blob: f7262a76ab587daa3ff3b8ce21b25e78cce37c07 [file] [log] [blame]
#!/usr/bin/python3
from frc971.control_loops.python import control_loop
from frc971.control_loops.python import controls
import numpy
import math
import sys
from matplotlib import pylab
import matplotlib
import glog
class DrivetrainParams(object):
def __init__(self,
J,
mass,
robot_radius,
wheel_radius,
G=None,
G_high=None,
G_low=None,
q_pos=None,
q_pos_low=None,
q_pos_high=None,
q_vel=None,
q_vel_low=None,
q_vel_high=None,
efficiency=0.60,
has_imu=False,
force=False,
kf_q_voltage=10.0,
motor_type=control_loop.CIM(),
num_motors=2,
dt=0.00505,
controller_poles=[0.90, 0.90],
observer_poles=[0.02, 0.02],
robot_cg_offset=0.0,
coefficient_of_friction=1.0):
"""Defines all constants of a drivetrain.
Args:
J: float, Moment of inertia of drivetrain in kg m^2
mass: float, Mass of the robot in kg.
robot_radius: float, Radius of the robot, in meters (requires tuning by
hand).
wheel_radius: float, Radius of the wheels, in meters.
G: float, Gear ratio for a single speed.
G_high: float, Gear ratio for high gear.
G_low: float, Gear ratio for low gear.
dt: float, Control loop time step.
q_pos: float, q position for a single speed LQR controller.
q_pos_low: float, q position low gear LQR controller.
q_pos_high: float, q position high gear LQR controller.
q_vel: float, q velocity for a single speed LQR controller.
q_vel_low: float, q velocity low gear LQR controller.
q_vel_high: float, q velocity high gear LQR controller.
efficiency: float, gear box effiency.
has_imu: bool, true if imu is present.
force: bool, true if force.
kf_q_voltage: float
motor_type: object, class of values defining the motor in drivetrain.
num_motors: int, number of motors on one side of drivetrain.
controller_poles: array, An array of poles for the polydrivetrain
controller. (See control_loop.py)
observer_poles: array, An array of poles. (See control_loop.py)
robot_cg_offset: offset in meters of CG from robot center to left side
"""
if G is not None:
assert (G_high is None)
assert (G_low is None)
G_high = G
G_low = G
assert (G_high is not None)
assert (G_low is not None)
if q_pos is not None:
assert (q_pos_low is None)
assert (q_pos_high is None)
q_pos_low = q_pos
q_pos_high = q_pos
assert (q_pos_low is not None)
assert (q_pos_high is not None)
if q_vel is not None:
assert (q_vel_low is None)
assert (q_vel_high is None)
q_vel_low = q_vel
q_vel_high = q_vel
assert (q_vel_low is not None)
assert (q_vel_high is not None)
self.J = J
self.mass = mass
self.robot_radius = robot_radius
self.robot_cg_offset = robot_cg_offset
self.wheel_radius = wheel_radius
self.G_high = G_high
self.G_low = G_low
self.dt = dt
self.q_pos_low = q_pos_low
self.q_pos_high = q_pos_high
self.q_vel_low = q_vel_low
self.q_vel_high = q_vel_high
self.efficiency = efficiency
self.has_imu = has_imu
self.kf_q_voltage = kf_q_voltage
self.motor_type = motor_type
self.force = force
self.num_motors = num_motors
self.controller_poles = controller_poles
self.observer_poles = observer_poles
self.coefficient_of_friction = coefficient_of_friction
class Drivetrain(control_loop.ControlLoop):
def __init__(self,
drivetrain_params,
name="Drivetrain",
left_low=True,
right_low=True):
"""Defines a base drivetrain for a robot.
Args:
drivetrain_params: DrivetrainParams, class of values defining the drivetrain.
name: string, Name of this drivetrain.
left_low: bool, Whether the left is in high gear.
right_low: bool, Whether the right is in high gear.
"""
super(Drivetrain, self).__init__(name)
# Moment of inertia of the drivetrain in kg m^2
self.J = drivetrain_params.J
# Mass of the robot, in kg.
self.mass = drivetrain_params.mass
# Radius of the robot, in meters (requires tuning by hand)
self.robot_radius = drivetrain_params.robot_radius
# Radius of the wheels, in meters.
self.r = drivetrain_params.wheel_radius
self.has_imu = drivetrain_params.has_imu
# Offset in meters of the CG from the center of the robot to the left side
# of the robot. Since the arm is on the right side, the offset will
# likely be a negative number.
self.robot_cg_offset = drivetrain_params.robot_cg_offset
# Distance from the left side of the robot to the Center of Gravity
self.robot_radius_l = drivetrain_params.robot_radius - self.robot_cg_offset
# Distance from the right side of the robot to the Center of Gravity
self.robot_radius_r = drivetrain_params.robot_radius + self.robot_cg_offset
# Gear ratios
self.G_low = drivetrain_params.G_low
self.G_high = drivetrain_params.G_high
if left_low:
self.Gl = self.G_low
else:
self.Gl = self.G_high
if right_low:
self.Gr = self.G_low
else:
self.Gr = self.G_high
# Control loop time step
self.dt = drivetrain_params.dt
self.efficiency = drivetrain_params.efficiency
self.force = drivetrain_params.force
self.BuildDrivetrain(drivetrain_params.motor_type,
drivetrain_params.num_motors)
if left_low or right_low:
q_pos = drivetrain_params.q_pos_low
q_vel = drivetrain_params.q_vel_low
else:
q_pos = drivetrain_params.q_pos_high
q_vel = drivetrain_params.q_vel_high
self.BuildDrivetrainController(q_pos, q_vel)
self.InitializeState()
def BuildDrivetrain(self, motor, num_motors_per_side):
self.motor = motor
# Number of motors per side
self.num_motors = num_motors_per_side
# Stall Torque in N m
self.stall_torque = motor.stall_torque * self.num_motors * self.efficiency
# Stall Current in Amps
self.stall_current = motor.stall_current * self.num_motors
# Free Speed in rad/s
self.free_speed = motor.free_speed
# Free Current in Amps
self.free_current = motor.free_current * self.num_motors
# Effective motor resistance in ohms.
self.resistance = 12.0 / self.stall_current
# Resistance of the motor, divided by the number of motors.
# Motor velocity constant
self.Kv = (self.free_speed /
(12.0 - self.resistance * self.free_current))
# Torque constant
self.Kt = self.stall_torque / self.stall_current
# These describe the way that a given side of a robot will be influenced
# by the other side. Units of 1 / kg.
self.mspl = 1.0 / self.mass + self.robot_radius_l * self.robot_radius_l / self.J
self.mspr = 1.0 / self.mass + self.robot_radius_r * self.robot_radius_r / self.J
self.msnl = self.robot_radius_r / ( self.robot_radius_l * self.mass ) - \
self.robot_radius_l * self.robot_radius_r / self.J
self.msnr = self.robot_radius_l / ( self.robot_radius_r * self.mass ) - \
self.robot_radius_l * self.robot_radius_r / self.J
# The calculations which we will need for A and B.
self.tcl = self.Kt / self.Kv / (self.Gl * self.Gl * self.resistance *
self.r * self.r)
self.tcr = self.Kt / self.Kv / (self.Gr * self.Gr * self.resistance *
self.r * self.r)
self.mpl = self.Kt / (self.Gl * self.resistance * self.r)
self.mpr = self.Kt / (self.Gr * self.resistance * self.r)
# State feedback matrices
# X will be of the format
# [[positionl], [velocityl], [positionr], [velocityr]]
self.A_continuous = numpy.matrix(
[[0, 1, 0,
0], [0, -self.mspl * self.tcl, 0, -self.msnr * self.tcr],
[0, 0, 0, 1],
[0, -self.msnl * self.tcl, 0, -self.mspr * self.tcr]])
self.B_continuous = numpy.matrix(
[[0, 0], [self.mspl * self.mpl, self.msnr * self.mpr], [0, 0],
[self.msnl * self.mpl, self.mspr * self.mpr]])
self.C = numpy.matrix([[1, 0, 0, 0], [0, 0, 1, 0]])
self.D = numpy.matrix([[0, 0], [0, 0]])
self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
self.B_continuous, self.dt)
def BuildDrivetrainController(self, q_pos, q_vel):
# We can solve for the max velocity by setting \dot(x) = Ax + Bu to 0
max_voltage = 12
glog.debug(
"Max speed %f m/s",
-(self.B_continuous[1, 1] + self.B_continuous[1, 0]) /
(self.A_continuous[1, 1] + self.A_continuous[1, 3]) * max_voltage)
# Tune the LQR controller
self.Q = numpy.matrix([[(1.0 / (q_pos**2.0)), 0.0, 0.0, 0.0],
[0.0, (1.0 / (q_vel**2.0)), 0.0, 0.0],
[0.0, 0.0, (1.0 / (q_pos**2.0)), 0.0],
[0.0, 0.0, 0.0, (1.0 / (q_vel**2.0))]])
self.R = numpy.matrix([[(1.0 / (12.0**2.0)), 0.0],
[0.0, (1.0 / (12.0**2.0))]])
self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
glog.debug('DT q_pos %f q_vel %s %s', q_pos, q_vel, self._name)
glog.debug('Poles: %s',
str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
glog.debug(
'Time constants: %s hz',
str([
numpy.log(x) / -self.dt
for x in numpy.linalg.eig(self.A - self.B * self.K)[0]
]))
glog.debug('K %s', repr(self.K))
self.hlp = 0.3
self.llp = 0.4
self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp])
self.U_max = numpy.matrix([[12.0], [12.0]])
self.U_min = numpy.matrix([[-12.0], [-12.0]])
class KFDrivetrain(Drivetrain):
def __init__(self,
drivetrain_params,
name="KFDrivetrain",
left_low=True,
right_low=True):
"""Kalman filter values of a drivetrain.
Args:
drivetrain_params: DrivetrainParams, class of values defining the drivetrain.
name: string, Name of this drivetrain.
left_low: bool, Whether the left is in high gear.
right_low: bool, Whether the right is in high gear.
"""
super(KFDrivetrain, self).__init__(drivetrain_params, name, left_low,
right_low)
self.unaugmented_A_continuous = self.A_continuous
self.unaugmented_B_continuous = self.B_continuous
# The practical voltage applied to the wheels is
# V_left = U_left + left_voltage_error
#
# The states are
# [left position, left velocity, right position, right velocity,
# left voltage error, right voltage error, angular_error]
#
# The left and right positions are filtered encoder positions and are not
# adjusted for heading error.
# The turn velocity as computed by the left and right velocities is
# adjusted by the gyro velocity.
# The angular_error is the angular velocity error between the wheel speed
# and the gyro speed.
self.A_continuous = numpy.matrix(numpy.zeros((7, 7)))
self.B_continuous = numpy.matrix(numpy.zeros((7, 2)))
self.A_continuous[0:4, 0:4] = self.unaugmented_A_continuous
if self.force:
self.A_continuous[0:4, 4:6] = numpy.matrix([[0.0, 0.0],
[self.mspl, self.msnl],
[0.0, 0.0],
[self.msnr,
self.mspr]])
q_voltage = drivetrain_params.kf_q_voltage * self.mpl
else:
self.A_continuous[0:4, 4:6] = self.unaugmented_B_continuous
q_voltage = drivetrain_params.kf_q_voltage
self.B_continuous[0:4, 0:2] = self.unaugmented_B_continuous
self.A_continuous[0, 6] = 1
self.A_continuous[2, 6] = -1
self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
self.B_continuous, self.dt)
if self.has_imu:
self.C = numpy.matrix([[1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[
0,
-0.5 / drivetrain_params.robot_radius,
0, 0.5 / drivetrain_params.robot_radius,
0, 0, 0
], [0, 0, 0, 0, 0, 0, 0]])
gravity = 9.8
self.C[3, 0:6] = 0.5 * (self.A_continuous[1, 0:6] +
self.A_continuous[3, 0:6]) / gravity
self.D = numpy.matrix([
[0, 0], [0, 0], [0, 0],
[
0.5 * (self.B_continuous[1, 0] + self.B_continuous[3, 0]) /
gravity,
0.5 * (self.B_continuous[1, 1] + self.B_continuous[3, 1]) /
gravity
]
])
else:
self.C = numpy.matrix([[1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[
0,
-0.5 / drivetrain_params.robot_radius,
0, 0.5 / drivetrain_params.robot_radius,
0, 0, 0
]])
self.D = numpy.matrix([[0, 0], [0, 0], [0, 0]])
q_pos = 0.05
q_vel = 1.00
q_encoder_uncertainty = 2.00
self.Q = numpy.matrix(
[[(q_pos**2.0), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, (q_vel**2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, (q_pos**2.0), 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, (q_vel**2.0), 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, (q_voltage**2.0), 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage**2.0), 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, (q_encoder_uncertainty**2.0)]])
r_pos = 0.0001
r_gyro = 0.000001
if self.has_imu:
r_accelerometer = 7.0
self.R = numpy.matrix([[(r_pos**2.0), 0.0, 0.0, 0.0],
[0.0, (r_pos**2.0), 0.0, 0.0],
[0.0, 0.0, (r_gyro**2.0), 0.0],
[0.0, 0.0, 0.0, (r_accelerometer**2.0)]])
else:
self.R = numpy.matrix([[(r_pos**2.0), 0.0, 0.0],
[0.0, (r_pos**2.0), 0.0],
[0.0, 0.0, (r_gyro**2.0)]])
# Solving for kf gains.
self.KalmanGain, self.Q_steady = controls.kalman(A=self.A,
B=self.B,
C=self.C,
Q=self.Q,
R=self.R)
# If we don't have an IMU, pad various matrices with zeros so that
# we can still have 4 measurement outputs.
if not self.has_imu:
self.KalmanGain = numpy.hstack(
(self.KalmanGain, numpy.matrix(numpy.zeros((7, 1)))))
self.C = numpy.vstack((self.C, numpy.matrix(numpy.zeros((1, 7)))))
self.D = numpy.vstack((self.D, numpy.matrix(numpy.zeros((1, 2)))))
Rtmp = numpy.zeros((4, 4))
Rtmp[0:3, 0:3] = self.R
self.R = Rtmp
self.L = self.A * self.KalmanGain
unaug_K = self.K
# Implement a nice closed loop controller for use by the closed loop
# controller.
self.K = numpy.matrix(numpy.zeros((self.B.shape[1], self.A.shape[0])))
self.K[0:2, 0:4] = unaug_K
if self.force:
self.K[0, 4] = 1.0 / self.mpl
self.K[1, 5] = 1.0 / self.mpr
else:
self.K[0, 4] = 1.0
self.K[1, 5] = 1.0
self.Qff = numpy.matrix(numpy.zeros((4, 4)))
qff_pos = 0.005
qff_vel = 1.00
self.Qff[0, 0] = 1.0 / qff_pos**2.0
self.Qff[1, 1] = 1.0 / qff_vel**2.0
self.Qff[2, 2] = 1.0 / qff_pos**2.0
self.Qff[3, 3] = 1.0 / qff_vel**2.0
self.Kff = numpy.matrix(numpy.zeros((2, 7)))
self.Kff[0:2,
0:4] = controls.TwoStateFeedForwards(self.B[0:4, :], self.Qff)
self.InitializeState()
def WriteDrivetrain(drivetrain_files,
kf_drivetrain_files,
year_namespace,
drivetrain_params,
scalar_type='double'):
# Write the generated constants out to a file.
drivetrain_low_low = Drivetrain(name="DrivetrainLowLow",
left_low=True,
right_low=True,
drivetrain_params=drivetrain_params)
drivetrain_low_high = Drivetrain(name="DrivetrainLowHigh",
left_low=True,
right_low=False,
drivetrain_params=drivetrain_params)
drivetrain_high_low = Drivetrain(name="DrivetrainHighLow",
left_low=False,
right_low=True,
drivetrain_params=drivetrain_params)
drivetrain_high_high = Drivetrain(name="DrivetrainHighHigh",
left_low=False,
right_low=False,
drivetrain_params=drivetrain_params)
kf_drivetrain_low_low = KFDrivetrain(name="KFDrivetrainLowLow",
left_low=True,
right_low=True,
drivetrain_params=drivetrain_params)
kf_drivetrain_low_high = KFDrivetrain(name="KFDrivetrainLowHigh",
left_low=True,
right_low=False,
drivetrain_params=drivetrain_params)
kf_drivetrain_high_low = KFDrivetrain(name="KFDrivetrainHighLow",
left_low=False,
right_low=True,
drivetrain_params=drivetrain_params)
kf_drivetrain_high_high = KFDrivetrain(name="KFDrivetrainHighHigh",
left_low=False,
right_low=False,
drivetrain_params=drivetrain_params)
if isinstance(year_namespace, list):
namespaces = year_namespace
else:
namespaces = [year_namespace, 'control_loops', 'drivetrain']
dog_loop_writer = control_loop.ControlLoopWriter("Drivetrain", [
drivetrain_low_low, drivetrain_low_high, drivetrain_high_low,
drivetrain_high_high
],
namespaces=namespaces,
scalar_type=scalar_type)
dog_loop_writer.AddConstant(
control_loop.Constant("kDt",
"%f",
drivetrain_low_low.dt,
json_name="dt",
json_scale=1e9,
json_type=int))
dog_loop_writer.AddConstant(
control_loop.Constant("kStallTorque", "%f",
drivetrain_low_low.stall_torque))
dog_loop_writer.AddConstant(
control_loop.Constant("kStallCurrent", "%f",
drivetrain_low_low.stall_current))
dog_loop_writer.AddConstant(
control_loop.Constant("kFreeSpeed", "%f",
drivetrain_low_low.free_speed))
dog_loop_writer.AddConstant(
control_loop.Constant("kFreeCurrent", "%f",
drivetrain_low_low.free_current))
dog_loop_writer.AddConstant(
control_loop.Constant("kJ",
"%f",
drivetrain_low_low.J,
json_name="moment_of_inertia"))
dog_loop_writer.AddConstant(
control_loop.Constant("kMass",
"%f",
drivetrain_low_low.mass,
json_name="mass"))
dog_loop_writer.AddConstant(
control_loop.Constant("kRobotRadius",
"%f",
drivetrain_low_low.robot_radius,
json_name="robot_radius"))
dog_loop_writer.AddConstant(
control_loop.Constant("kWheelRadius",
"%f",
drivetrain_low_low.r,
json_name="wheel_radius"))
dog_loop_writer.AddConstant(
control_loop.Constant("kR", "%f", drivetrain_low_low.resistance))
dog_loop_writer.AddConstant(
control_loop.Constant("kV",
"%f",
drivetrain_low_low.Kv,
json_name="motor_kv"))
dog_loop_writer.AddConstant(
control_loop.Constant("kT", "%f", drivetrain_low_low.Kt))
dog_loop_writer.AddConstant(
control_loop.Constant("kLowGearRatio",
"%f",
drivetrain_low_low.G_low,
json_name="low_gear_ratio"))
dog_loop_writer.AddConstant(
control_loop.Constant("kHighGearRatio",
"%f",
drivetrain_high_high.G_high,
json_name="high_gear_ratio"))
dog_loop_writer.AddConstant(
control_loop.Constant(
"kHighOutputRatio", "%f",
drivetrain_high_high.G_high * drivetrain_high_high.r))
dog_loop_writer.Write(drivetrain_files[0], drivetrain_files[1],
drivetrain_files[2], "drivetrain_loop")
kf_loop_writer = control_loop.ControlLoopWriter("KFDrivetrain", [
kf_drivetrain_low_low, kf_drivetrain_low_high, kf_drivetrain_high_low,
kf_drivetrain_high_high
],
namespaces=namespaces,
scalar_type=scalar_type)
kf_loop_writer.Write(kf_drivetrain_files[0], kf_drivetrain_files[1],
kf_drivetrain_files[2], "kalman_drivetrain_loop")
def PlotDrivetrainSprint(drivetrain_params):
# Set up the gtk backend before running matplotlib.
matplotlib.use("GTK3Agg")
# Simulate the response of the system to a step input.
drivetrain = KFDrivetrain(left_low=False,
right_low=False,
drivetrain_params=drivetrain_params)
simulated_left_position = []
simulated_right_position = []
simulated_left_velocity = []
simulated_right_velocity = []
simulated_left_motor_currents = []
simulated_left_breaker_currents = []
simulated_right_motor_currents = []
simulated_right_breaker_currents = []
simulated_battery_heat_wattages = []
simulated_wattage = []
motor_inverter_voltages = []
voltage_left = []
voltage_right = []
simulated_motor_heat_wattages = []
simulated_motor_wattage = []
max_motor_currents = []
overall_currents = []
simulated_battery_wattage = []
# Distance in meters to call 1/2 field.
kSprintDistance = 8.0
kMaxBreakerCurrent = 220
vbat = 12.6
# Measured resistance of the battery, pd board, and breakers.
Rw = 0.023
top_speed = drivetrain.free_speed * (drivetrain.Gr +
drivetrain.Gl) / 2.0 * drivetrain.r
passed_distance = False
max_breaker_current = 0
heat_energy_usage = 0.0
for index in range(800):
# Current per side
left_traction_current = (drivetrain.mass / 2.0 *
drivetrain_params.coefficient_of_friction *
9.81 * drivetrain.r * drivetrain.Gl /
drivetrain.Kt)
right_traction_current = (drivetrain.mass / 2.0 *
drivetrain_params.coefficient_of_friction *
9.81 * drivetrain.r * drivetrain.Gr /
drivetrain.Kt)
# Detect if we've traveled over the sprint distance and report stats.
if (drivetrain.X[0, 0] + drivetrain.X[2, 0]) / 2.0 > kSprintDistance:
if not passed_distance:
velocity = (drivetrain.X[1, 0] + drivetrain.X[3, 0]) / 2.0
print("Took", index * drivetrain.dt,
"to pass 1/2 field, going", velocity, "m/s,",
velocity / 0.0254 / 12.0, "Traction limit current",
left_traction_current / drivetrain_params.num_motors,
"max breaker current", max_breaker_current, "top speed",
top_speed, "m/s", top_speed / 0.0254 / 12.0,
"fps, gear ratio", drivetrain.Gl, "heat energy",
heat_energy_usage)
passed_distance = True
bemf_left = drivetrain.X[
1, 0] / drivetrain.r / drivetrain.Gl / drivetrain.Kv
bemf_right = drivetrain.X[
3, 0] / drivetrain.r / drivetrain.Gr / drivetrain.Kv
# Max current we could push through the motors is what we would get if
# we short the battery through the battery resistance into the motor.
bemf = (bemf_left + bemf_right) / 2.0
max_motor_current = (vbat - bemf) / (Rw + drivetrain.resistance / 2.0)
max_motor_currents.append(max_motor_current /
(drivetrain_params.num_motors * 2))
# From this current, we can compute the voltage we can apply.
# This is either the traction limit or the current limit.
max_current_request_left = min(max_motor_current / 2,
left_traction_current)
max_current_request_right = min(max_motor_current / 2,
right_traction_current)
max_voltage_left = (bemf_left +
max_current_request_left * drivetrain.resistance)
max_voltage_right = (bemf_right +
max_current_request_right * drivetrain.resistance)
# Now, make sure we don't pull more power out of the battery than the
# breakers will let us pull. Do this by comparing the max power we can
# pull out of the battery with the requested power.
#
# TODO(austin): This all assumes the robot is symetric...
max_battery_wattage = kMaxBreakerCurrent * (vbat -
kMaxBreakerCurrent * Rw)
if (max_current_request_left * max_voltage_left +
max_current_request_right * max_voltage_right
> max_battery_wattage):
# Now solve the quadratic equation to figure out what the overall
# motor current can be which puts us at the max battery wattage.
max_motor_current = (
-bemf + math.sqrt(bemf * bemf + 4 * drivetrain.resistance /
2.0 * max_battery_wattage)) / (
2.0 * drivetrain.resistance / 2.0)
# Clip each side's currents to 1/2 of the max motor current since
# we know we are limited.
max_current_request_left = min(max_motor_current / 2.0,
max_current_request_left)
max_current_request_right = min(max_motor_current / 2.0,
max_current_request_right)
# And then update the voltages.
max_voltage_left = (
bemf_left + max_current_request_left * drivetrain.resistance)
max_voltage_right = (
bemf_right + max_current_request_right * drivetrain.resistance)
simulated_left_position.append(drivetrain.X[0, 0])
simulated_left_velocity.append(drivetrain.X[1, 0])
simulated_right_position.append(drivetrain.X[2, 0])
simulated_right_velocity.append(drivetrain.X[3, 0])
U = numpy.matrix([[min(max_voltage_left, vbat)],
[min(max_voltage_right, vbat)]])
# Stator current
simulated_left_motor_current = (U[0, 0] -
bemf_left) / drivetrain.resistance
simulated_right_motor_current = (U[1, 0] -
bemf_right) / drivetrain.resistance
# And this gives us the power pushed into the motors.
power = (U[0, 0] * simulated_left_motor_current +
U[1, 0] * simulated_right_motor_current)
simulated_wattage.append(power)
# Solve for the voltage we'd have to supply to the input of the motor
# controller to generate the power required.
motor_inverter_voltage = (
vbat + numpy.sqrt(vbat * vbat - 4.0 * power * Rw)) / 2.0
overall_current = (vbat - motor_inverter_voltage) / Rw
overall_currents.append(overall_current)
motor_inverter_voltages.append(motor_inverter_voltage)
# Overall left and right currents at the breaker
simulated_left_breaker_current = (
simulated_left_motor_current /
drivetrain_params.num_motors) * U[0, 0] / motor_inverter_voltage
simulated_right_breaker_current = (
simulated_right_motor_current /
drivetrain_params.num_motors) * U[1, 0] / motor_inverter_voltage
simulated_left_motor_currents.append(simulated_left_motor_current /
drivetrain_params.num_motors)
simulated_left_breaker_currents.append(simulated_left_breaker_current)
simulated_right_motor_currents.append(simulated_right_motor_current /
drivetrain_params.num_motors)
simulated_right_breaker_currents.append(
simulated_right_breaker_current)
# Save out the peak battery current observed.
max_breaker_current = max(
max_breaker_current,
max(simulated_left_breaker_current,
simulated_right_breaker_current))
# Compute the heat burned in the battery
simulated_battery_heat_wattage = math.pow(
vbat - motor_inverter_voltage, 2.0) / Rw
simulated_battery_heat_wattages.append(simulated_battery_heat_wattage)
motor_heat_wattage = (math.pow(simulated_left_motor_current, 2.0) *
drivetrain.resistance +
math.pow(simulated_right_motor_current, 2.0) *
drivetrain.resistance)
simulated_motor_heat_wattages.append(motor_heat_wattage)
simulated_motor_wattage.append(simulated_left_motor_current * U[0, 0] +
simulated_right_motor_current * U[1, 0])
simulated_battery_wattage.append(vbat * overall_current)
# And then the overall energy outputted by the battery.
heat_energy_usage += (motor_heat_wattage +
simulated_battery_heat_wattage) * drivetrain.dt
voltage_left.append(U[0, 0])
voltage_right.append(U[1, 0])
drivetrain.Update(U)
t = [drivetrain.dt * x for x in range(len(simulated_left_position))]
pylab.rc('lines', linewidth=4)
pylab.subplot(3, 1, 1)
pylab.plot(t, simulated_left_position, label='left position')
pylab.plot(t, simulated_right_position, 'r--', label='right position')
pylab.plot(t, simulated_left_velocity, label='left velocity')
pylab.plot(t, simulated_right_velocity, label='right velocity')
pylab.suptitle('Acceleration Test\n12 Volt Step Input')
pylab.legend(loc='lower right')
pylab.subplot(3, 1, 2)
pylab.plot(t, simulated_left_motor_currents, label='left rotor current')
pylab.plot(t,
simulated_right_motor_currents,
'r--',
label='right rotor current')
pylab.plot(t,
simulated_left_breaker_currents,
label='left breaker current')
pylab.plot(t,
simulated_right_breaker_currents,
'r--',
label='right breaker current')
pylab.plot(t, motor_inverter_voltages, label='motor inverter voltage')
pylab.plot(t, voltage_left, label='left voltage')
pylab.plot(t, voltage_right, label='right voltage')
pylab.plot(t, max_motor_currents, label='max_currents')
pylab.legend(loc='lower right')
wattage_axis = pylab.subplot(3, 1, 3)
wattage_axis.plot(t, simulated_wattage, label='wattage')
wattage_axis.plot(t,
simulated_battery_heat_wattages,
label='battery wattage')
wattage_axis.plot(t,
simulated_motor_heat_wattages,
label='motor heat wattage')
wattage_axis.plot(t, simulated_motor_wattage, label='motor wattage')
wattage_axis.plot(t, simulated_battery_wattage, label='overall wattage')
pylab.legend(loc='upper left')
overall_current_axis = wattage_axis.twinx()
overall_current_axis.plot(t, overall_currents, 'c--', label='current')
pylab.legend(loc='lower right')
pylab.suptitle('Acceleration Test\n12 Volt Step Input\n%f fps' %
(top_speed / 0.0254 / 12.0, ))
pylab.show()
def PlotDrivetrainMotions(drivetrain_params):
# Set up the gtk backend before running matplotlib.
matplotlib.use("GTK3Agg")
# Test out the voltage error.
drivetrain = KFDrivetrain(left_low=False,
right_low=False,
drivetrain_params=drivetrain_params)
close_loop_left = []
close_loop_right = []
left_power = []
right_power = []
R = numpy.matrix([[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]])
for _ in range(300):
U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), drivetrain.U_min,
drivetrain.U_max)
drivetrain.CorrectObserver(U)
drivetrain.PredictObserver(U)
drivetrain.Update(U + numpy.matrix([[1.0], [1.0]]))
close_loop_left.append(drivetrain.X[0, 0])
close_loop_right.append(drivetrain.X[2, 0])
left_power.append(U[0, 0])
right_power.append(U[1, 0])
t = [drivetrain.dt * x for x in range(300)]
pylab.plot(t, close_loop_left, label='left position')
pylab.plot(t, close_loop_right, 'm--', label='right position')
pylab.plot(t, left_power, label='left power')
pylab.plot(t, right_power, '--', label='right power')
pylab.suptitle('Voltage error')
pylab.legend()
pylab.show()
# Simulate the response of the system to a step input.
drivetrain = KFDrivetrain(left_low=False,
right_low=False,
drivetrain_params=drivetrain_params)
simulated_left = []
simulated_right = []
for _ in range(100):
drivetrain.Update(numpy.matrix([[12.0], [12.0]]))
simulated_left.append(drivetrain.X[0, 0])
simulated_right.append(drivetrain.X[2, 0])
pylab.rc('lines', linewidth=4)
pylab.plot(range(100), simulated_left, label='left position')
pylab.plot(range(100), simulated_right, 'r--', label='right position')
pylab.suptitle('Acceleration Test\n12 Volt Step Input')
pylab.legend(loc='lower right')
pylab.show()
# Simulate forwards motion.
drivetrain = KFDrivetrain(left_low=False,
right_low=False,
drivetrain_params=drivetrain_params)
close_loop_left = []
close_loop_right = []
left_power = []
right_power = []
R = numpy.matrix([[1.0], [0.0], [1.0], [0.0], [0.0], [0.0], [0.0]])
for _ in range(300):
U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), drivetrain.U_min,
drivetrain.U_max)
drivetrain.CorrectObserver(U)
drivetrain.PredictObserver(U)
drivetrain.Update(U)
close_loop_left.append(drivetrain.X[0, 0])
close_loop_right.append(drivetrain.X[2, 0])
left_power.append(U[0, 0])
right_power.append(U[1, 0])
t = [drivetrain.dt * x for x in range(300)]
pylab.plot(t, close_loop_left, label='left position')
pylab.plot(t, close_loop_right, 'm--', label='right position')
pylab.plot(t, left_power, label='left power')
pylab.plot(t, right_power, '--', label='right power')
pylab.suptitle('Linear Move\nLeft and Right Position going to 1')
pylab.legend()
pylab.show()
# Try turning in place
drivetrain = KFDrivetrain(drivetrain_params=drivetrain_params)
close_loop_left = []
close_loop_right = []
R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0], [0.0], [0.0], [0.0]])
for _ in range(200):
U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), drivetrain.U_min,
drivetrain.U_max)
drivetrain.CorrectObserver(U)
drivetrain.PredictObserver(U)
drivetrain.Update(U)
close_loop_left.append(drivetrain.X[0, 0])
close_loop_right.append(drivetrain.X[2, 0])
pylab.plot(range(200), close_loop_left, label='left position')
pylab.plot(range(200), close_loop_right, label='right position')
pylab.suptitle(
'Angular Move\nLeft position going to -1 and right position going to 1'
)
pylab.legend(loc='center right')
pylab.show()
# Try turning just one side.
drivetrain = KFDrivetrain(drivetrain_params=drivetrain_params)
close_loop_left = []
close_loop_right = []
R = numpy.matrix([[0.0], [0.0], [1.0], [0.0], [0.0], [0.0], [0.0]])
for _ in range(300):
U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), drivetrain.U_min,
drivetrain.U_max)
drivetrain.CorrectObserver(U)
drivetrain.PredictObserver(U)
drivetrain.Update(U)
close_loop_left.append(drivetrain.X[0, 0])
close_loop_right.append(drivetrain.X[2, 0])
pylab.plot(range(300), close_loop_left, label='left position')
pylab.plot(range(300), close_loop_right, label='right position')
pylab.suptitle(
'Pivot\nLeft position not changing and right position going to 1')
pylab.legend(loc='center right')
pylab.show()