| #include "aos/flatbuffers/static_flatbuffers.h" |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <algorithm> |
| #include <map> |
| #include <optional> |
| #include <ostream> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/log/check.h" |
| #include "absl/log/log.h" |
| #include "absl/strings/numbers.h" |
| #include "absl/strings/str_cat.h" |
| #include "absl/strings/str_format.h" |
| #include "absl/strings/str_join.h" |
| #include "absl/strings/str_replace.h" |
| #include "absl/strings/substitute.h" |
| #include "flatbuffers/base.h" |
| #include "flatbuffers/string.h" |
| #include "flatbuffers/vector.h" |
| |
| #include "aos/flatbuffers/base.h" |
| #include "aos/json_to_flatbuffer.h" |
| |
| namespace aos::fbs { |
| namespace { |
| // Represents a given field within a type with all of the data that we actually |
| // care about. |
| struct FieldData { |
| // Field name. |
| std::string name; |
| // Whether it is an inline data type (scalar/struct vs vector/table/string). |
| bool is_inline = true; |
| // Whether the elements are inline (vector of ints vs vector of strings). |
| bool elements_are_inline = true; |
| // Whether this is a struct or not. |
| bool is_struct = false; |
| // Whether this is a repeated type (vector or string). |
| bool is_repeated = false; |
| // Full C++ type of this field. |
| std::string full_type = ""; |
| // Full flatbuffer type for this field. |
| // Only specified for Tables. |
| std::optional<std::string> fbs_type = std::nullopt; |
| // Size of this field in the inline field data (i.e., size of the field for |
| // is_inline fields; 4 bytes for the offset for vectors/tables/strings). |
| size_t inline_size = 0u; |
| // Alignment of the inline data. |
| size_t inline_alignment = 0u; |
| // vtable offset of the field. |
| size_t vtable_offset = 0u; |
| // Size of the elements in the vector, if this is a vector. |
| size_t element_size = 0u; |
| }; |
| |
| const reflection::Object *GetObject(const reflection::Schema *schema, |
| const int index) { |
| return (index == -1) ? schema->root_table() : schema->objects()->Get(index); |
| } |
| |
| // Returns the flatbuffer field attribute with the specified name, if available. |
| std::optional<std::string_view> GetAttribute(const reflection::Field *field, |
| std::string_view attribute) { |
| if (!field->has_attributes()) { |
| return std::nullopt; |
| } |
| const reflection::KeyValue *kv = |
| field->attributes()->LookupByKey(attribute.data()); |
| if (kv == nullptr) { |
| return std::nullopt; |
| } |
| return kv->value()->string_view(); |
| } |
| |
| // Returns the implied value of an attribute that specifies a length (i.e., 0 if |
| // the attribute is not specified; the integer value otherwise). |
| int64_t GetLengthAttributeOrZero(const reflection::Field *field, |
| std::string_view attribute) { |
| std::optional<std::string_view> str = GetAttribute(field, attribute); |
| if (!str.has_value()) { |
| return 0; |
| } |
| int64_t value; |
| CHECK(absl::SimpleAtoi(str.value(), &value)) |
| << ": Field " << field->name()->string_view() |
| << " must specify a positive integer for the " << attribute |
| << " attribute. Got \"" << str.value() << "\"."; |
| CHECK_LE(0, value) << ": Field " << field->name()->string_view() |
| << " must have a non-negative " << attribute << "."; |
| return value; |
| } |
| |
| const std::string ScalarCppType(const reflection::BaseType type) { |
| switch (type) { |
| case reflection::BaseType::Bool: |
| return "bool"; |
| case reflection::BaseType::Byte: |
| return "int8_t"; |
| case reflection::BaseType::UByte: |
| return "uint8_t"; |
| case reflection::BaseType::Short: |
| return "int16_t"; |
| case reflection::BaseType::UShort: |
| return "uint16_t"; |
| case reflection::BaseType::Int: |
| return "int32_t"; |
| case reflection::BaseType::UInt: |
| return "uint32_t"; |
| case reflection::BaseType::Long: |
| return "int64_t"; |
| case reflection::BaseType::ULong: |
| return "uint64_t"; |
| case reflection::BaseType::Float: |
| return "float"; |
| case reflection::BaseType::Double: |
| return "double"; |
| case reflection::BaseType::UType: |
| case reflection::BaseType::String: |
| case reflection::BaseType::Vector: |
| case reflection::BaseType::Obj: |
| case reflection::BaseType::None: |
| case reflection::BaseType::Union: |
| case reflection::BaseType::Array: |
| case reflection::BaseType::MaxBaseType: |
| LOG(FATAL) << ": Type " << reflection::EnumNameBaseType(type) |
| << " not a scalar."; |
| } |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| const std::string FlatbufferNameToCppName(const std::string_view input) { |
| return absl::StrReplaceAll(input, {{".", "::"}}); |
| } |
| |
| const std::string AosNameForRawFlatbuffer(const std::string_view base_name) { |
| return absl::StrCat(base_name, "Static"); |
| } |
| |
| const std::string IncludePathForFbs( |
| std::string_view fbs_file, std::string_view include_suffix = "static") { |
| // Special case for the reflection_generated.h, which is checked into the |
| // repo. |
| // Note that we *do* autogenerated the reflection_static.h but that because |
| // it uses a special import path, we end up overriding the include anyways |
| // (note that we could muck around with the paths on the bazel side to instead |
| // get a cc_library with the correct include paths specified, although it is |
| // not clear that that would be any simpler than the extra else-if). |
| if (fbs_file == "reflection/reflection.fbs") { |
| if (include_suffix == "generated") { |
| return "flatbuffers/reflection_generated.h"; |
| } else if (include_suffix == "static") { |
| return "aos/flatbuffers/reflection/reflection_static.h"; |
| } else { |
| LOG(FATAL) << "This should be unreachable."; |
| } |
| } |
| fbs_file.remove_suffix(4); |
| return absl::StrCat(fbs_file, "_", include_suffix, ".h"); |
| } |
| |
| std::string ScalarOrEnumType(const reflection::Schema *schema, |
| const reflection::BaseType type, int index) { |
| return (index < 0) ? ScalarCppType(type) |
| : FlatbufferNameToCppName( |
| schema->enums()->Get(index)->name()->string_view()); |
| } |
| |
| void PopulateTypeData(const reflection::Schema *schema, |
| const reflection::Field *field_fbs, FieldData *field) { |
| VLOG(1) << aos::FlatbufferToJson(field_fbs); |
| const reflection::Type *type = field_fbs->type(); |
| field->inline_size = type->base_size(); |
| field->inline_alignment = type->base_size(); |
| field->element_size = type->element_size(); |
| switch (type->base_type()) { |
| case reflection::BaseType::Bool: |
| case reflection::BaseType::Byte: |
| case reflection::BaseType::UByte: |
| case reflection::BaseType::Short: |
| case reflection::BaseType::UShort: |
| case reflection::BaseType::Int: |
| case reflection::BaseType::UInt: |
| case reflection::BaseType::Long: |
| case reflection::BaseType::ULong: |
| case reflection::BaseType::Float: |
| case reflection::BaseType::Double: |
| // We have a scalar field, so things are relatively |
| // straightforwards. |
| field->is_inline = true; |
| field->elements_are_inline = true; |
| field->is_struct = false; |
| field->is_repeated = false; |
| field->full_type = |
| ScalarOrEnumType(schema, type->base_type(), type->index()); |
| return; |
| case reflection::BaseType::String: { |
| field->is_inline = false; |
| field->elements_are_inline = true; |
| field->is_struct = false; |
| field->is_repeated = true; |
| field->full_type = |
| absl::StrFormat("::aos::fbs::String<%d>", |
| GetLengthAttributeOrZero(field_fbs, "static_length")); |
| return; |
| } |
| case reflection::BaseType::Vector: { |
| // We need to extract the name of the elements of the vector. |
| std::string element_type; |
| bool elements_are_inline = true; |
| field->is_repeated = true; |
| if (type->base_type() == reflection::BaseType::Vector) { |
| switch (type->element()) { |
| case reflection::BaseType::Obj: { |
| const reflection::Object *element_object = |
| GetObject(schema, type->index()); |
| element_type = |
| FlatbufferNameToCppName(element_object->name()->string_view()); |
| elements_are_inline = element_object->is_struct(); |
| if (!element_object->is_struct()) { |
| element_type = AosNameForRawFlatbuffer(element_type); |
| field->fbs_type = element_object->name()->string_view(); |
| } |
| break; |
| } |
| case reflection::BaseType::String: |
| element_type = |
| absl::StrFormat("::aos::fbs::String<%d>", |
| GetLengthAttributeOrZero( |
| field_fbs, "static_vector_string_length")); |
| elements_are_inline = false; |
| break; |
| case reflection::BaseType::Vector: |
| LOG(FATAL) << "Vectors of vectors do not exist in flatbuffers."; |
| default: |
| element_type = |
| ScalarOrEnumType(schema, type->element(), type->index()); |
| }; |
| } |
| field->is_inline = false; |
| field->elements_are_inline = elements_are_inline; |
| field->is_struct = false; |
| field->full_type = |
| absl::StrFormat("::aos::fbs::Vector<%s, %d, %s, %s>", element_type, |
| GetLengthAttributeOrZero(field_fbs, "static_length"), |
| elements_are_inline ? "true" : "false", |
| GetAttribute(field_fbs, "force_align").value_or("0")); |
| return; |
| } |
| case reflection::BaseType::Obj: { |
| const reflection::Object *object = GetObject(schema, type->index()); |
| field->is_inline = object->is_struct(); |
| field->elements_are_inline = field->is_inline; |
| field->is_struct = object->is_struct(); |
| field->is_repeated = false; |
| const std::string flatbuffer_name = |
| FlatbufferNameToCppName(object->name()->string_view()); |
| if (field->is_inline) { |
| field->full_type = flatbuffer_name; |
| field->inline_size = object->bytesize(); |
| field->inline_alignment = object->minalign(); |
| } else { |
| field->fbs_type = object->name()->string_view(); |
| field->full_type = AosNameForRawFlatbuffer(flatbuffer_name); |
| } |
| return; |
| } |
| case reflection::BaseType::None: |
| case reflection::BaseType::UType: |
| case reflection::BaseType::Union: |
| case reflection::BaseType::Array: |
| case reflection::BaseType::MaxBaseType: |
| LOG(FATAL) << ": Type " << reflection::EnumNameBaseType(type->base_type()) |
| << " not supported currently."; |
| }; |
| } |
| |
| std::string MakeMoveConstructor(std::string_view type_name) { |
| return absl::StrFormat(R"code( |
| // We need to provide a MoveConstructor to allow this table to be |
| // used inside of vectors, but we do not want it readily available to |
| // users. See TableMover for more details. |
| %s(%s &&) = default; |
| friend struct ::aos::fbs::internal::TableMover<%s>; |
| )code", |
| type_name, type_name, type_name); |
| } |
| |
| std::string MakeConstructor(std::string_view type_name) { |
| const std::string constructor_body = |
| R"code( |
| CHECK_EQ(buffer.size(), kSize); |
| CHECK_EQ(0u, reinterpret_cast<size_t>(buffer.data() + kAlignOffset) % kAlign); |
| PopulateVtable(); |
| )code"; |
| return absl::StrFormat(R"code( |
| // Constructors for creating a flatbuffer object. |
| // Users should typically use the Builder class to create these objects, |
| // in order to allow it to populate the root table offset. |
| |
| // The buffer provided to these constructors should be aligned to kAlign |
| // and kSize in length. |
| // The parent/allocator may not be nullptr. |
| %s(std::span<uint8_t> buffer, ::aos::fbs::ResizeableObject *parent) : Table(buffer, parent) { |
| %s |
| } |
| %s(std::span<uint8_t> buffer, ::aos::fbs::Allocator *allocator) : Table(buffer, allocator) { |
| %s |
| } |
| %s(std::span<uint8_t> buffer, ::std::unique_ptr<::aos::fbs::Allocator> allocator) : Table(buffer, ::std::move(allocator)) { |
| %s |
| } |
| )code", |
| type_name, constructor_body, type_name, |
| constructor_body, type_name, constructor_body); |
| } |
| |
| std::string MemberName(const FieldData &data) { |
| return absl::StrCat(data.name, "_"); |
| } |
| |
| std::string ObjectAbsoluteOffsetName(const FieldData &data) { |
| return absl::StrCat("object_absolute_offset_", data.name); |
| } |
| |
| std::string InlineAbsoluteOffsetName(const FieldData &data) { |
| return absl::StrCat("kInlineAbsoluteOffset_", data.name); |
| } |
| |
| // Generate the clear_* method for the requested field. |
| std::string MakeClearer(const FieldData &field) { |
| std::string logical_clearer; |
| if (!field.is_inline) { |
| logical_clearer = MemberName(field) + ".reset();"; |
| } |
| return absl::StrFormat(R"code( |
| // Clears the %s field. This will cause has_%s() to return false. |
| void clear_%s() { |
| %s |
| ClearField(%s, %d, %d); |
| } |
| )code", |
| field.name, field.name, field.name, logical_clearer, |
| InlineAbsoluteOffsetName(field), field.inline_size, |
| field.vtable_offset); |
| } |
| |
| // Generate the has_* method for the requested field. |
| std::string MakeHaser(const FieldData &field) { |
| return absl::StrFormat(R"code( |
| // Returns true if the %s field is set and can be accessed. |
| bool has_%s() const { |
| return AsFlatbuffer().has_%s(); |
| } |
| )code", |
| field.name, field.name, field.name); |
| } |
| |
| // Generates the accessors for fields which are stored inline in the flatbuffer |
| // table (scalars, structs, and enums) . |
| std::string MakeInlineAccessors(const FieldData &field, |
| const size_t inline_absolute_offset) { |
| constexpr size_t kVtablePointerSize = sizeof(soffset_t); |
| CHECK_EQ( |
| (inline_absolute_offset - kVtablePointerSize) % field.inline_alignment, |
| 0u) |
| << ": Unaligned field " << field.name << " on " << field.full_type |
| << " with inline offset of " << inline_absolute_offset |
| << " and alignment of " << field.inline_alignment |
| << " and an alignment offset of " << kVtablePointerSize; |
| const std::string setter = |
| absl::StrFormat(R"code( |
| // Sets the %s field, causing it to be populated if it is not already. |
| // This will populate the field even if the specified value is the default. |
| void set_%s(const %s &value) { |
| SetField<%s>(%s, %d, value); |
| } |
| )code", |
| field.name, field.name, field.full_type, field.full_type, |
| InlineAbsoluteOffsetName(field), field.vtable_offset); |
| const std::string getters = absl::StrFormat( |
| R"code( |
| // Returns the value of %s if set; nullopt otherwise. |
| std::optional<%s> %s() const { |
| return has_%s() ? std::make_optional(Get<%s>(%s)) : std::nullopt; |
| } |
| // Returns a pointer to modify the %s field. |
| // The pointer may be invalidated by mutations/movements of the underlying buffer. |
| // Returns nullptr if the field is not set. |
| %s* mutable_%s() { |
| return has_%s() ? MutableGet<%s>(%s) : nullptr; |
| } |
| )code", |
| field.name, field.full_type, field.name, field.name, field.full_type, |
| InlineAbsoluteOffsetName(field), field.name, field.full_type, field.name, |
| field.name, field.full_type, InlineAbsoluteOffsetName(field)); |
| const std::string clearer = MakeClearer(field); |
| return setter + getters + clearer + MakeHaser(field); |
| } |
| |
| // Generates the accessors for fields which are not inline fields and have an |
| // offset to the actual field content stored inline in the flatbuffer table. |
| std::string MakeOffsetDataAccessors(const FieldData &field) { |
| const std::string setter = absl::Substitute( |
| R"code( |
| // Creates an empty object for the $0 field, which you can |
| // then populate/modify as desired. |
| // The field must not be populated yet. |
| $1* add_$0() { |
| CHECK(!$2.has_value()); |
| constexpr size_t kVtableIndex = $3; |
| // If this object does not normally have its initial memory statically allocated, |
| // allocate it now (this is used for zero-length vectors). |
| if constexpr ($1::kPreallocatedSize == 0) { |
| const size_t object_absolute_offset = $4; |
| std::optional<std::span<uint8_t>> inserted_bytes = |
| InsertBytes(buffer().data() + object_absolute_offset, $1::kSize, ::aos::fbs::SetZero::kYes); |
| if (!inserted_bytes.has_value()) { |
| return nullptr; |
| } |
| // Undo changes to the object absolute offset that will have been made by |
| // the InsertBytes call. |
| // The InsertBytes() call normally goes through and "fixes" any offsets |
| // that will have been affected by the memory insertion. Unfortunately, |
| // if this object currently takes up zero bytes then the InsertBytes() |
| // cannot distinguish between this offset and the (identical) offsets for any other objects |
| // that may have been "sharing" this location. The effect of this logic |
| // is that the first object that gets populated at any given location will |
| // bump all other objects to later. This is fine, although it does mean |
| // that the order in which objects appear in memory may vary depending |
| // on the order in which they are constructed (if they start out sharing a start pointer). |
| $4 = object_absolute_offset; |
| |
| // Construct the *Static object that we will use for managing this subtable. |
| $5.emplace(BufferForObject($4, $1::$7), this); |
| } else { |
| // Construct the *Static object that we will use for managing this subtable. |
| $5.emplace(BufferForObject($4, $1::kSize), this); |
| } |
| // Actually set the appropriate fields in the flatbuffer memory itself. |
| SetField<::flatbuffers::uoffset_t>($6, kVtableIndex, $4 - $6); |
| return &$5.value().t; |
| } |
| )code", |
| field.name, // $0 |
| field.full_type, // $1 |
| MemberName(field), // $2 |
| field.vtable_offset, // $3 |
| ObjectAbsoluteOffsetName(field), // $4 |
| MemberName(field), // $5 |
| InlineAbsoluteOffsetName(field), // $6 |
| (field.elements_are_inline |
| // When building vectors of inline elements, we want this object to |
| // consume as much of the memory that was allocated as possible. This |
| // lets the vector use the padding for storage, saving space. Round |
| // this down to the size of memory that the max number of elements |
| // fit in perfectly so the padding after that isn't owned. |
| ? "RoundedLength(inserted_bytes.value().size())" |
| // For vectors of elements, we need to pad out the inline portion of |
| // the vector storing offsets to the alignment of the actual elements |
| // so we can insert elements at the end without having to allocate |
| // padding. This saves space in the long run, and lets us consume |
| // the padding for offsets if needed. |
| : "kSize") // $7 |
| ); |
| const std::string getters = absl::Substitute( |
| R"code( |
| // Returns a pointer to the $0 field, if set. nullptr otherwise. |
| const $1* $0() const { |
| return $2.has_value() ? &$2.value().t : nullptr; |
| } |
| $1* mutable_$0() { |
| return $2.has_value() ? &$2.value().t : nullptr; |
| } |
| )code", |
| field.name, // $0 |
| field.full_type, // $1 |
| MemberName(field) // $2 |
| ); |
| return setter + getters + MakeClearer(field) + MakeHaser(field); |
| } |
| |
| std::string MakeAccessors(const FieldData &field, |
| size_t inline_absolute_offset) { |
| return field.is_inline ? MakeInlineAccessors(field, inline_absolute_offset) |
| : MakeOffsetDataAccessors(field); |
| } |
| |
| std::string MakeMembers(const FieldData &field, |
| std::string_view offset_data_absolute_offset, |
| size_t inline_absolute_offset) { |
| if (field.is_inline) { |
| return absl::StrFormat( |
| R"code( |
| // Offset from the start of the buffer to the inline data for the %s field. |
| static constexpr size_t %s = %d; |
| )code", |
| field.name, InlineAbsoluteOffsetName(field), inline_absolute_offset); |
| } else { |
| return absl::StrFormat( |
| R"code( |
| // Members relating to the %s field. |
| // |
| // *Static object used for managing this subtable. Will be nullopt |
| // when the field is not populated. |
| // We use the TableMover to be able to make this object moveable. |
| std::optional<::aos::fbs::internal::TableMover<%s>> %s; |
| // Offset from the start of the buffer to the start of the actual |
| // data for this field. Will be updated even when the table is not |
| // populated, so that we know where to construct it when requested. |
| static constexpr size_t kDefaultObjectAbsoluteOffset%s = %s; |
| size_t %s = kDefaultObjectAbsoluteOffset%s; |
| // Offset from the start of the buffer to the offset in the inline data for |
| // this field. |
| static constexpr size_t %s = %d; |
| )code", |
| field.name, field.full_type, MemberName(field), field.name, |
| offset_data_absolute_offset, ObjectAbsoluteOffsetName(field), |
| field.name, InlineAbsoluteOffsetName(field), inline_absolute_offset); |
| } |
| } |
| |
| std::string MakeFullClearer(const std::vector<FieldData> &fields) { |
| std::vector<std::string> clearers; |
| for (const FieldData &field : fields) { |
| clearers.emplace_back(absl::StrFormat("clear_%s();", field.name)); |
| } |
| return absl::StrFormat(R"code( |
| // Clears every field of the table, removing any existing state. |
| void Clear() { %s })code", |
| absl::StrJoin(clearers, "\n")); |
| } |
| |
| // Creates the FromFlatbuffer() method that copies from a flatbuffer object API |
| // object (i.e., the FlatbufferT types). |
| std::string MakeObjectCopier(const std::vector<FieldData> &fields) { |
| std::vector<std::string> copiers; |
| for (const FieldData &field : fields) { |
| if (field.is_struct) { |
| // Structs are stored as unique_ptr<FooStruct> |
| copiers.emplace_back(absl::StrFormat(R"code( |
| if (other.%s) { |
| set_%s(*other.%s); |
| } |
| )code", |
| field.name, field.name, field.name)); |
| } else if (field.is_inline) { |
| // Inline non-struct elements are stored as FooType. |
| copiers.emplace_back(absl::StrFormat(R"code( |
| set_%s(other.%s); |
| )code", |
| field.name, field.name)); |
| } else if (field.is_repeated) { |
| // strings are stored as std::string's. |
| // vectors are stored as std::vector's. |
| copiers.emplace_back(absl::StrFormat(R"code( |
| // Unconditionally copy strings/vectors, even if it will just end up |
| // being 0-length (this maintains consistency with the flatbuffer Pack() |
| // behavior). |
| { |
| %s* added_%s = add_%s(); |
| CHECK(added_%s != nullptr); |
| if (!added_%s->FromFlatbuffer(other.%s)) { |
| // Fail if we were unable to copy (e.g., if we tried to copy in a long |
| // vector and do not have the space for it). |
| return false; |
| } |
| } |
| )code", |
| field.full_type, field.name, |
| field.name, field.name, field.name, |
| field.name)); |
| } else { |
| // Tables are stored as unique_ptr<FooTable> |
| copiers.emplace_back(absl::StrFormat(R"code( |
| if (other.%s) { |
| %s* added_%s = add_%s(); |
| CHECK(added_%s != nullptr); |
| if (!added_%s->FromFlatbuffer(*other.%s)) { |
| // Fail if we were unable to copy (e.g., if we tried to copy in a long |
| // vector and do not have the space for it). |
| return false; |
| } |
| } |
| )code", |
| field.name, field.full_type, |
| field.name, field.name, field.name, |
| field.name, field.name)); |
| } |
| } |
| return absl::StrFormat( |
| R"code( |
| // Copies the contents of the provided flatbuffer into this flatbuffer, |
| // returning true on success. |
| // Because the Flatbuffer Object API does not provide any concept of an |
| // optionally populated scalar field, all scalar fields will be populated |
| // after a call to FromFlatbufferObject(). |
| // This is a deep copy, and will call FromFlatbufferObject on |
| // any constituent objects. |
| [[nodiscard]] bool FromFlatbuffer([[maybe_unused]] const Flatbuffer::NativeTableType &other) { |
| Clear(); |
| %s |
| return true; |
| } |
| [[nodiscard]] bool FromFlatbuffer(const flatbuffers::unique_ptr<Flatbuffer::NativeTableType>& other) { |
| return FromFlatbuffer(*other); |
| } |
| )code", |
| absl::StrJoin(copiers, "\n")); |
| } |
| |
| // Creates the FromFlatbuffer() method that copies from an actual flatbuffer |
| // object. |
| std::string MakeCopier(const std::vector<FieldData> &fields) { |
| std::vector<std::string> copiers; |
| for (const FieldData &field : fields) { |
| if (field.is_struct) { |
| copiers.emplace_back(absl::StrFormat(R"code( |
| if (other.has_%s()) { |
| set_%s(*other.%s()); |
| } |
| )code", |
| field.name, field.name, field.name)); |
| } else if (field.is_inline) { |
| copiers.emplace_back(absl::StrFormat(R"code( |
| if (other.has_%s()) { |
| set_%s(other.%s()); |
| } |
| )code", |
| field.name, field.name, field.name)); |
| } else { |
| copiers.emplace_back(absl::StrFormat(R"code( |
| if (other.has_%s()) { |
| %s* added_%s = add_%s(); |
| CHECK(added_%s != nullptr); |
| if (!added_%s->FromFlatbuffer(other.%s())) { |
| // Fail if we were unable to copy (e.g., if we tried to copy in a long |
| // vector and do not have the space for it). |
| return false; |
| } |
| } |
| )code", |
| field.name, field.full_type, |
| field.name, field.name, field.name, |
| field.name, field.name)); |
| } |
| } |
| return absl::StrFormat( |
| R"code( |
| // Copies the contents of the provided flatbuffer into this flatbuffer, |
| // returning true on success. |
| // This is a deep copy, and will call FromFlatbuffer on any constituent |
| // objects. |
| [[nodiscard]] bool FromFlatbuffer([[maybe_unused]] const Flatbuffer &other) { |
| Clear(); |
| %s |
| return true; |
| } |
| // Equivalent to FromFlatbuffer(const Flatbuffer&); this overload is provided |
| // to ease implementation of the aos::fbs::Vector internals. |
| [[nodiscard]] bool FromFlatbuffer(const Flatbuffer *other) { |
| CHECK(other != nullptr); |
| return FromFlatbuffer(*other); |
| } |
| )code", |
| absl::StrJoin(copiers, "\n")); |
| } |
| |
| std::string MakeSubObjectList(const std::vector<FieldData> &fields) { |
| size_t num_object_fields = 0; |
| std::vector<std::string> object_offsets; |
| std::vector<std::string> objects; |
| std::vector<std::string> inline_offsets; |
| for (const FieldData &field : fields) { |
| if (!field.is_inline) { |
| ++num_object_fields; |
| object_offsets.push_back( |
| absl::StrFormat("&%s", ObjectAbsoluteOffsetName(field))); |
| objects.push_back(absl::StrFormat("&%s->t", MemberName(field))); |
| inline_offsets.push_back(InlineAbsoluteOffsetName(field)); |
| } |
| } |
| if (num_object_fields == 0) { |
| return R"code( |
| // This object has no non-inline subobjects, so we don't have to do anything special. |
| size_t NumberOfSubObjects() const final { return 0; } |
| using ::aos::fbs::ResizeableObject::SubObject; |
| SubObject GetSubObject(size_t) final { LOG(FATAL) << "No subobjects."; } |
| )code"; |
| } |
| return absl::StrFormat(R"code( |
| size_t NumberOfSubObjects() const final { return %d; } |
| using ::aos::fbs::ResizeableObject::SubObject; |
| SubObject GetSubObject(size_t index) final { |
| SubObject object; |
| // Note: The below arrays are local variables rather than class members to |
| // avoid having to deal with what happens to them if the object is moved. |
| |
| // Array of the members that we use for tracking where the buffers for |
| // each subobject belong. |
| // Pointers because these may need to be modified when memory is |
| // inserted into the buffer. |
| const std::array<size_t*, %d> subobject_object_offsets{%s}; |
| // Actual subobjects; note that the pointers will be invalid when the |
| // field is not populated. |
| const std::array<::aos::fbs::ResizeableObject*, %d> subobject_objects{%s}; |
| // Absolute offsets from the start of the buffer to where the inline |
| // entry is for each table. These offsets do not need to change at |
| // runtime (because memory is never inserted into the start of |
| // a given table), but the offsets pointed to by these offsets |
| // may need to be updated. |
| const std::array<size_t, %d> subobject_inline_offsets{%s}; |
| object.inline_entry = MutableGet<::flatbuffers::uoffset_t>(subobject_inline_offsets[index]); |
| object.object = (*object.inline_entry == 0) ? nullptr : subobject_objects[index]; |
| object.absolute_offset = subobject_object_offsets[index]; |
| return object; |
| } |
| )code", |
| num_object_fields, num_object_fields, |
| absl::StrJoin(object_offsets, ", "), num_object_fields, |
| absl::StrJoin(objects, ", "), num_object_fields, |
| absl::StrJoin(inline_offsets, ", ")); |
| } |
| |
| std::string AlignCppString(const std::string_view expression, |
| const std::string_view alignment, |
| const std::string_view offset) { |
| return absl::StrCat("::aos::fbs::AlignOffset(", expression, ", ", alignment, |
| ", ", offset, ")"); |
| } |
| |
| std::string MakeInclude(std::string_view path, bool system = false) { |
| return absl::StrFormat("#include %s%s%s\n", system ? "<" : "\"", path, |
| system ? ">" : "\""); |
| } |
| |
| } // namespace |
| GeneratedObject GenerateCodeForObject(const reflection::Schema *schema, |
| int object_index) { |
| return GenerateCodeForObject(schema, GetObject(schema, object_index)); |
| } |
| GeneratedObject GenerateCodeForObject(const reflection::Schema *schema, |
| const reflection::Object *object) { |
| std::vector<FieldData> fields; |
| for (const reflection::Field *field_fbs : *object->fields()) { |
| if (field_fbs->deprecated()) { |
| // Don't codegen anything for deprecated fields. |
| continue; |
| } |
| FieldData field{.name = field_fbs->name()->str(), |
| .vtable_offset = field_fbs->offset()}; |
| PopulateTypeData(schema, field_fbs, &field); |
| fields.push_back(field); |
| } |
| std::sort(fields.begin(), fields.end(), |
| [](const FieldData &f1, const FieldData &f2) { |
| return std::make_tuple(f1.inline_alignment, f1.element_size, |
| f1.vtable_offset) > |
| std::make_tuple(f2.inline_alignment, f2.element_size, |
| f2.vtable_offset); |
| }); |
| const size_t nominal_min_align = object->minalign(); |
| std::string out_of_line_member_size = ""; |
| // inline_absolute_offset tracks the current position of the inline table |
| // contents so that we can assign static offsets to each field. |
| constexpr size_t kVtablePointerSize = sizeof(soffset_t); |
| size_t inline_absolute_offset = kVtablePointerSize; |
| // offset_data_relative_offset tracks the current size of the various |
| // sub-tables/vectors/strings that get stored at the end of the buffer. |
| // For simplicity, the offset data will start at a fully aligned offset |
| // (which may be larger than the soffset_t at the start of the table). |
| // Note that this is a string because it's irritating to actually pipe the |
| // numbers for size/alignment up here, so we just accumulate them here and |
| // then write the expression directly into the C++. |
| const std::string offset_data_start_expression = |
| "(kVtableStart + kVtableSize)"; |
| std::string offset_data_relative_offset = offset_data_start_expression; |
| std::vector<std::string> accessors; |
| std::vector<std::string> members; |
| std::set<std::string> includes = { |
| MakeInclude("optional", true), |
| MakeInclude("aos/flatbuffers/static_table.h"), |
| MakeInclude("aos/flatbuffers/static_vector.h")}; |
| for (const reflection::SchemaFile *file : *schema->fbs_files()) { |
| includes.insert( |
| MakeInclude(IncludePathForFbs(file->filename()->string_view()))); |
| includes.insert(MakeInclude( |
| IncludePathForFbs(file->filename()->string_view(), "generated"))); |
| for (const flatbuffers::String *included : *file->included_filenames()) { |
| includes.insert(MakeInclude(IncludePathForFbs(included->string_view()))); |
| } |
| } |
| std::vector<std::string> alignments; |
| std::set<std::string> subobject_names; |
| for (const FieldData &field : fields) { |
| inline_absolute_offset = AlignOffset( |
| inline_absolute_offset, field.inline_alignment, kVtablePointerSize); |
| if (!field.is_inline) { |
| alignments.push_back(field.full_type + "::kAlign"); |
| // We care about aligning each field relative to the alignment point in |
| // this flatbuffer (which is kAlignOffset into the block of memory). We |
| // then need to report out the offset relative to the start, not the |
| // alignment point. |
| offset_data_relative_offset = |
| AlignCppString(offset_data_relative_offset + " - kAlignOffset", |
| alignments.back(), |
| field.full_type + "::kAlignOffset") + |
| " + kAlignOffset"; |
| } else { |
| alignments.push_back(std::to_string(field.inline_alignment)); |
| } |
| const std::string offset_data_absolute_offset = offset_data_relative_offset; |
| accessors.emplace_back(MakeAccessors(field, inline_absolute_offset)); |
| members.emplace_back(MakeMembers(field, offset_data_absolute_offset, |
| inline_absolute_offset)); |
| |
| inline_absolute_offset += field.inline_size; |
| if (!field.is_inline) { |
| offset_data_relative_offset = absl::StrFormat( |
| "kDefaultObjectAbsoluteOffset%s + %s::kPreallocatedSize", field.name, |
| field.full_type); |
| } |
| if (field.fbs_type.has_value()) { |
| // Is this not getting populate for the root schema? |
| subobject_names.insert(field.fbs_type.value()); |
| } |
| } |
| |
| const std::string alignment = absl::StrCat( |
| "static constexpr size_t kAlign = std::max<size_t>({kMinAlign, ", |
| absl::StrJoin(alignments, ", "), "});\n"); |
| // Same here, we want to align the end relative to the alignment point, but |
| // then we want to report out the size including the offset. |
| const std::string size = absl::StrCat( |
| "static constexpr size_t kSize = ", |
| AlignCppString(offset_data_relative_offset + " - kAlignOffset", "kAlign", |
| "kAlignOffset"), |
| " + kAlignOffset;"); |
| const size_t inline_data_size = inline_absolute_offset; |
| const std::string constants = absl::StrFormat( |
| R"code( |
| // Space taken up by the inline portion of the flatbuffer table data, in |
| // bytes. |
| static constexpr size_t kInlineDataSize = %d; |
| // Space taken up by the vtable for this object, in bytes. |
| static constexpr size_t kVtableSize = |
| sizeof(::flatbuffers::voffset_t) * (2 + %d); |
| // Offset from the start of the internal memory buffer to the start of the |
| // vtable. |
| static constexpr size_t kVtableStart = ::aos::fbs::AlignOffset( |
| kInlineDataSize, alignof(::flatbuffers::voffset_t)); |
| // Required alignment of this object. The buffer that this object gets |
| // constructed into must be aligned to this value. |
| %s |
| // Offset into this object to measure the alignment at. |
| static constexpr size_t kAlignOffset = sizeof(::flatbuffers::soffset_t); |
| static_assert( |
| %d <= kAlign, |
| "Flatbuffer schema minalign should not exceed our required alignment."); |
| // Offset from the start of the memory buffer to the start of any out-of-line |
| // data (subtables, vectors, strings). |
| static constexpr size_t kOffsetDataStart = %s; |
| // Various overrides to support the Table parent class. |
| size_t FixedVtableOffset() const final { return kVtableStart; } |
| size_t VtableSize() const final { return kVtableSize; } |
| size_t InlineTableSize() const final { return kInlineDataSize; } |
| size_t OffsetDataStart() const final { return kOffsetDataStart; } |
| size_t Alignment() const final { return kAlign; } |
| // Exposes the name of the flatbuffer type to allow interchangeable use |
| // of the Flatbuffer and FlatbufferStatic types in various AOS methods. |
| static const char *GetFullyQualifiedName() { |
| return Flatbuffer::GetFullyQualifiedName(); |
| } |
| )code", |
| inline_data_size, object->fields()->size(), alignment, nominal_min_align, |
| offset_data_start_expression); |
| const std::string_view fbs_type_name = object->name()->string_view(); |
| const std::string type_namespace = FlatbufferNameToCppName( |
| fbs_type_name.substr(0, fbs_type_name.find_last_of("."))); |
| const std::string type_name = AosNameForRawFlatbuffer( |
| fbs_type_name.substr(fbs_type_name.find_last_of(".") + 1)); |
| const std::string object_code = absl::StrFormat( |
| R"code( |
| namespace %s { |
| class %s : public ::aos::fbs::Table { |
| public: |
| // The underlying "raw" flatbuffer type for this type. |
| typedef %s Flatbuffer; |
| typedef flatbuffers::unique_ptr<Flatbuffer::NativeTableType> FlatbufferObjectType; |
| // Returns this object as a flatbuffer type. This reference may not be valid |
| // following mutations to the underlying flatbuffer, due to how memory may get |
| // may get moved around. |
| const Flatbuffer &AsFlatbuffer() const { return *GetFlatbuffer<Flatbuffer>(); } |
| %s |
| %s |
| virtual ~%s() {} |
| %s |
| %s |
| %s |
| %s |
| private: |
| %s |
| %s |
| %s |
| public: |
| // Nominal size of this object, in bytes. The object may grow beyond this |
| // size, but will always start at this size and so the initial buffer must |
| // match this size. |
| %s |
| // Always statically allocate memory for tables (set for consistency with |
| // static_vector.h). |
| static constexpr size_t kPreallocatedSize = kSize; |
| // Size required for a buffer that includes a root table offset at the start. |
| static constexpr size_t kRootSize = |
| ::aos::fbs::AlignOffset(kSize + sizeof(::flatbuffers::uoffset_t), kAlign); |
| }; |
| } |
| )code", |
| type_namespace, type_name, FlatbufferNameToCppName(fbs_type_name), |
| constants, MakeConstructor(type_name), type_name, |
| absl::StrJoin(accessors, ""), MakeFullClearer(fields), MakeCopier(fields), |
| MakeObjectCopier(fields), MakeMoveConstructor(type_name), |
| absl::StrJoin(members, ""), MakeSubObjectList(fields), size); |
| |
| GeneratedObject result; |
| result.name = fbs_type_name; |
| result.include_declarations = includes; |
| result.code = object_code; |
| result.subobjects = subobject_names; |
| return result; |
| } |
| |
| namespace { |
| |
| // Generated C++ code for an entire fbs file. |
| // This includes all of the actual C++ code that will be written to a file (call |
| // GenerateCode() to actually get the desired contents of the file). |
| struct GeneratedCode { |
| // Prefix (for include guards). |
| std::string contents_prefix; |
| // Full set of required #include declarations. |
| std::set<std::string> include_declarations; |
| // Ordered list of objects (order is necessary to ensure that any dependencies |
| // between objects are managed correctly). |
| std::vector<GeneratedObject> objects; |
| // Suffix (for include guards). |
| std::string contents_suffix; |
| |
| // Combine the above things into the string that actually needs to be written |
| // to a file. |
| std::string GenerateCode() const; |
| // Combines the code for multiple objects into one. |
| static GeneratedCode MergeCode(const std::vector<GeneratedObject> &objects); |
| }; |
| |
| std::string GeneratedCode::GenerateCode() const { |
| std::string result = |
| contents_prefix + absl::StrJoin(include_declarations, ""); |
| for (const auto &object : objects) { |
| result += object.code; |
| } |
| result += contents_suffix; |
| return result; |
| } |
| |
| GeneratedCode GeneratedCode::MergeCode( |
| const std::vector<GeneratedObject> &objects) { |
| GeneratedCode result; |
| // TODO(james): Should we use #ifdef include guards instead? |
| result.contents_prefix = |
| "#pragma once\n// This is a generated file. Do not modify.\n"; |
| // We need to get the ordering of objects correct in order to ensure that |
| // depended-on objects appear before their dependees. |
| // In order to do this, we: |
| // 1) Assume that any objects not in the provided vector must exist in |
| // #includes and so can be ignored. |
| // 2) Create a list of all the objects we have been provided but which we have |
| // not yet added to the results vector. |
| // 3) Until said list is empty, we iterate over it and find any object(s) |
| // which have no dependencies in the list itself, and add them to the |
| // result. |
| // We aren't going to worry about efficient graph traversal here or anything. |
| // We also don't currently attempt to support circular dependencies. |
| std::map<std::string_view, const GeneratedObject *> remaining_objects; |
| for (const auto &object : objects) { |
| remaining_objects[object.name] = &object; |
| } |
| while (!remaining_objects.empty()) { |
| std::string_view to_remove; |
| for (const auto &pair : remaining_objects) { |
| bool has_dependencies = false; |
| for (const std::string_view subobject : pair.second->subobjects) { |
| if (remaining_objects.contains(subobject)) { |
| has_dependencies = true; |
| } |
| } |
| if (has_dependencies) { |
| continue; |
| } |
| to_remove = pair.first; |
| result.objects.push_back(*pair.second); |
| result.include_declarations.insert( |
| pair.second->include_declarations.begin(), |
| pair.second->include_declarations.end()); |
| break; |
| } |
| // In order to support circular dependencies, two main things have to |
| // change: |
| // 1. We have to dynamically allow depopulating table members (rather than |
| // just supporting dynamically lengthed vectors). |
| // 2. Some of the codegen needs to be tweaked so that we can have the |
| // generated |
| // C++ classes depend on one another. |
| CHECK(!to_remove.empty()) |
| << ": Circular dependencies in flatbuffers schemas are not supported."; |
| CHECK_EQ(1u, remaining_objects.erase(to_remove)) |
| << ": Failed to remove " << to_remove; |
| } |
| return result; |
| } |
| } // namespace |
| |
| std::string GenerateCodeForRootTableFile(const reflection::Schema *schema, |
| std::string_view file_hint) { |
| const reflection::Object *root_object = GetObject(schema, -1); |
| const std::string_view root_file = |
| (root_object == nullptr) ? file_hint |
| : root_object->declaration_file()->string_view(); |
| std::vector<GeneratedObject> objects; |
| if (root_object != nullptr) { |
| objects.push_back(GenerateCodeForObject(schema, root_object)); |
| } |
| for (const reflection::Object *object : *schema->objects()) { |
| if (object->is_struct()) { |
| continue; |
| } |
| if (object->declaration_file()->string_view() == root_file) { |
| objects.push_back(GenerateCodeForObject(schema, object)); |
| } |
| } |
| return GeneratedCode::MergeCode(objects).GenerateCode(); |
| } |
| } // namespace aos::fbs |