| #include "aos/flatbuffers/base.h" |
| |
| #include <stddef.h> |
| |
| #include <algorithm> |
| |
| #include "gtest/gtest.h" |
| |
| namespace aos::fbs::testing { |
| // Tests that AlignOffset() behaves as expected. |
| TEST(BaseTest, AlignOffset) { |
| EXPECT_EQ(0, AlignOffset(0, 4)); |
| EXPECT_EQ(4, AlignOffset(4, 4)); |
| EXPECT_EQ(8, AlignOffset(5, 4)); |
| EXPECT_EQ(8, AlignOffset(6, 4)); |
| EXPECT_EQ(8, AlignOffset(7, 4)); |
| } |
| |
| // Tests that AlignOffset handles the alignment point being nonzero. This shows |
| // up when you want 8 byte alignment 4 bytes into the start of the buffer, and |
| // don't want to pad out the front of the buffer. |
| TEST(BaseTest, AlignOffsetWithOffset) { |
| EXPECT_EQ(4, AlignOffset(4, 4, 4)); |
| |
| EXPECT_EQ(4, AlignOffset(0, 8, 4)); |
| EXPECT_EQ(4, AlignOffset(1, 8, 4)); |
| EXPECT_EQ(4, AlignOffset(2, 8, 4)); |
| EXPECT_EQ(4, AlignOffset(3, 8, 4)); |
| EXPECT_EQ(4, AlignOffset(4, 8, 4)); |
| EXPECT_EQ(12, AlignOffset(5, 8, 4)); |
| } |
| |
| inline constexpr size_t kDefaultSize = AlignedVectorAllocator::kAlignment * 2; |
| template <typename T> |
| class AllocatorTest : public ::testing::Test { |
| protected: |
| AllocatorTest() : allocator_(std::make_unique<T>()) {} |
| alignas(64) std::array<uint8_t, kDefaultSize> buffer_; |
| // unique_ptr so that we can destroy the allocator at will. |
| std::unique_ptr<T> allocator_; |
| }; |
| |
| template <> |
| AllocatorTest<SpanAllocator>::AllocatorTest() |
| : allocator_(std::make_unique<SpanAllocator>( |
| std::span<uint8_t>{buffer_.data(), buffer_.size()})) {} |
| |
| using AllocatorTypes = ::testing::Types<SpanAllocator, AlignedVectorAllocator, |
| FixedStackAllocator<kDefaultSize>>; |
| TYPED_TEST_SUITE(AllocatorTest, AllocatorTypes); |
| |
| // Tests that we can create and not use a VectorAllocator. |
| TYPED_TEST(AllocatorTest, UnusedAllocator) {} |
| |
| // Tests that a simple allocate works. |
| TYPED_TEST(AllocatorTest, BasicAllocate) { |
| std::span<uint8_t> span = |
| this->allocator_->Allocate(kDefaultSize, 4, SetZero::kYes).value(); |
| ASSERT_EQ(kDefaultSize, span.size()); |
| // We set SetZero::kYes; it should be zero-initialized. |
| EXPECT_EQ(kDefaultSize, std::count(span.begin(), span.end(), 0)); |
| this->allocator_->Deallocate(span); |
| } |
| |
| // Tests that we can insert bytes into an arbitrary spot in the buffer. |
| TYPED_TEST(AllocatorTest, InsertBytes) { |
| const size_t half_size = kDefaultSize / 2; |
| std::span<uint8_t> span = |
| this->allocator_->Allocate(half_size, 4, SetZero::kYes).value(); |
| ASSERT_EQ(half_size, span.size()); |
| // Set the span with some sentinel values so that we can detect that the |
| // insertion occurred correctly. |
| for (size_t ii = 0; ii < span.size(); ++ii) { |
| span[ii] = ii + 1; |
| } |
| |
| // Insert new bytes such that one old byte will still be at the start. |
| span = this->allocator_ |
| ->InsertBytes(span.data() + 1u, half_size, 0, SetZero::kYes) |
| .value(); |
| ASSERT_EQ(kDefaultSize, span.size()); |
| size_t index = 0; |
| EXPECT_EQ(1u, span[index]); |
| index++; |
| for (; index < half_size + 1u; ++index) { |
| EXPECT_EQ(0u, span[index]); |
| } |
| for (; index < span.size(); ++index) { |
| EXPECT_EQ(index - half_size + 1, span[index]); |
| } |
| this->allocator_->Deallocate(span); |
| } |
| |
| // Tests that all allocators return data aligned to the requested alignment. |
| TYPED_TEST(AllocatorTest, Alignment) { |
| for (size_t alignment : {4, 8, 16, 32, 64}) { |
| std::span<uint8_t> span = |
| this->allocator_->Allocate(kDefaultSize, alignment, SetZero::kYes) |
| .value(); |
| EXPECT_EQ(reinterpret_cast<size_t>(span.data()) % alignment, 0); |
| this->allocator_->Deallocate(span); |
| } |
| } |
| |
| // Tests that we can remove bytes from an arbitrary spot in the buffer. |
| TYPED_TEST(AllocatorTest, RemoveBytes) { |
| // Deletion doesn't require resizing, so we don't need to worry about it being |
| // larger than the alignment to test everything. The test requires the size |
| // to be < 255 to store the sentinal values. |
| const size_t kDefaultSize = 128; |
| |
| const size_t half_size = kDefaultSize / 2; |
| std::span<uint8_t> span = |
| this->allocator_->Allocate(kDefaultSize, 4, SetZero::kYes).value(); |
| ASSERT_EQ(kDefaultSize, span.size()); |
| // Set the span with some sentinel values so that we can detect that the |
| // removal occurred correctly. |
| for (size_t ii = 0; ii < span.size(); ++ii) { |
| span[ii] = ii + 1; |
| } |
| |
| // Remove bytes such that one old byte will remain at the start, and a chunk |
| // of 8 bytes will be cut out after that.. |
| span = this->allocator_->RemoveBytes(span.subspan(1, half_size)); |
| ASSERT_EQ(half_size, span.size()); |
| size_t index = 0; |
| EXPECT_EQ(1u, span[index]); |
| index++; |
| for (; index < span.size(); ++index) { |
| EXPECT_EQ(index + half_size + 1, span[index]); |
| } |
| this->allocator_->Deallocate(span); |
| } |
| |
| // Tests that if we fail to deallocate that we fail during destruction. |
| TYPED_TEST(AllocatorTest, NoDeallocate) { |
| EXPECT_DEATH( |
| { |
| EXPECT_EQ( |
| 4, this->allocator_->Allocate(4, 4, SetZero::kYes).value().size()); |
| this->allocator_.reset(); |
| }, |
| "Must deallocate"); |
| } |
| |
| // Tests that if we never allocate that we cannot deallocate. |
| TYPED_TEST(AllocatorTest, NoAllocateThenDeallocate) { |
| EXPECT_DEATH(this->allocator_->Deallocate(std::span<uint8_t>()), |
| "prior allocation"); |
| } |
| |
| // Tests that if we attempt to allocate more than the backing span allows that |
| // we correctly return an empty span. |
| TEST(SpanAllocatorTest, OverAllocate) { |
| std::vector<uint8_t> buffer(kDefaultSize); |
| SpanAllocator allocator({buffer.data(), buffer.size()}); |
| EXPECT_FALSE( |
| allocator.Allocate(kDefaultSize + 1u, 0, SetZero::kYes).has_value()); |
| } |
| |
| // Tests that if we attempt to insert more than the backing span allows that |
| // we correctly return an empty span. |
| TEST(SpanAllocatorTest, OverInsert) { |
| std::vector<uint8_t> buffer(kDefaultSize); |
| SpanAllocator allocator({buffer.data(), buffer.size()}); |
| std::span<uint8_t> span = |
| allocator.Allocate(kDefaultSize, 1, SetZero::kYes).value(); |
| EXPECT_EQ(kDefaultSize, span.size()); |
| EXPECT_FALSE( |
| allocator.InsertBytes(span.data(), 1u, 0, SetZero::kYes).has_value()); |
| allocator.Deallocate(span); |
| } |
| |
| // Because we really aren't meant to instantiate ResizeableObject's directly (if |
| // nothing else it has virtual member functions), define a testing |
| // implementation. |
| |
| class TestResizeableObject : public ResizeableObject { |
| public: |
| TestResizeableObject(std::span<uint8_t> buffer, ResizeableObject *parent) |
| : ResizeableObject(buffer, parent) {} |
| TestResizeableObject(std::span<uint8_t> buffer, Allocator *allocator) |
| : ResizeableObject(buffer, allocator) {} |
| virtual ~TestResizeableObject() {} |
| using ResizeableObject::SubObject; |
| bool InsertBytes(void *insertion_point, size_t bytes) { |
| return ResizeableObject::InsertBytes(insertion_point, bytes, SetZero::kYes) |
| .has_value(); |
| } |
| TestResizeableObject(TestResizeableObject &&) = default; |
| |
| struct TestObject { |
| uoffset_t inline_entry_offset; |
| std::unique_ptr<TestResizeableObject> object; |
| size_t absolute_offset; |
| }; |
| |
| // Adds a new object of the requested size. |
| void AddEntry(uoffset_t inline_entry_offset, size_t absolute_offset, |
| size_t buffer_size, bool set_object) { |
| *reinterpret_cast<uoffset_t *>(buffer_.data() + inline_entry_offset) = |
| set_object ? (absolute_offset - inline_entry_offset) : 0; |
| objects_.emplace_back( |
| TestObject{inline_entry_offset, nullptr, absolute_offset}); |
| if (set_object) { |
| objects_.back().object = std::make_unique<TestResizeableObject>( |
| buffer().subspan(absolute_offset, buffer_size), this); |
| } |
| } |
| |
| size_t NumberOfSubObjects() const override { return objects_.size(); } |
| SubObject GetSubObject(size_t index) override { |
| TestObject &subobject = objects_.at(index); |
| return {reinterpret_cast<uoffset_t *>(buffer_.data() + |
| subobject.inline_entry_offset), |
| subobject.object.get(), &subobject.absolute_offset}; |
| } |
| |
| TestObject &GetObject(size_t index) { return objects_.at(index); } |
| |
| size_t Alignment() const override { return 64; } |
| |
| private: |
| std::vector<TestObject> objects_; |
| }; |
| |
| class ResizeableObjectTest : public ::testing::Test { |
| protected: |
| static constexpr size_t kInitialSize = 128; |
| ResizeableObjectTest() |
| : object_(allocator_.Allocate(kInitialSize, 4, SetZero::kYes).value(), |
| &allocator_) {} |
| ~ResizeableObjectTest() { allocator_.Deallocate(object_.buffer()); } |
| AlignedVectorAllocator allocator_; |
| TestResizeableObject object_; |
| }; |
| |
| // Tests that if we created an object and then do nothing with it that nothing |
| // untoward happens. |
| TEST_F(ResizeableObjectTest, DoNothing) {} |
| |
| // Test that when we move the ResizeableObject we clear the reference to the old |
| // buffer. |
| TEST_F(ResizeableObjectTest, Move) { |
| TestResizeableObject target_object = std::move(object_); |
| ASSERT_EQ(0u, object_.buffer().size()); |
| ASSERT_EQ(kInitialSize, target_object.buffer().size()); |
| } |
| |
| // Tests the pathways for resizing a nested ResizeableObject works. |
| TEST_F(ResizeableObjectTest, ResizeNested) { |
| constexpr size_t kAbsoluteOffset = 64; |
| object_.AddEntry(4, kAbsoluteOffset, 64, true); |
| TestResizeableObject *subobject = object_.GetObject(0).object.get(); |
| object_.AddEntry(0, kAbsoluteOffset, 64, false); |
| EXPECT_EQ(60, *object_.GetSubObject(0).inline_entry); |
| EXPECT_EQ(0, *object_.GetSubObject(1).inline_entry); |
| EXPECT_EQ(64, object_.GetObject(0).object->buffer().data() - |
| object_.buffer().data()); |
| |
| constexpr size_t kInsertBytes = 5; |
| // The insert should succeed. |
| ASSERT_TRUE( |
| subobject->InsertBytes(subobject->buffer().data() + 1u, kInsertBytes)); |
| // We should now observe the size of the buffers increasing, but the start |
| // _not_ moving. |
| // We should've rounded the insert up to the alignment we areusing (64 bytes). |
| EXPECT_EQ(kInitialSize + 64, object_.buffer().size()); |
| EXPECT_EQ(128, subobject->buffer().size()); |
| EXPECT_EQ(60, *object_.GetSubObject(0).inline_entry); |
| EXPECT_EQ(0, *object_.GetSubObject(1).inline_entry); |
| EXPECT_EQ(kAbsoluteOffset, object_.GetObject(0).absolute_offset); |
| EXPECT_EQ(kAbsoluteOffset, object_.GetObject(1).absolute_offset); |
| |
| // And next we insert before the subobjects, so that we can see their offsets |
| // shift. The insert should succeed. |
| ASSERT_TRUE(object_.InsertBytes(subobject->buffer().data(), kInsertBytes)); |
| EXPECT_EQ(kInitialSize + 2 * 64, object_.buffer().size()); |
| EXPECT_EQ(128, subobject->buffer().size()); |
| EXPECT_EQ(60 + 64, *object_.GetSubObject(0).inline_entry); |
| // The unpopulated object's inline entry should not have changed since |
| // it was zero. |
| EXPECT_EQ(0, *object_.GetSubObject(1).inline_entry); |
| EXPECT_EQ(kAbsoluteOffset + 64, object_.GetObject(0).absolute_offset); |
| EXPECT_EQ(kAbsoluteOffset + 64, object_.GetObject(1).absolute_offset); |
| } |
| |
| } // namespace aos::fbs::testing |