blob: e19ee8f540f4a98810c63dced60609f5a7089708 [file] [log] [blame]
#!/usr/bin/python3
# This is an initial, hacky implementation of the extended LQR paper. It's just
# a proof of concept, so don't trust it too much.
import numpy
import scipy.optimize
from matplotlib import pylab
import sys
from frc971.control_loops.python import controls
class ArmDynamics(object):
def __init__(self, dt):
self.dt = dt
self.l1 = 1.0
self.l2 = 0.8
self.num_states = 4
self.num_inputs = 2
def dynamics(self, X, U):
"""Calculates the dynamics for a double jointed arm.
Args:
X, numpy.matrix(4, 1), The state. [theta1, omega1, theta2, omega2]
U, numpy.matrix(2, 1), The input. [torque1, torque2]
Returns:
numpy.matrix(4, 1), The derivative of the dynamics.
"""
return numpy.matrix([[X[1, 0]], [U[0, 0]], [X[3, 0]], [U[1, 0]]])
def discrete_dynamics(self, X, U):
return RungeKutta(lambda startingX: self.dynamics(startingX, U), X, dt)
def inverse_discrete_dynamics(self, X, U):
return RungeKutta(lambda startingX: -self.dynamics(startingX, U), X,
dt)
# Simple implementation for a quadratic cost function.
class ArmCostFunction:
def __init__(self, dt, dynamics):
self.num_states = 4
self.num_inputs = 2
self.dt = dt
self.dynamics = dynamics
q_pos = 0.5
q_vel = 1.65
self.Q = numpy.matrix(
numpy.diag([
1.0 / (q_pos**2.0), 1.0 / (q_vel**2.0), 1.0 / (q_pos**2.0),
1.0 / (q_vel**2.0)
]))
self.R = numpy.matrix(
numpy.diag([1.0 / (12.0**2.0), 1.0 / (12.0**2.0)]))
final_A = numerical_jacobian_x(self.dynamics.discrete_dynamics,
numpy.matrix(numpy.zeros((4, 1))),
numpy.matrix(numpy.zeros((2, 1))))
final_B = numerical_jacobian_u(self.dynamics.discrete_dynamics,
numpy.matrix(numpy.zeros((4, 1))),
numpy.matrix(numpy.zeros((2, 1))))
print('Final A', final_A)
print('Final B', final_B)
K, self.S = controls.dlqr(final_A,
final_B,
self.Q,
self.R,
optimal_cost_function=True)
print('Final eig:', numpy.linalg.eig(final_A - final_B * K))
def final_cost(self, X, U):
"""Computes the final cost of being at X
Args:
X: numpy.matrix(self.num_states, 1)
U: numpy.matrix(self.num_inputs, 1), ignored
Returns:
numpy.matrix(1, 1), The quadratic cost of being at X
"""
return 0.5 * X.T * self.S * X
def cost(self, X, U):
"""Computes the incremental cost given a position and U.
Args:
X: numpy.matrix(self.num_states, 1)
U: numpy.matrix(self.num_inputs, 1)
Returns:
numpy.matrix(1, 1), The quadratic cost of evaluating U.
"""
return U.T * self.R * U + X.T * self.Q * X
def estimate_Q_final(self, X_hat):
"""Returns the quadraticized final Q around X_hat.
This is calculated by evaluating partial^2 cost(X_hat) / (partial X * partial X)
Args:
X_hat: numpy.matrix(self.num_states, 1), The state to quadraticize around.
Result:
numpy.matrix(self.num_states, self.num_states)
"""
zero_U = numpy.matrix(numpy.zeros((self.num_inputs, 1)))
print('S', self.S)
print('Q_final', numerical_jacobian_x_x(self.final_cost, X_hat,
zero_U))
return numerical_jacobian_x_x(self.final_cost, X_hat, zero_U)
def estimate_partial_cost_partial_x_final(self, X_hat):
"""Returns \frac{\partial cost}{\partial X}(X_hat) for the final cost.
Args:
X_hat: numpy.matrix(self.num_states, 1), The state to quadraticize around.
Result:
numpy.matrix(self.num_states, 1)
"""
return numerical_jacobian_x(
self.final_cost, X_hat,
numpy.matrix(numpy.zeros((self.num_inputs, 1)))).T
def estimate_q_final(self, X_hat):
"""Returns q evaluated at X_hat for the final cost function."""
return self.estimate_partial_cost_partial_x_final(
X_hat) - self.estimate_Q_final(X_hat) * X_hat
class SkidSteerDynamics(object):
def __init__(self, dt):
self.width = 0.2
self.dt = dt
self.num_states = 3
self.num_inputs = 2
def dynamics(self, X, U):
"""Calculates the dynamics for a 2 wheeled robot.
Args:
X, numpy.matrix(3, 1), The state. [x, y, theta]
U, numpy.matrix(2, 1), The input. [left velocity, right velocity]
Returns:
numpy.matrix(3, 1), The derivative of the dynamics.
"""
#return numpy.matrix([[X[1, 0]],
# [X[2, 0]],
# [U[0, 0]]])
return numpy.matrix([[(U[0, 0] + U[1, 0]) * numpy.cos(X[2, 0]) / 2.0],
[(U[0, 0] + U[1, 0]) * numpy.sin(X[2, 0]) / 2.0],
[(U[1, 0] - U[0, 0]) / self.width]])
def discrete_dynamics(self, X, U):
return RungeKutta(lambda startingX: self.dynamics(startingX, U), X, dt)
def inverse_discrete_dynamics(self, X, U):
return RungeKutta(lambda startingX: -self.dynamics(startingX, U), X,
dt)
# Simple implementation for a quadratic cost function.
class CostFunction:
def __init__(self, dt):
self.num_states = 3
self.num_inputs = 2
self.dt = dt
self.Q = numpy.matrix([[0.1, 0, 0], [0, 0.6, 0], [0, 0, 0.1]
]) / self.dt / self.dt
self.R = numpy.matrix([[0.40, 0], [0, 0.40]]) / self.dt / self.dt
def final_cost(self, X, U):
"""Computes the final cost of being at X
Args:
X: numpy.matrix(self.num_states, 1)
U: numpy.matrix(self.num_inputs, 1), ignored
Returns:
numpy.matrix(1, 1), The quadratic cost of being at X
"""
return X.T * self.Q * X * 1000
def cost(self, X, U):
"""Computes the incremental cost given a position and U.
Args:
X: numpy.matrix(self.num_states, 1)
U: numpy.matrix(self.num_inputs, 1)
Returns:
numpy.matrix(1, 1), The quadratic cost of evaluating U.
"""
return U.T * self.R * U + X.T * self.Q * X
def estimate_Q_final(self, X_hat):
"""Returns the quadraticized final Q around X_hat.
This is calculated by evaluating partial^2 cost(X_hat) / (partial X * partial X)
Args:
X_hat: numpy.matrix(self.num_states, 1), The state to quadraticize around.
Result:
numpy.matrix(self.num_states, self.num_states)
"""
zero_U = numpy.matrix(numpy.zeros((self.num_inputs, 1)))
return numerical_jacobian_x_x(self.final_cost, X_hat, zero_U)
def estimate_partial_cost_partial_x_final(self, X_hat):
"""Returns \frac{\partial cost}{\partial X}(X_hat) for the final cost.
Args:
X_hat: numpy.matrix(self.num_states, 1), The state to quadraticize around.
Result:
numpy.matrix(self.num_states, 1)
"""
return numerical_jacobian_x(
self.final_cost, X_hat,
numpy.matrix(numpy.zeros((self.num_inputs, 1)))).T
def estimate_q_final(self, X_hat):
"""Returns q evaluated at X_hat for the final cost function."""
return self.estimate_partial_cost_partial_x_final(
X_hat) - self.estimate_Q_final(X_hat) * X_hat
def RungeKutta(f, x, dt):
"""4th order RungeKutta integration of F starting at X."""
a = f(x)
b = f(x + dt / 2.0 * a)
c = f(x + dt / 2.0 * b)
d = f(x + dt * c)
return x + dt * (a + 2.0 * b + 2.0 * c + d) / 6.0
def numerical_jacobian_x(fn, X, U, epsilon=1e-4):
"""Numerically estimates the jacobian around X, U in X.
Args:
fn: A function of X, U.
X: numpy.matrix(num_states, 1), The state vector to take the jacobian
around.
U: numpy.matrix(num_inputs, 1), The input vector to take the jacobian
around.
Returns:
numpy.matrix(num_states, num_states), The jacobian of fn with X as the
variable.
"""
num_states = X.shape[0]
nominal = fn(X, U)
answer = numpy.matrix(numpy.zeros((nominal.shape[0], num_states)))
# It's more expensive, but +- epsilon will be more reliable
for i in range(0, num_states):
dX_plus = X.copy()
dX_plus[i] += epsilon
dX_minus = X.copy()
dX_minus[i] -= epsilon
answer[:, i] = (fn(dX_plus, U) - fn(dX_minus, U)) / epsilon / 2.0
return answer
def numerical_jacobian_u(fn, X, U, epsilon=1e-4):
"""Numerically estimates the jacobian around X, U in U.
Args:
fn: A function of X, U.
X: numpy.matrix(num_states, 1), The state vector to take the jacobian
around.
U: numpy.matrix(num_inputs, 1), The input vector to take the jacobian
around.
Returns:
numpy.matrix(num_states, num_inputs), The jacobian of fn with U as the
variable.
"""
num_states = X.shape[0]
num_inputs = U.shape[0]
nominal = fn(X, U)
answer = numpy.matrix(numpy.zeros((nominal.shape[0], num_inputs)))
for i in range(0, num_inputs):
dU_plus = U.copy()
dU_plus[i] += epsilon
dU_minus = U.copy()
dU_minus[i] -= epsilon
answer[:, i] = (fn(X, dU_plus) - fn(X, dU_minus)) / epsilon / 2.0
return answer
def numerical_jacobian_x_x(fn, X, U):
return numerical_jacobian_x(
lambda X_inner, U_inner: numerical_jacobian_x(fn, X_inner, U_inner).T,
X, U)
def numerical_jacobian_x_u(fn, X, U):
return numerical_jacobian_x(
lambda X_inner, U_inner: numerical_jacobian_u(fn, X_inner, U_inner).T,
X, U)
def numerical_jacobian_u_x(fn, X, U):
return numerical_jacobian_u(
lambda X_inner, U_inner: numerical_jacobian_x(fn, X_inner, U_inner).T,
X, U)
def numerical_jacobian_u_u(fn, X, U):
return numerical_jacobian_u(
lambda X_inner, U_inner: numerical_jacobian_u(fn, X_inner, U_inner).T,
X, U)
class ELQR(object):
def __init__(self, dynamics, cost):
self.dynamics = dynamics
self.cost = cost
def Solve(self, x_hat_initial, horizon, iterations):
l = horizon
num_states = self.dynamics.num_states
num_inputs = self.dynamics.num_inputs
self.S_bar_t = [
numpy.matrix(numpy.zeros((num_states, num_states)))
for _ in range(l + 1)
]
self.s_bar_t = [
numpy.matrix(numpy.zeros((num_states, 1))) for _ in range(l + 1)
]
self.s_scalar_bar_t = [
numpy.matrix(numpy.zeros((1, 1))) for _ in range(l + 1)
]
self.L_t = [
numpy.matrix(numpy.zeros((num_inputs, num_states)))
for _ in range(l + 1)
]
self.l_t = [
numpy.matrix(numpy.zeros((num_inputs, 1))) for _ in range(l + 1)
]
self.L_bar_t = [
numpy.matrix(numpy.zeros((num_inputs, num_states)))
for _ in range(l + 1)
]
self.l_bar_t = [
numpy.matrix(numpy.zeros((num_inputs, 1))) for _ in range(l + 1)
]
self.S_t = [
numpy.matrix(numpy.zeros((num_states, num_states)))
for _ in range(l + 1)
]
self.s_t = [
numpy.matrix(numpy.zeros((num_states, 1))) for _ in range(l + 1)
]
self.s_scalar_t = [
numpy.matrix(numpy.zeros((1, 1))) for _ in range(l + 1)
]
self.last_x_hat_t = [
numpy.matrix(numpy.zeros((num_states, 1))) for _ in range(l + 1)
]
# Iterate the solver
for a in range(iterations):
x_hat = x_hat_initial
u_t = self.L_t[0] * x_hat + self.l_t[0]
self.S_bar_t[0] = numpy.matrix(
numpy.zeros((num_states, num_states)))
self.s_bar_t[0] = numpy.matrix(numpy.zeros((num_states, 1)))
self.s_scalar_bar_t[0] = numpy.matrix([[0]])
self.last_x_hat_t[0] = x_hat_initial
Q_t = numerical_jacobian_x_x(self.cost.cost, x_hat_initial, u_t)
P_t = numerical_jacobian_x_u(self.cost.cost, x_hat_initial, u_t)
R_t = numerical_jacobian_u_u(self.cost.cost, x_hat_initial, u_t)
q_t = numerical_jacobian_x(self.cost.cost, x_hat_initial, u_t).T \
- Q_t * x_hat_initial - P_t.T * u_t
r_t = numerical_jacobian_u(self.cost.cost, x_hat_initial, u_t).T \
- P_t * x_hat_initial - R_t * u_t
q_scalar_t = self.cost.cost(x_hat_initial, u_t) \
- 0.5 * (x_hat_initial.T * (Q_t * x_hat_initial + P_t.T * u_t) \
+ u_t.T * (P_t * x_hat_initial + R_t * u_t)) \
- x_hat_initial.T * q_t - u_t.T * r_t
start_A_t = numerical_jacobian_x(self.dynamics.discrete_dynamics,
x_hat_initial, u_t)
start_B_t = numerical_jacobian_u(self.dynamics.discrete_dynamics,
x_hat_initial, u_t)
x_hat_next = self.dynamics.discrete_dynamics(x_hat_initial, u_t)
start_c_t = x_hat_next - start_A_t * x_hat_initial - start_B_t * u_t
B_svd_u, B_svd_sigma_diag, B_svd_v = numpy.linalg.svd(start_B_t)
B_svd_sigma = numpy.matrix(numpy.zeros(start_B_t.shape))
B_svd_sigma[0:B_svd_sigma_diag.shape[0], 0:B_svd_sigma_diag.shape[0]] = \
numpy.diag(B_svd_sigma_diag)
B_svd_sigma_inv = numpy.matrix(numpy.zeros(start_B_t.shape)).T
B_svd_sigma_inv[0:B_svd_sigma_diag.shape[0],
0:B_svd_sigma_diag.shape[0]] = \
numpy.linalg.inv(numpy.diag(B_svd_sigma_diag))
B_svd_inv = B_svd_v.T * B_svd_sigma_inv * B_svd_u.T
self.L_bar_t[1] = B_svd_inv
self.l_bar_t[1] = -B_svd_inv * (start_A_t * x_hat_initial +
start_c_t)
self.S_bar_t[1] = self.L_bar_t[1].T * R_t * self.L_bar_t[1]
TotalS_1 = start_B_t.T * self.S_t[1] * start_B_t + R_t
Totals_1 = start_B_t.T * self.S_t[1] * (start_c_t + start_A_t * x_hat_initial) \
+ start_B_t.T * self.s_t[1] + P_t * x_hat_initial + r_t
Totals_scalar_1 = 0.5 * (start_c_t.T + x_hat_initial.T * start_A_t.T) * self.S_t[1] * (start_c_t + start_A_t * x_hat_initial) \
+ self.s_scalar_t[1] + x_hat_initial.T * q_t + q_scalar_t \
+ 0.5 * x_hat_initial.T * Q_t * x_hat_initial \
+ (start_c_t.T + x_hat_initial.T * start_A_t.T) * self.s_t[1]
optimal_u_1 = -numpy.linalg.solve(TotalS_1, Totals_1)
optimal_x_1 = start_A_t * x_hat_initial \
+ start_B_t * optimal_u_1 + start_c_t
# TODO(austin): Disable this if we are controlable. It should not be needed then.
S_bar_1_eigh_eigenvalues, S_bar_1_eigh_eigenvectors = \
numpy.linalg.eigh(self.S_bar_t[1])
S_bar_1_eigh = numpy.matrix(numpy.diag(S_bar_1_eigh_eigenvalues))
S_bar_1_eigh_eigenvalues_stiff = S_bar_1_eigh_eigenvalues.copy()
for i in range(S_bar_1_eigh_eigenvalues_stiff.shape[0]):
if abs(S_bar_1_eigh_eigenvalues_stiff[i]) < 1e-8:
S_bar_1_eigh_eigenvalues_stiff[i] = max(
S_bar_1_eigh_eigenvalues_stiff) * 1.0
S_bar_stiff = S_bar_1_eigh_eigenvectors * numpy.matrix(
numpy.diag(S_bar_1_eigh_eigenvalues_stiff)
) * S_bar_1_eigh_eigenvectors.T
print('Min u', -numpy.linalg.solve(TotalS_1, Totals_1))
print('Min x_hat', optimal_x_1)
self.s_bar_t[1] = -self.s_t[1] - (S_bar_stiff +
self.S_t[1]) * optimal_x_1
self.s_scalar_bar_t[1] = 0.5 * (optimal_u_1.T * TotalS_1 * optimal_u_1 \
- optimal_x_1.T * (S_bar_stiff + self.S_t[1]) * optimal_x_1) \
+ optimal_u_1.T * Totals_1 \
- optimal_x_1.T * (self.s_bar_t[1] + self.s_t[1]) \
- self.s_scalar_t[1] + Totals_scalar_1
print('optimal_u_1', optimal_u_1)
print('TotalS_1', TotalS_1)
print('Totals_1', Totals_1)
print('Totals_scalar_1', Totals_scalar_1)
print('overall cost 1', 0.5 * (optimal_u_1.T * TotalS_1 * optimal_u_1) \
+ optimal_u_1.T * Totals_1 + Totals_scalar_1)
print('overall cost 0', 0.5 * (x_hat_initial.T * self.S_t[0] * x_hat_initial) \
+ x_hat_initial.T * self.s_t[0] + self.s_scalar_t[0])
print('t forward 0')
print('x_hat_initial[ 0]: %s' % (x_hat_initial))
print('x_hat[%2d]: %s' % (0, x_hat.T))
print('x_hat_next[%2d]: %s' % (0, x_hat_next.T))
print('u[%2d]: %s' % (0, u_t.T))
print('L[ 0]: %s' % (self.L_t[0], )).replace('\n', '\n ')
print('l[ 0]: %s' % (self.l_t[0], )).replace('\n', '\n ')
print('A_t[%2d]: %s' % (0, start_A_t)).replace('\n', '\n ')
print('B_t[%2d]: %s' % (0, start_B_t)).replace('\n', '\n ')
print('c_t[%2d]: %s' % (0, start_c_t)).replace('\n', '\n ')
# TODO(austin): optimal_x_1 is x_hat
x_hat = -numpy.linalg.solve((self.S_t[1] + S_bar_stiff),
(self.s_t[1] + self.s_bar_t[1]))
print('new xhat', x_hat)
self.S_bar_t[1] = S_bar_stiff
self.last_x_hat_t[1] = x_hat
for t in range(1, l):
print('t forward', t)
u_t = self.L_t[t] * x_hat + self.l_t[t]
x_hat_next = self.dynamics.discrete_dynamics(x_hat, u_t)
A_bar_t = numerical_jacobian_x(
self.dynamics.inverse_discrete_dynamics, x_hat_next, u_t)
B_bar_t = numerical_jacobian_u(
self.dynamics.inverse_discrete_dynamics, x_hat_next, u_t)
c_bar_t = x_hat - A_bar_t * x_hat_next - B_bar_t * u_t
print('x_hat[%2d]: %s' % (t, x_hat.T))
print('x_hat_next[%2d]: %s' % (t, x_hat_next.T))
print('L[%2d]: %s' % (
t,
self.L_t[t],
)).replace('\n', '\n ')
print('l[%2d]: %s' % (
t,
self.l_t[t],
)).replace('\n', '\n ')
print('u[%2d]: %s' % (t, u_t.T))
print('A_bar_t[%2d]: %s' % (t, A_bar_t)).replace(
'\n', '\n ')
print('B_bar_t[%2d]: %s' % (t, B_bar_t)).replace(
'\n', '\n ')
print('c_bar_t[%2d]: %s' % (t, c_bar_t)).replace(
'\n', '\n ')
Q_t = numerical_jacobian_x_x(self.cost.cost, x_hat, u_t)
P_t = numerical_jacobian_x_u(self.cost.cost, x_hat, u_t)
R_t = numerical_jacobian_u_u(self.cost.cost, x_hat, u_t)
q_t = numerical_jacobian_x(self.cost.cost, x_hat, u_t).T \
- Q_t * x_hat - P_t.T * u_t
r_t = numerical_jacobian_u(self.cost.cost, x_hat, u_t).T \
- P_t * x_hat - R_t * u_t
q_scalar_t = self.cost.cost(x_hat, u_t) \
- 0.5 * (x_hat.T * (Q_t * x_hat + P_t.T * u_t) \
+ u_t.T * (P_t * x_hat + R_t * u_t)) - x_hat.T * q_t - u_t.T * r_t
C_bar_t = B_bar_t.T * (self.S_bar_t[t] +
Q_t) * A_bar_t + P_t * A_bar_t
D_bar_t = A_bar_t.T * (self.S_bar_t[t] + Q_t) * A_bar_t
E_bar_t = B_bar_t.T * (self.S_bar_t[t] + Q_t) * B_bar_t + R_t \
+ P_t * B_bar_t + B_bar_t.T * P_t.T
d_bar_t = A_bar_t.T * (self.s_bar_t[t] + q_t) \
+ A_bar_t.T * (self.S_bar_t[t] + Q_t) * c_bar_t
e_bar_t = r_t + P_t * c_bar_t + B_bar_t.T * self.s_bar_t[t] \
+ B_bar_t.T * (self.S_bar_t[t] + Q_t) * c_bar_t
self.L_bar_t[t + 1] = -numpy.linalg.inv(E_bar_t) * C_bar_t
self.l_bar_t[t + 1] = -numpy.linalg.inv(E_bar_t) * e_bar_t
self.S_bar_t[t + 1] = D_bar_t + C_bar_t.T * self.L_bar_t[t + 1]
self.s_bar_t[t + 1] = d_bar_t + C_bar_t.T * self.l_bar_t[t + 1]
self.s_scalar_bar_t[t + 1] = \
-0.5 * e_bar_t.T * numpy.linalg.inv(E_bar_t) * e_bar_t \
+ 0.5 * c_bar_t.T * (self.S_bar_t[t] + Q_t) * c_bar_t \
+ c_bar_t.T * self.s_bar_t[t] + c_bar_t.T * q_t \
+ self.s_scalar_bar_t[t] + q_scalar_t
x_hat = -numpy.linalg.solve(
(self.S_t[t + 1] + self.S_bar_t[t + 1]),
(self.s_t[t + 1] + self.s_bar_t[t + 1]))
self.S_t[l] = self.cost.estimate_Q_final(x_hat)
self.s_t[l] = self.cost.estimate_q_final(x_hat)
x_hat = -numpy.linalg.inv(self.S_t[l] + self.S_bar_t[l]) \
* (self.s_t[l] + self.s_bar_t[l])
for t in reversed(range(l)):
print('t backward', t)
# TODO(austin): I don't think we can use L_t like this here.
# I think we are off by 1 somewhere...
u_t = self.L_bar_t[t + 1] * x_hat + self.l_bar_t[t + 1]
x_hat_prev = self.dynamics.inverse_discrete_dynamics(
x_hat, u_t)
print('x_hat[%2d]: %s' % (t, x_hat.T))
print('x_hat_prev[%2d]: %s' % (t, x_hat_prev.T))
print('L_bar[%2d]: %s' % (t + 1, self.L_bar_t[t + 1])).replace(
'\n', '\n ')
print('l_bar[%2d]: %s' % (t + 1, self.l_bar_t[t + 1])).replace(
'\n', '\n ')
print('u[%2d]: %s' % (t, u_t.T))
# Now compute the linearized A, B, and C
# Start by doing it numerically, and then optimize.
A_t = numerical_jacobian_x(self.dynamics.discrete_dynamics,
x_hat_prev, u_t)
B_t = numerical_jacobian_u(self.dynamics.discrete_dynamics,
x_hat_prev, u_t)
c_t = x_hat - A_t * x_hat_prev - B_t * u_t
print('A_t[%2d]: %s' % (t, A_t)).replace('\n', '\n ')
print('B_t[%2d]: %s' % (t, B_t)).replace('\n', '\n ')
print('c_t[%2d]: %s' % (t, c_t)).replace('\n', '\n ')
Q_t = numerical_jacobian_x_x(self.cost.cost, x_hat_prev, u_t)
P_t = numerical_jacobian_x_u(self.cost.cost, x_hat_prev, u_t)
P_T_t = numerical_jacobian_u_x(self.cost.cost, x_hat_prev, u_t)
R_t = numerical_jacobian_u_u(self.cost.cost, x_hat_prev, u_t)
q_t = numerical_jacobian_x(self.cost.cost, x_hat_prev, u_t).T \
- Q_t * x_hat_prev - P_T_t * u_t
r_t = numerical_jacobian_u(self.cost.cost, x_hat_prev, u_t).T \
- P_t * x_hat_prev - R_t * u_t
q_scalar_t = self.cost.cost(x_hat_prev, u_t) \
- 0.5 * (x_hat_prev.T * (Q_t * x_hat_prev + P_t.T * u_t) \
+ u_t.T * (P_t * x_hat_prev + R_t * u_t)) \
- x_hat_prev.T * q_t - u_t.T * r_t
C_t = P_t + B_t.T * self.S_t[t + 1] * A_t
D_t = Q_t + A_t.T * self.S_t[t + 1] * A_t
E_t = R_t + B_t.T * self.S_t[t + 1] * B_t
d_t = q_t + A_t.T * self.s_t[t + 1] + A_t.T * self.S_t[t +
1] * c_t
e_t = r_t + B_t.T * self.s_t[t + 1] + B_t.T * self.S_t[t +
1] * c_t
self.L_t[t] = -numpy.linalg.inv(E_t) * C_t
self.l_t[t] = -numpy.linalg.inv(E_t) * e_t
self.s_t[t] = d_t + C_t.T * self.l_t[t]
self.S_t[t] = D_t + C_t.T * self.L_t[t]
self.s_scalar_t[t] = q_scalar_t \
- 0.5 * e_t.T * numpy.linalg.inv(E_t) * e_t \
+ 0.5 * c_t.T * self.S_t[t + 1] * c_t \
+ c_t.T * self.s_t[t + 1] \
+ self.s_scalar_t[t + 1]
x_hat = -numpy.linalg.solve((self.S_t[t] + self.S_bar_t[t]),
(self.s_t[t] + self.s_bar_t[t]))
if t == 0:
self.last_x_hat_t[t] = x_hat_initial
else:
self.last_x_hat_t[t] = x_hat
x_hat_t = [x_hat_initial]
pylab.figure('states %d' % a)
pylab.ion()
for dim in range(num_states):
pylab.plot(
numpy.arange(len(self.last_x_hat_t)),
[x_hat_loop[dim, 0] for x_hat_loop in self.last_x_hat_t],
marker='o',
label='Xhat[%d]' % dim)
pylab.legend()
pylab.draw()
pylab.figure('xy %d' % a)
pylab.ion()
pylab.plot([x_hat_loop[0, 0] for x_hat_loop in self.last_x_hat_t],
[x_hat_loop[1, 0] for x_hat_loop in self.last_x_hat_t],
marker='o',
label='trajectory')
pylab.legend()
pylab.draw()
final_u_t = [
numpy.matrix(numpy.zeros((num_inputs, 1))) for _ in range(l + 1)
]
cost_to_go = []
cost_to_come = []
cost = []
for t in range(l):
cost_to_go.append(
(0.5 * self.last_x_hat_t[t].T * self.S_t[t] * self.last_x_hat_t[t] \
+ self.last_x_hat_t[t].T * self.s_t[t] + self.s_scalar_t[t])[0, 0])
cost_to_come.append(
(0.5 * self.last_x_hat_t[t].T * self.S_bar_t[t] * self.last_x_hat_t[t] \
+ self.last_x_hat_t[t].T * self.s_bar_t[t] + self.s_scalar_bar_t[t])[0, 0])
cost.append(cost_to_go[-1] + cost_to_come[-1])
final_u_t[t] = self.L_t[t] * self.last_x_hat_t[t] + self.l_t[t]
for t in range(l):
A_t = numerical_jacobian_x(self.dynamics.discrete_dynamics,
self.last_x_hat_t[t], final_u_t[t])
B_t = numerical_jacobian_u(self.dynamics.discrete_dynamics,
self.last_x_hat_t[t], final_u_t[t])
c_t = self.dynamics.discrete_dynamics(self.last_x_hat_t[t], final_u_t[t]) \
- A_t * self.last_x_hat_t[t] - B_t * final_u_t[t]
print("Infeasability at", t, "is",
((A_t * self.last_x_hat_t[t] + B_t * final_u_t[t] + c_t) \
- self.last_x_hat_t[t + 1]).T)
pylab.figure('u')
samples = numpy.arange(len(final_u_t))
for i in range(num_inputs):
pylab.plot(samples, [u[i, 0] for u in final_u_t],
label='u[%d]' % i,
marker='o')
pylab.legend()
pylab.figure('cost')
cost_samples = numpy.arange(len(cost))
pylab.plot(cost_samples, cost_to_go, label='cost to go', marker='o')
pylab.plot(cost_samples,
cost_to_come,
label='cost to come',
marker='o')
pylab.plot(cost_samples, cost, label='cost', marker='o')
pylab.legend()
pylab.ioff()
pylab.show()
if __name__ == '__main__':
dt = 0.05
#arm_dynamics = ArmDynamics(dt=dt)
#elqr = ELQR(arm_dynamics, ArmCostFunction(dt=dt, dynamics=arm_dynamics))
#x_hat_initial = numpy.matrix([[0.10], [1.0], [0.0], [0.0]])
#elqr.Solve(x_hat_initial, 100, 3)
elqr = ELQR(SkidSteerDynamics(dt=dt), CostFunction(dt=dt))
x_hat_initial = numpy.matrix([[0.10], [1.0], [0.0]])
elqr.Solve(x_hat_initial, 100, 15)
sys.exit(1)