
| VERIFY_IS_APPROX(rcres(r), m1.row(r).norm()); |
| |
| VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum(), m1.colwise().template lpNorm<1>()); |
| VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().sum(), m1.rowwise().template lpNorm<1>()); |
| VERIFY_IS_APPROX(m1.cwiseAbs().colwise().maxCoeff(), m1.colwise().template lpNorm<Infinity>()); |
| VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().maxCoeff(), m1.rowwise().template lpNorm<Infinity>()); |
| |
| // regression for bug 1158 |
| VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum().x(), m1.col(0).cwiseAbs().sum()); |
| |
| // test normalized |
| m2 = m1.colwise().normalized(); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); |
| m2 = m1.rowwise().normalized(); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); |
| |
| // test normalize |
| m2 = m1; |
| m2.colwise().normalize(); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); |
| m2 = m1; |
| m2.rowwise().normalize(); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); |
| |
| // test with partial reduction of products |
| Matrix<Scalar,MatrixType::RowsAtCompileTime,MatrixType::RowsAtCompileTime> m1m1 = m1 * m1.transpose(); |
| VERIFY_IS_APPROX( (m1 * m1.transpose()).colwise().sum(), m1m1.colwise().sum()); |
| Matrix<Scalar,1,MatrixType::RowsAtCompileTime> tmp(rows); |
| VERIFY_EVALUATION_COUNT( tmp = (m1 * m1.transpose()).colwise().sum(), 1); |
| |
| m2 = m1.rowwise() - (m1.colwise().sum()/RealScalar(m1.rows())).eval(); |
| m1 = m1.rowwise() - (m1.colwise().sum()/RealScalar(m1.rows())); |
| VERIFY_IS_APPROX( m1, m2 ); |
| VERIFY_EVALUATION_COUNT( m2 = (m1.rowwise() - m1.colwise().sum()/RealScalar(m1.rows())), (MatrixType::RowsAtCompileTime!=1 ? 1 : 0) ); |
| } |
| |
| void test_vectorwiseop() |
| { |
| CALL_SUBTEST_1( vectorwiseop_array(Array22cd()) ); |
| CALL_SUBTEST_2( vectorwiseop_array(Array<double, 3, 2>()) ); |
| CALL_SUBTEST_3( vectorwiseop_array(ArrayXXf(3, 4)) ); |
| CALL_SUBTEST_4( vectorwiseop_matrix(Matrix4cf()) ); |
| CALL_SUBTEST_5( vectorwiseop_matrix(Matrix<float,4,5>()) ); |
| CALL_SUBTEST_6( vectorwiseop_matrix(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_7( vectorwiseop_matrix(VectorXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_7( vectorwiseop_matrix(RowVectorXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |