| /* |
| * Copyright 2014 Google Inc. All rights reserved. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include <cmath> |
| #include "flatbuffers/flatbuffers.h" |
| #include "flatbuffers/idl.h" |
| #include "flatbuffers/minireflect.h" |
| #include "flatbuffers/registry.h" |
| #include "flatbuffers/util.h" |
| |
| // clang-format off |
| #ifdef FLATBUFFERS_CPP98_STL |
| #include "flatbuffers/stl_emulation.h" |
| namespace std { |
| using flatbuffers::unique_ptr; |
| } |
| #endif |
| // clang-format on |
| |
| #include "monster_test_generated.h" |
| #include "namespace_test/namespace_test1_generated.h" |
| #include "namespace_test/namespace_test2_generated.h" |
| #include "union_vector/union_vector_generated.h" |
| #include "monster_extra_generated.h" |
| #if !defined(_MSC_VER) || _MSC_VER >= 1700 |
| #include "arrays_test_generated.h" |
| #endif |
| |
| #include "native_type_test_generated.h" |
| #include "test_assert.h" |
| |
| #include "flatbuffers/flexbuffers.h" |
| |
| |
| // clang-format off |
| // Check that char* and uint8_t* are interoperable types. |
| // The reinterpret_cast<> between the pointers are used to simplify data loading. |
| static_assert(flatbuffers::is_same<uint8_t, char>::value || |
| flatbuffers::is_same<uint8_t, unsigned char>::value, |
| "unexpected uint8_t type"); |
| |
| #if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0) |
| // Ensure IEEE-754 support if tests of floats with NaN/Inf will run. |
| static_assert(std::numeric_limits<float>::is_iec559 && |
| std::numeric_limits<double>::is_iec559, |
| "IEC-559 (IEEE-754) standard required"); |
| #endif |
| // clang-format on |
| |
| // Shortcuts for the infinity. |
| static const auto infinityf = std::numeric_limits<float>::infinity(); |
| static const auto infinityd = std::numeric_limits<double>::infinity(); |
| |
| using namespace MyGame::Example; |
| |
| void FlatBufferBuilderTest(); |
| |
| // Include simple random number generator to ensure results will be the |
| // same cross platform. |
| // http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator |
| uint32_t lcg_seed = 48271; |
| uint32_t lcg_rand() { |
| return lcg_seed = (static_cast<uint64_t>(lcg_seed) * 279470273UL) % 4294967291UL; |
| } |
| void lcg_reset() { lcg_seed = 48271; } |
| |
| std::string test_data_path = |
| #ifdef BAZEL_TEST_DATA_PATH |
| "../com_github_google_flatbuffers/tests/"; |
| #else |
| "tests/"; |
| #endif |
| |
| // example of how to build up a serialized buffer algorithmically: |
| flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) { |
| flatbuffers::FlatBufferBuilder builder; |
| |
| auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20)); |
| |
| auto name = builder.CreateString("MyMonster"); |
| |
| unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; |
| auto inventory = builder.CreateVector(inv_data, 10); |
| |
| // Alternatively, create the vector first, and fill in data later: |
| // unsigned char *inv_buf = nullptr; |
| // auto inventory = builder.CreateUninitializedVector<unsigned char>( |
| // 10, &inv_buf); |
| // memcpy(inv_buf, inv_data, 10); |
| |
| Test tests[] = { Test(10, 20), Test(30, 40) }; |
| auto testv = builder.CreateVectorOfStructs(tests, 2); |
| |
| // clang-format off |
| #ifndef FLATBUFFERS_CPP98_STL |
| // Create a vector of structures from a lambda. |
| auto testv2 = builder.CreateVectorOfStructs<Test>( |
| 2, [&](size_t i, Test* s) -> void { |
| *s = tests[i]; |
| }); |
| #else |
| // Create a vector of structures using a plain old C++ function. |
| auto testv2 = builder.CreateVectorOfStructs<Test>( |
| 2, [](size_t i, Test* s, void *state) -> void { |
| *s = (reinterpret_cast<Test*>(state))[i]; |
| }, tests); |
| #endif // FLATBUFFERS_CPP98_STL |
| // clang-format on |
| |
| // create monster with very few fields set: |
| // (same functionality as CreateMonster below, but sets fields manually) |
| flatbuffers::Offset<Monster> mlocs[3]; |
| auto fred = builder.CreateString("Fred"); |
| auto barney = builder.CreateString("Barney"); |
| auto wilma = builder.CreateString("Wilma"); |
| MonsterBuilder mb1(builder); |
| mb1.add_name(fred); |
| mlocs[0] = mb1.Finish(); |
| MonsterBuilder mb2(builder); |
| mb2.add_name(barney); |
| mb2.add_hp(1000); |
| mlocs[1] = mb2.Finish(); |
| MonsterBuilder mb3(builder); |
| mb3.add_name(wilma); |
| mlocs[2] = mb3.Finish(); |
| |
| // Create an array of strings. Also test string pooling, and lambdas. |
| auto vecofstrings = |
| builder.CreateVector<flatbuffers::Offset<flatbuffers::String>>( |
| 4, |
| [](size_t i, flatbuffers::FlatBufferBuilder *b) |
| -> flatbuffers::Offset<flatbuffers::String> { |
| static const char *names[] = { "bob", "fred", "bob", "fred" }; |
| return b->CreateSharedString(names[i]); |
| }, |
| &builder); |
| |
| // Creating vectors of strings in one convenient call. |
| std::vector<std::string> names2; |
| names2.push_back("jane"); |
| names2.push_back("mary"); |
| auto vecofstrings2 = builder.CreateVectorOfStrings(names2); |
| |
| // Create an array of sorted tables, can be used with binary search when read: |
| auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3); |
| |
| // Create an array of sorted structs, |
| // can be used with binary search when read: |
| std::vector<Ability> abilities; |
| abilities.push_back(Ability(4, 40)); |
| abilities.push_back(Ability(3, 30)); |
| abilities.push_back(Ability(2, 20)); |
| abilities.push_back(Ability(1, 10)); |
| auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities); |
| |
| // Create a nested FlatBuffer. |
| // Nested FlatBuffers are stored in a ubyte vector, which can be convenient |
| // since they can be memcpy'd around much easier than other FlatBuffer |
| // values. They have little overhead compared to storing the table directly. |
| // As a test, create a mostly empty Monster buffer: |
| flatbuffers::FlatBufferBuilder nested_builder; |
| auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0, |
| nested_builder.CreateString("NestedMonster")); |
| FinishMonsterBuffer(nested_builder, nmloc); |
| // Now we can store the buffer in the parent. Note that by default, vectors |
| // are only aligned to their elements or size field, so in this case if the |
| // buffer contains 64-bit elements, they may not be correctly aligned. We fix |
| // that with: |
| builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t), |
| nested_builder.GetBufferMinAlignment()); |
| // If for whatever reason you don't have the nested_builder available, you |
| // can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or |
| // the largest force_align value in your schema if you're using it. |
| auto nested_flatbuffer_vector = builder.CreateVector( |
| nested_builder.GetBufferPointer(), nested_builder.GetSize()); |
| |
| // Test a nested FlexBuffer: |
| flexbuffers::Builder flexbuild; |
| flexbuild.Int(1234); |
| flexbuild.Finish(); |
| auto flex = builder.CreateVector(flexbuild.GetBuffer()); |
| |
| // Test vector of enums. |
| Color colors[] = { Color_Blue, Color_Green }; |
| // We use this special creation function because we have an array of |
| // pre-C++11 (enum class) enums whose size likely is int, yet its declared |
| // type in the schema is byte. |
| auto vecofcolors = builder.CreateVectorScalarCast<uint8_t, Color>(colors, 2); |
| |
| // shortcut for creating monster with all fields set: |
| auto mloc = CreateMonster(builder, &vec, 150, 80, name, inventory, Color_Blue, |
| Any_Monster, mlocs[1].Union(), // Store a union. |
| testv, vecofstrings, vecoftables, 0, |
| nested_flatbuffer_vector, 0, false, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 3.14159f, 3.0f, 0.0f, vecofstrings2, |
| vecofstructs, flex, testv2, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, AnyUniqueAliases_NONE, 0, |
| AnyAmbiguousAliases_NONE, 0, vecofcolors); |
| |
| FinishMonsterBuffer(builder, mloc); |
| |
| // clang-format off |
| #ifdef FLATBUFFERS_TEST_VERBOSE |
| // print byte data for debugging: |
| auto p = builder.GetBufferPointer(); |
| for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++) |
| printf("%d ", p[i]); |
| #endif |
| // clang-format on |
| |
| // return the buffer for the caller to use. |
| auto bufferpointer = |
| reinterpret_cast<const char *>(builder.GetBufferPointer()); |
| buffer.assign(bufferpointer, bufferpointer + builder.GetSize()); |
| |
| return builder.Release(); |
| } |
| |
| // example of accessing a buffer loaded in memory: |
| void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length, |
| bool pooled = true) { |
| // First, verify the buffers integrity (optional) |
| flatbuffers::Verifier verifier(flatbuf, length); |
| TEST_EQ(VerifyMonsterBuffer(verifier), true); |
| |
| // clang-format off |
| #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE |
| std::vector<uint8_t> test_buff; |
| test_buff.resize(length * 2); |
| std::memcpy(&test_buff[0], flatbuf, length); |
| std::memcpy(&test_buff[length], flatbuf, length); |
| |
| flatbuffers::Verifier verifier1(&test_buff[0], length); |
| TEST_EQ(VerifyMonsterBuffer(verifier1), true); |
| TEST_EQ(verifier1.GetComputedSize(), length); |
| |
| flatbuffers::Verifier verifier2(&test_buff[length], length); |
| TEST_EQ(VerifyMonsterBuffer(verifier2), true); |
| TEST_EQ(verifier2.GetComputedSize(), length); |
| #endif |
| // clang-format on |
| |
| TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0); |
| TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true); |
| TEST_EQ(strcmp(MonsterExtension(), "mon"), 0); |
| |
| // Access the buffer from the root. |
| auto monster = GetMonster(flatbuf); |
| |
| TEST_EQ(monster->hp(), 80); |
| TEST_EQ(monster->mana(), 150); // default |
| TEST_EQ_STR(monster->name()->c_str(), "MyMonster"); |
| // Can't access the following field, it is deprecated in the schema, |
| // which means accessors are not generated: |
| // monster.friendly() |
| |
| auto pos = monster->pos(); |
| TEST_NOTNULL(pos); |
| TEST_EQ(pos->z(), 3); |
| TEST_EQ(pos->test3().a(), 10); |
| TEST_EQ(pos->test3().b(), 20); |
| |
| auto inventory = monster->inventory(); |
| TEST_EQ(VectorLength(inventory), 10UL); // Works even if inventory is null. |
| TEST_NOTNULL(inventory); |
| unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; |
| // Check compatibilty of iterators with STL. |
| std::vector<unsigned char> inv_vec(inventory->begin(), inventory->end()); |
| int n = 0; |
| for (auto it = inventory->begin(); it != inventory->end(); ++it, ++n) { |
| auto indx = it - inventory->begin(); |
| TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check. |
| TEST_EQ(*it, inv_data[indx]); |
| } |
| TEST_EQ(n, inv_vec.size()); |
| |
| n = 0; |
| for (auto it = inventory->cbegin(); it != inventory->cend(); ++it, ++n) { |
| auto indx = it - inventory->cbegin(); |
| TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check. |
| TEST_EQ(*it, inv_data[indx]); |
| } |
| TEST_EQ(n, inv_vec.size()); |
| |
| n = 0; |
| for (auto it = inventory->rbegin(); it != inventory->rend(); ++it, ++n) { |
| auto indx = inventory->rend() - it - 1; |
| TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check. |
| TEST_EQ(*it, inv_data[indx]); |
| } |
| TEST_EQ(n, inv_vec.size()); |
| |
| n = 0; |
| for (auto it = inventory->crbegin(); it != inventory->crend(); ++it, ++n) { |
| auto indx = inventory->crend() - it - 1; |
| TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check. |
| TEST_EQ(*it, inv_data[indx]); |
| } |
| TEST_EQ(n, inv_vec.size()); |
| |
| TEST_EQ(monster->color(), Color_Blue); |
| |
| // Example of accessing a union: |
| TEST_EQ(monster->test_type(), Any_Monster); // First make sure which it is. |
| auto monster2 = reinterpret_cast<const Monster *>(monster->test()); |
| TEST_NOTNULL(monster2); |
| TEST_EQ_STR(monster2->name()->c_str(), "Fred"); |
| |
| // Example of accessing a vector of strings: |
| auto vecofstrings = monster->testarrayofstring(); |
| TEST_EQ(vecofstrings->size(), 4U); |
| TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob"); |
| TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred"); |
| if (pooled) { |
| // These should have pointer equality because of string pooling. |
| TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str()); |
| TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str()); |
| } |
| |
| auto vecofstrings2 = monster->testarrayofstring2(); |
| if (vecofstrings2) { |
| TEST_EQ(vecofstrings2->size(), 2U); |
| TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane"); |
| TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary"); |
| } |
| |
| // Example of accessing a vector of tables: |
| auto vecoftables = monster->testarrayoftables(); |
| TEST_EQ(vecoftables->size(), 3U); |
| for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it) |
| TEST_EQ(strlen(it->name()->c_str()) >= 4, true); |
| TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney"); |
| TEST_EQ(vecoftables->Get(0)->hp(), 1000); |
| TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred"); |
| TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma"); |
| TEST_NOTNULL(vecoftables->LookupByKey("Barney")); |
| TEST_NOTNULL(vecoftables->LookupByKey("Fred")); |
| TEST_NOTNULL(vecoftables->LookupByKey("Wilma")); |
| |
| // Test accessing a vector of sorted structs |
| auto vecofstructs = monster->testarrayofsortedstruct(); |
| if (vecofstructs) { // not filled in monster_test.bfbs |
| for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size() - 1; i++) { |
| auto left = vecofstructs->Get(i); |
| auto right = vecofstructs->Get(i + 1); |
| TEST_EQ(true, (left->KeyCompareLessThan(right))); |
| } |
| TEST_NOTNULL(vecofstructs->LookupByKey(3)); |
| TEST_EQ(static_cast<const Ability *>(nullptr), |
| vecofstructs->LookupByKey(5)); |
| } |
| |
| // Test nested FlatBuffers if available: |
| auto nested_buffer = monster->testnestedflatbuffer(); |
| if (nested_buffer) { |
| // nested_buffer is a vector of bytes you can memcpy. However, if you |
| // actually want to access the nested data, this is a convenient |
| // accessor that directly gives you the root table: |
| auto nested_monster = monster->testnestedflatbuffer_nested_root(); |
| TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster"); |
| } |
| |
| // Test flexbuffer if available: |
| auto flex = monster->flex(); |
| // flex is a vector of bytes you can memcpy etc. |
| TEST_EQ(flex->size(), 4); // Encoded FlexBuffer bytes. |
| // However, if you actually want to access the nested data, this is a |
| // convenient accessor that directly gives you the root value: |
| TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234); |
| |
| // Test vector of enums: |
| auto colors = monster->vector_of_enums(); |
| if (colors) { |
| TEST_EQ(colors->size(), 2); |
| TEST_EQ(colors->Get(0), Color_Blue); |
| TEST_EQ(colors->Get(1), Color_Green); |
| } |
| |
| // Since Flatbuffers uses explicit mechanisms to override the default |
| // compiler alignment, double check that the compiler indeed obeys them: |
| // (Test consists of a short and byte): |
| TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL); |
| TEST_EQ(sizeof(Test), 4UL); |
| |
| const flatbuffers::Vector<const Test *> *tests_array[] = { |
| monster->test4(), |
| monster->test5(), |
| }; |
| for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) { |
| auto tests = tests_array[i]; |
| TEST_NOTNULL(tests); |
| auto test_0 = tests->Get(0); |
| auto test_1 = tests->Get(1); |
| TEST_EQ(test_0->a(), 10); |
| TEST_EQ(test_0->b(), 20); |
| TEST_EQ(test_1->a(), 30); |
| TEST_EQ(test_1->b(), 40); |
| for (auto it = tests->begin(); it != tests->end(); ++it) { |
| TEST_EQ(it->a() == 10 || it->a() == 30, true); // Just testing iterators. |
| } |
| } |
| |
| // Checking for presence of fields: |
| TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true); |
| TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false); |
| |
| // Obtaining a buffer from a root: |
| TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf); |
| } |
| |
| // Change a FlatBuffer in-place, after it has been constructed. |
| void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) { |
| // Get non-const pointer to root. |
| auto monster = GetMutableMonster(flatbuf); |
| |
| // Each of these tests mutates, then tests, then set back to the original, |
| // so we can test that the buffer in the end still passes our original test. |
| auto hp_ok = monster->mutate_hp(10); |
| TEST_EQ(hp_ok, true); // Field was present. |
| TEST_EQ(monster->hp(), 10); |
| // Mutate to default value |
| auto hp_ok_default = monster->mutate_hp(100); |
| TEST_EQ(hp_ok_default, true); // Field was present. |
| TEST_EQ(monster->hp(), 100); |
| // Test that mutate to default above keeps field valid for further mutations |
| auto hp_ok_2 = monster->mutate_hp(20); |
| TEST_EQ(hp_ok_2, true); |
| TEST_EQ(monster->hp(), 20); |
| monster->mutate_hp(80); |
| |
| // Monster originally at 150 mana (default value) |
| auto mana_default_ok = monster->mutate_mana(150); // Mutate to default value. |
| TEST_EQ(mana_default_ok, |
| true); // Mutation should succeed, because default value. |
| TEST_EQ(monster->mana(), 150); |
| auto mana_ok = monster->mutate_mana(10); |
| TEST_EQ(mana_ok, false); // Field was NOT present, because default value. |
| TEST_EQ(monster->mana(), 150); |
| |
| // Mutate structs. |
| auto pos = monster->mutable_pos(); |
| auto test3 = pos->mutable_test3(); // Struct inside a struct. |
| test3.mutate_a(50); // Struct fields never fail. |
| TEST_EQ(test3.a(), 50); |
| test3.mutate_a(10); |
| |
| // Mutate vectors. |
| auto inventory = monster->mutable_inventory(); |
| inventory->Mutate(9, 100); |
| TEST_EQ(inventory->Get(9), 100); |
| inventory->Mutate(9, 9); |
| |
| auto tables = monster->mutable_testarrayoftables(); |
| auto first = tables->GetMutableObject(0); |
| TEST_EQ(first->hp(), 1000); |
| first->mutate_hp(0); |
| TEST_EQ(first->hp(), 0); |
| first->mutate_hp(1000); |
| |
| // Run the verifier and the regular test to make sure we didn't trample on |
| // anything. |
| AccessFlatBufferTest(flatbuf, length); |
| } |
| |
| // Unpack a FlatBuffer into objects. |
| void ObjectFlatBuffersTest(uint8_t *flatbuf) { |
| // Optional: we can specify resolver and rehasher functions to turn hashed |
| // strings into object pointers and back, to implement remote references |
| // and such. |
| auto resolver = flatbuffers::resolver_function_t( |
| [](void **pointer_adr, flatbuffers::hash_value_t hash) { |
| (void)pointer_adr; |
| (void)hash; |
| // Don't actually do anything, leave variable null. |
| }); |
| auto rehasher = flatbuffers::rehasher_function_t( |
| [](void *pointer) -> flatbuffers::hash_value_t { |
| (void)pointer; |
| return 0; |
| }); |
| |
| // Turn a buffer into C++ objects. |
| auto monster1 = UnPackMonster(flatbuf, &resolver); |
| |
| // Re-serialize the data. |
| flatbuffers::FlatBufferBuilder fbb1; |
| fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher), |
| MonsterIdentifier()); |
| |
| // Unpack again, and re-serialize again. |
| auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver); |
| flatbuffers::FlatBufferBuilder fbb2; |
| fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher), |
| MonsterIdentifier()); |
| |
| // Now we've gone full round-trip, the two buffers should match. |
| auto len1 = fbb1.GetSize(); |
| auto len2 = fbb2.GetSize(); |
| TEST_EQ(len1, len2); |
| TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(), len1), 0); |
| |
| // Test it with the original buffer test to make sure all data survived. |
| AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false); |
| |
| // Test accessing fields, similar to AccessFlatBufferTest above. |
| TEST_EQ(monster2->hp, 80); |
| TEST_EQ(monster2->mana, 150); // default |
| TEST_EQ_STR(monster2->name.c_str(), "MyMonster"); |
| |
| auto &pos = monster2->pos; |
| TEST_NOTNULL(pos); |
| TEST_EQ(pos->z(), 3); |
| TEST_EQ(pos->test3().a(), 10); |
| TEST_EQ(pos->test3().b(), 20); |
| |
| auto &inventory = monster2->inventory; |
| TEST_EQ(inventory.size(), 10UL); |
| unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; |
| for (auto it = inventory.begin(); it != inventory.end(); ++it) |
| TEST_EQ(*it, inv_data[it - inventory.begin()]); |
| |
| TEST_EQ(monster2->color, Color_Blue); |
| |
| auto monster3 = monster2->test.AsMonster(); |
| TEST_NOTNULL(monster3); |
| TEST_EQ_STR(monster3->name.c_str(), "Fred"); |
| |
| auto &vecofstrings = monster2->testarrayofstring; |
| TEST_EQ(vecofstrings.size(), 4U); |
| TEST_EQ_STR(vecofstrings[0].c_str(), "bob"); |
| TEST_EQ_STR(vecofstrings[1].c_str(), "fred"); |
| |
| auto &vecofstrings2 = monster2->testarrayofstring2; |
| TEST_EQ(vecofstrings2.size(), 2U); |
| TEST_EQ_STR(vecofstrings2[0].c_str(), "jane"); |
| TEST_EQ_STR(vecofstrings2[1].c_str(), "mary"); |
| |
| auto &vecoftables = monster2->testarrayoftables; |
| TEST_EQ(vecoftables.size(), 3U); |
| TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney"); |
| TEST_EQ(vecoftables[0]->hp, 1000); |
| TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred"); |
| TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma"); |
| |
| auto &tests = monster2->test4; |
| TEST_EQ(tests[0].a(), 10); |
| TEST_EQ(tests[0].b(), 20); |
| TEST_EQ(tests[1].a(), 30); |
| TEST_EQ(tests[1].b(), 40); |
| } |
| |
| // Prefix a FlatBuffer with a size field. |
| void SizePrefixedTest() { |
| // Create size prefixed buffer. |
| flatbuffers::FlatBufferBuilder fbb; |
| FinishSizePrefixedMonsterBuffer( |
| fbb, |
| CreateMonster(fbb, 0, 200, 300, fbb.CreateString("bob"))); |
| |
| // Verify it. |
| flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize()); |
| TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier), true); |
| |
| // Access it. |
| auto m = GetSizePrefixedMonster(fbb.GetBufferPointer()); |
| TEST_EQ(m->mana(), 200); |
| TEST_EQ(m->hp(), 300); |
| TEST_EQ_STR(m->name()->c_str(), "bob"); |
| } |
| |
| void TriviallyCopyableTest() { |
| // clang-format off |
| #if __GNUG__ && __GNUC__ < 5 |
| TEST_EQ(__has_trivial_copy(Vec3), true); |
| #else |
| #if __cplusplus >= 201103L |
| TEST_EQ(std::is_trivially_copyable<Vec3>::value, true); |
| #endif |
| #endif |
| // clang-format on |
| } |
| |
| // Check stringify of an default enum value to json |
| void JsonDefaultTest() { |
| // load FlatBuffer schema (.fbs) from disk |
| std::string schemafile; |
| TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(), |
| false, &schemafile), true); |
| // parse schema first, so we can use it to parse the data after |
| flatbuffers::Parser parser; |
| auto include_test_path = |
| flatbuffers::ConCatPathFileName(test_data_path, "include_test"); |
| const char *include_directories[] = { test_data_path.c_str(), |
| include_test_path.c_str(), nullptr }; |
| |
| TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true); |
| // create incomplete monster and store to json |
| parser.opts.output_default_scalars_in_json = true; |
| parser.opts.output_enum_identifiers = true; |
| flatbuffers::FlatBufferBuilder builder; |
| auto name = builder.CreateString("default_enum"); |
| MonsterBuilder color_monster(builder); |
| color_monster.add_name(name); |
| FinishMonsterBuffer(builder, color_monster.Finish()); |
| std::string jsongen; |
| auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen); |
| TEST_EQ(result, true); |
| // default value of the "color" field is Blue |
| TEST_EQ(std::string::npos != jsongen.find("color: \"Blue\""), true); |
| // default value of the "testf" field is 3.14159 |
| TEST_EQ(std::string::npos != jsongen.find("testf: 3.14159"), true); |
| } |
| |
| void JsonEnumsTest() { |
| // load FlatBuffer schema (.fbs) from disk |
| std::string schemafile; |
| TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(), |
| false, &schemafile), |
| true); |
| // parse schema first, so we can use it to parse the data after |
| flatbuffers::Parser parser; |
| auto include_test_path = |
| flatbuffers::ConCatPathFileName(test_data_path, "include_test"); |
| const char *include_directories[] = { test_data_path.c_str(), |
| include_test_path.c_str(), nullptr }; |
| parser.opts.output_enum_identifiers = true; |
| TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true); |
| flatbuffers::FlatBufferBuilder builder; |
| auto name = builder.CreateString("bitflag_enum"); |
| MonsterBuilder color_monster(builder); |
| color_monster.add_name(name); |
| color_monster.add_color(Color(Color_Blue | Color_Red)); |
| FinishMonsterBuffer(builder, color_monster.Finish()); |
| std::string jsongen; |
| auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen); |
| TEST_EQ(result, true); |
| TEST_EQ(std::string::npos != jsongen.find("color: \"Red Blue\""), true); |
| } |
| |
| #if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0) |
| // The IEEE-754 quiet_NaN is not simple binary constant. |
| // All binary NaN bit strings have all the bits of the biased exponent field E |
| // set to 1. A quiet NaN bit string should be encoded with the first bit d[1] |
| // of the trailing significand field T being 1 (d[0] is implicit bit). |
| // It is assumed that endianness of floating-point is same as integer. |
| template<typename T, typename U, U qnan_base> bool is_quiet_nan_impl(T v) { |
| static_assert(sizeof(T) == sizeof(U), "unexpected"); |
| U b = 0; |
| std::memcpy(&b, &v, sizeof(T)); |
| return ((b & qnan_base) == qnan_base); |
| } |
| static bool is_quiet_nan(float v) { |
| return is_quiet_nan_impl<float, uint32_t, 0x7FC00000u>(v); |
| } |
| static bool is_quiet_nan(double v) { |
| return is_quiet_nan_impl<double, uint64_t, 0x7FF8000000000000ul>(v); |
| } |
| |
| void TestMonsterExtraFloats() { |
| TEST_EQ(is_quiet_nan(1.0), false); |
| TEST_EQ(is_quiet_nan(infinityd), false); |
| TEST_EQ(is_quiet_nan(-infinityf), false); |
| TEST_EQ(is_quiet_nan(std::numeric_limits<float>::quiet_NaN()), true); |
| TEST_EQ(is_quiet_nan(std::numeric_limits<double>::quiet_NaN()), true); |
| |
| using namespace flatbuffers; |
| using namespace MyGame; |
| // Load FlatBuffer schema (.fbs) from disk. |
| std::string schemafile; |
| TEST_EQ(LoadFile((test_data_path + "monster_extra.fbs").c_str(), false, |
| &schemafile), |
| true); |
| // Parse schema first, so we can use it to parse the data after. |
| Parser parser; |
| auto include_test_path = ConCatPathFileName(test_data_path, "include_test"); |
| const char *include_directories[] = { test_data_path.c_str(), |
| include_test_path.c_str(), nullptr }; |
| TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true); |
| // Create empty extra and store to json. |
| parser.opts.output_default_scalars_in_json = true; |
| parser.opts.output_enum_identifiers = true; |
| FlatBufferBuilder builder; |
| const auto def_root = MonsterExtraBuilder(builder).Finish(); |
| FinishMonsterExtraBuffer(builder, def_root); |
| const auto def_obj = builder.GetBufferPointer(); |
| const auto def_extra = GetMonsterExtra(def_obj); |
| TEST_NOTNULL(def_extra); |
| TEST_EQ(is_quiet_nan(def_extra->f0()), true); |
| TEST_EQ(is_quiet_nan(def_extra->f1()), true); |
| TEST_EQ(def_extra->f2(), +infinityf); |
| TEST_EQ(def_extra->f3(), -infinityf); |
| TEST_EQ(is_quiet_nan(def_extra->d0()), true); |
| TEST_EQ(is_quiet_nan(def_extra->d1()), true); |
| TEST_EQ(def_extra->d2(), +infinityd); |
| TEST_EQ(def_extra->d3(), -infinityd); |
| std::string jsongen; |
| auto result = GenerateText(parser, def_obj, &jsongen); |
| TEST_EQ(result, true); |
| // Check expected default values. |
| TEST_EQ(std::string::npos != jsongen.find("f0: nan"), true); |
| TEST_EQ(std::string::npos != jsongen.find("f1: nan"), true); |
| TEST_EQ(std::string::npos != jsongen.find("f2: inf"), true); |
| TEST_EQ(std::string::npos != jsongen.find("f3: -inf"), true); |
| TEST_EQ(std::string::npos != jsongen.find("d0: nan"), true); |
| TEST_EQ(std::string::npos != jsongen.find("d1: nan"), true); |
| TEST_EQ(std::string::npos != jsongen.find("d2: inf"), true); |
| TEST_EQ(std::string::npos != jsongen.find("d3: -inf"), true); |
| // Parse 'mosterdata_extra.json'. |
| const auto extra_base = test_data_path + "monsterdata_extra"; |
| jsongen = ""; |
| TEST_EQ(LoadFile((extra_base + ".json").c_str(), false, &jsongen), true); |
| TEST_EQ(parser.Parse(jsongen.c_str()), true); |
| const auto test_file = parser.builder_.GetBufferPointer(); |
| const auto test_size = parser.builder_.GetSize(); |
| Verifier verifier(test_file, test_size); |
| TEST_ASSERT(VerifyMonsterExtraBuffer(verifier)); |
| const auto extra = GetMonsterExtra(test_file); |
| TEST_NOTNULL(extra); |
| TEST_EQ(is_quiet_nan(extra->f0()), true); |
| TEST_EQ(is_quiet_nan(extra->f1()), true); |
| TEST_EQ(extra->f2(), +infinityf); |
| TEST_EQ(extra->f3(), -infinityf); |
| TEST_EQ(is_quiet_nan(extra->d0()), true); |
| TEST_EQ(extra->d1(), +infinityd); |
| TEST_EQ(extra->d2(), -infinityd); |
| TEST_EQ(is_quiet_nan(extra->d3()), true); |
| TEST_NOTNULL(extra->fvec()); |
| TEST_EQ(extra->fvec()->size(), 4); |
| TEST_EQ(extra->fvec()->Get(0), 1.0f); |
| TEST_EQ(extra->fvec()->Get(1), -infinityf); |
| TEST_EQ(extra->fvec()->Get(2), +infinityf); |
| TEST_EQ(is_quiet_nan(extra->fvec()->Get(3)), true); |
| TEST_NOTNULL(extra->dvec()); |
| TEST_EQ(extra->dvec()->size(), 4); |
| TEST_EQ(extra->dvec()->Get(0), 2.0); |
| TEST_EQ(extra->dvec()->Get(1), +infinityd); |
| TEST_EQ(extra->dvec()->Get(2), -infinityd); |
| TEST_EQ(is_quiet_nan(extra->dvec()->Get(3)), true); |
| } |
| #else |
| void TestMonsterExtraFloats() {} |
| #endif |
| |
| // example of parsing text straight into a buffer, and generating |
| // text back from it: |
| void ParseAndGenerateTextTest(bool binary) { |
| // load FlatBuffer schema (.fbs) and JSON from disk |
| std::string schemafile; |
| std::string jsonfile; |
| TEST_EQ(flatbuffers::LoadFile( |
| (test_data_path + "monster_test." + (binary ? "bfbs" : "fbs")) |
| .c_str(), |
| binary, &schemafile), |
| true); |
| TEST_EQ(flatbuffers::LoadFile( |
| (test_data_path + "monsterdata_test.golden").c_str(), false, |
| &jsonfile), |
| true); |
| |
| auto include_test_path = |
| flatbuffers::ConCatPathFileName(test_data_path, "include_test"); |
| const char *include_directories[] = { test_data_path.c_str(), |
| include_test_path.c_str(), nullptr }; |
| |
| // parse schema first, so we can use it to parse the data after |
| flatbuffers::Parser parser; |
| if (binary) { |
| flatbuffers::Verifier verifier( |
| reinterpret_cast<const uint8_t *>(schemafile.c_str()), |
| schemafile.size()); |
| TEST_EQ(reflection::VerifySchemaBuffer(verifier), true); |
| //auto schema = reflection::GetSchema(schemafile.c_str()); |
| TEST_EQ(parser.Deserialize((const uint8_t *)schemafile.c_str(), schemafile.size()), true); |
| } else { |
| TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true); |
| } |
| TEST_EQ(parser.Parse(jsonfile.c_str(), include_directories), true); |
| |
| // here, parser.builder_ contains a binary buffer that is the parsed data. |
| |
| // First, verify it, just in case: |
| flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(), |
| parser.builder_.GetSize()); |
| TEST_EQ(VerifyMonsterBuffer(verifier), true); |
| |
| AccessFlatBufferTest(parser.builder_.GetBufferPointer(), |
| parser.builder_.GetSize(), false); |
| |
| // to ensure it is correct, we now generate text back from the binary, |
| // and compare the two: |
| std::string jsongen; |
| auto result = |
| GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); |
| TEST_EQ(result, true); |
| TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str()); |
| |
| // We can also do the above using the convenient Registry that knows about |
| // a set of file_identifiers mapped to schemas. |
| flatbuffers::Registry registry; |
| // Make sure schemas can find their includes. |
| registry.AddIncludeDirectory(test_data_path.c_str()); |
| registry.AddIncludeDirectory(include_test_path.c_str()); |
| // Call this with many schemas if possible. |
| registry.Register(MonsterIdentifier(), |
| (test_data_path + "monster_test.fbs").c_str()); |
| // Now we got this set up, we can parse by just specifying the identifier, |
| // the correct schema will be loaded on the fly: |
| auto buf = registry.TextToFlatBuffer(jsonfile.c_str(), MonsterIdentifier()); |
| // If this fails, check registry.lasterror_. |
| TEST_NOTNULL(buf.data()); |
| // Test the buffer, to be sure: |
| AccessFlatBufferTest(buf.data(), buf.size(), false); |
| // We can use the registry to turn this back into text, in this case it |
| // will get the file_identifier from the binary: |
| std::string text; |
| auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text); |
| // If this fails, check registry.lasterror_. |
| TEST_EQ(ok, true); |
| TEST_EQ_STR(text.c_str(), jsonfile.c_str()); |
| |
| // Generate text for UTF-8 strings without escapes. |
| std::string jsonfile_utf8; |
| TEST_EQ(flatbuffers::LoadFile((test_data_path + "unicode_test.json").c_str(), |
| false, &jsonfile_utf8), |
| true); |
| TEST_EQ(parser.Parse(jsonfile_utf8.c_str(), include_directories), true); |
| // To ensure it is correct, generate utf-8 text back from the binary. |
| std::string jsongen_utf8; |
| // request natural printing for utf-8 strings |
| parser.opts.natural_utf8 = true; |
| parser.opts.strict_json = true; |
| TEST_EQ( |
| GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen_utf8), |
| true); |
| TEST_EQ_STR(jsongen_utf8.c_str(), jsonfile_utf8.c_str()); |
| } |
| |
| void ReflectionTest(uint8_t *flatbuf, size_t length) { |
| // Load a binary schema. |
| std::string bfbsfile; |
| TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.bfbs").c_str(), |
| true, &bfbsfile), |
| true); |
| |
| // Verify it, just in case: |
| flatbuffers::Verifier verifier( |
| reinterpret_cast<const uint8_t *>(bfbsfile.c_str()), bfbsfile.length()); |
| TEST_EQ(reflection::VerifySchemaBuffer(verifier), true); |
| |
| // Make sure the schema is what we expect it to be. |
| auto &schema = *reflection::GetSchema(bfbsfile.c_str()); |
| auto root_table = schema.root_table(); |
| TEST_EQ_STR(root_table->name()->c_str(), "MyGame.Example.Monster"); |
| auto fields = root_table->fields(); |
| auto hp_field_ptr = fields->LookupByKey("hp"); |
| TEST_NOTNULL(hp_field_ptr); |
| auto &hp_field = *hp_field_ptr; |
| TEST_EQ_STR(hp_field.name()->c_str(), "hp"); |
| TEST_EQ(hp_field.id(), 2); |
| TEST_EQ(hp_field.type()->base_type(), reflection::Short); |
| auto friendly_field_ptr = fields->LookupByKey("friendly"); |
| TEST_NOTNULL(friendly_field_ptr); |
| TEST_NOTNULL(friendly_field_ptr->attributes()); |
| TEST_NOTNULL(friendly_field_ptr->attributes()->LookupByKey("priority")); |
| |
| // Make sure the table index is what we expect it to be. |
| auto pos_field_ptr = fields->LookupByKey("pos"); |
| TEST_NOTNULL(pos_field_ptr); |
| TEST_EQ(pos_field_ptr->type()->base_type(), reflection::Obj); |
| auto pos_table_ptr = schema.objects()->Get(pos_field_ptr->type()->index()); |
| TEST_NOTNULL(pos_table_ptr); |
| TEST_EQ_STR(pos_table_ptr->name()->c_str(), "MyGame.Example.Vec3"); |
| |
| // Now use it to dynamically access a buffer. |
| auto &root = *flatbuffers::GetAnyRoot(flatbuf); |
| |
| // Verify the buffer first using reflection based verification |
| TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length), |
| true); |
| |
| auto hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field); |
| TEST_EQ(hp, 80); |
| |
| // Rather than needing to know the type, we can also get the value of |
| // any field as an int64_t/double/string, regardless of what it actually is. |
| auto hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field); |
| TEST_EQ(hp_int64, 80); |
| auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field); |
| TEST_EQ(hp_double, 80.0); |
| auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema); |
| TEST_EQ_STR(hp_string.c_str(), "80"); |
| |
| // Get struct field through reflection |
| auto pos_struct = flatbuffers::GetFieldStruct(root, *pos_field_ptr); |
| TEST_NOTNULL(pos_struct); |
| TEST_EQ(flatbuffers::GetAnyFieldF(*pos_struct, |
| *pos_table_ptr->fields()->LookupByKey("z")), |
| 3.0f); |
| |
| auto test3_field = pos_table_ptr->fields()->LookupByKey("test3"); |
| auto test3_struct = flatbuffers::GetFieldStruct(*pos_struct, *test3_field); |
| TEST_NOTNULL(test3_struct); |
| auto test3_object = schema.objects()->Get(test3_field->type()->index()); |
| |
| TEST_EQ(flatbuffers::GetAnyFieldF(*test3_struct, |
| *test3_object->fields()->LookupByKey("a")), |
| 10); |
| |
| // We can also modify it. |
| flatbuffers::SetField<uint16_t>(&root, hp_field, 200); |
| hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field); |
| TEST_EQ(hp, 200); |
| |
| // We can also set fields generically: |
| flatbuffers::SetAnyFieldI(&root, hp_field, 300); |
| hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field); |
| TEST_EQ(hp_int64, 300); |
| flatbuffers::SetAnyFieldF(&root, hp_field, 300.5); |
| hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field); |
| TEST_EQ(hp_int64, 300); |
| flatbuffers::SetAnyFieldS(&root, hp_field, "300"); |
| hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field); |
| TEST_EQ(hp_int64, 300); |
| |
| // Test buffer is valid after the modifications |
| TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length), |
| true); |
| |
| // Reset it, for further tests. |
| flatbuffers::SetField<uint16_t>(&root, hp_field, 80); |
| |
| // More advanced functionality: changing the size of items in-line! |
| // First we put the FlatBuffer inside an std::vector. |
| std::vector<uint8_t> resizingbuf(flatbuf, flatbuf + length); |
| // Find the field we want to modify. |
| auto &name_field = *fields->LookupByKey("name"); |
| // Get the root. |
| // This time we wrap the result from GetAnyRoot in a smartpointer that |
| // will keep rroot valid as resizingbuf resizes. |
| auto rroot = flatbuffers::piv( |
| flatbuffers::GetAnyRoot(flatbuffers::vector_data(resizingbuf)), |
| resizingbuf); |
| SetString(schema, "totally new string", GetFieldS(**rroot, name_field), |
| &resizingbuf); |
| // Here resizingbuf has changed, but rroot is still valid. |
| TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "totally new string"); |
| // Now lets extend a vector by 100 elements (10 -> 110). |
| auto &inventory_field = *fields->LookupByKey("inventory"); |
| auto rinventory = flatbuffers::piv( |
| flatbuffers::GetFieldV<uint8_t>(**rroot, inventory_field), resizingbuf); |
| flatbuffers::ResizeVector<uint8_t>(schema, 110, 50, *rinventory, |
| &resizingbuf); |
| // rinventory still valid, so lets read from it. |
| TEST_EQ(rinventory->Get(10), 50); |
| |
| // For reflection uses not covered already, there is a more powerful way: |
| // we can simply generate whatever object we want to add/modify in a |
| // FlatBuffer of its own, then add that to an existing FlatBuffer: |
| // As an example, let's add a string to an array of strings. |
| // First, find our field: |
| auto &testarrayofstring_field = *fields->LookupByKey("testarrayofstring"); |
| // Find the vector value: |
| auto rtestarrayofstring = flatbuffers::piv( |
| flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::String>>( |
| **rroot, testarrayofstring_field), |
| resizingbuf); |
| // It's a vector of 2 strings, to which we add one more, initialized to |
| // offset 0. |
| flatbuffers::ResizeVector<flatbuffers::Offset<flatbuffers::String>>( |
| schema, 3, 0, *rtestarrayofstring, &resizingbuf); |
| // Here we just create a buffer that contans a single string, but this |
| // could also be any complex set of tables and other values. |
| flatbuffers::FlatBufferBuilder stringfbb; |
| stringfbb.Finish(stringfbb.CreateString("hank")); |
| // Add the contents of it to our existing FlatBuffer. |
| // We do this last, so the pointer doesn't get invalidated (since it is |
| // at the end of the buffer): |
| auto string_ptr = flatbuffers::AddFlatBuffer( |
| resizingbuf, stringfbb.GetBufferPointer(), stringfbb.GetSize()); |
| // Finally, set the new value in the vector. |
| rtestarrayofstring->MutateOffset(2, string_ptr); |
| TEST_EQ_STR(rtestarrayofstring->Get(0)->c_str(), "bob"); |
| TEST_EQ_STR(rtestarrayofstring->Get(2)->c_str(), "hank"); |
| // Test integrity of all resize operations above. |
| flatbuffers::Verifier resize_verifier( |
| reinterpret_cast<const uint8_t *>(flatbuffers::vector_data(resizingbuf)), |
| resizingbuf.size()); |
| TEST_EQ(VerifyMonsterBuffer(resize_verifier), true); |
| |
| // Test buffer is valid using reflection as well |
| TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), |
| flatbuffers::vector_data(resizingbuf), |
| resizingbuf.size()), |
| true); |
| |
| // As an additional test, also set it on the name field. |
| // Note: unlike the name change above, this just overwrites the offset, |
| // rather than changing the string in-place. |
| SetFieldT(*rroot, name_field, string_ptr); |
| TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "hank"); |
| |
| // Using reflection, rather than mutating binary FlatBuffers, we can also copy |
| // tables and other things out of other FlatBuffers into a FlatBufferBuilder, |
| // either part or whole. |
| flatbuffers::FlatBufferBuilder fbb; |
| auto root_offset = flatbuffers::CopyTable( |
| fbb, schema, *root_table, *flatbuffers::GetAnyRoot(flatbuf), true); |
| fbb.Finish(root_offset, MonsterIdentifier()); |
| // Test that it was copied correctly: |
| AccessFlatBufferTest(fbb.GetBufferPointer(), fbb.GetSize()); |
| |
| // Test buffer is valid using reflection as well |
| TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), |
| fbb.GetBufferPointer(), fbb.GetSize()), |
| true); |
| } |
| |
| void MiniReflectFlatBuffersTest(uint8_t *flatbuf) { |
| auto s = flatbuffers::FlatBufferToString(flatbuf, Monster::MiniReflectTypeTable()); |
| TEST_EQ_STR( |
| s.c_str(), |
| "{ " |
| "pos: { x: 1.0, y: 2.0, z: 3.0, test1: 0.0, test2: Red, test3: " |
| "{ a: 10, b: 20 } }, " |
| "hp: 80, " |
| "name: \"MyMonster\", " |
| "inventory: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], " |
| "test_type: Monster, " |
| "test: { name: \"Fred\" }, " |
| "test4: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], " |
| "testarrayofstring: [ \"bob\", \"fred\", \"bob\", \"fred\" ], " |
| "testarrayoftables: [ { hp: 1000, name: \"Barney\" }, { name: \"Fred\" " |
| "}, " |
| "{ name: \"Wilma\" } ], " |
| // TODO(wvo): should really print this nested buffer correctly. |
| "testnestedflatbuffer: [ 20, 0, 0, 0, 77, 79, 78, 83, 12, 0, 12, 0, 0, " |
| "0, " |
| "4, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 0, 78, " |
| "101, 115, 116, 101, 100, 77, 111, 110, 115, 116, 101, 114, 0, 0, 0 ], " |
| "testarrayofstring2: [ \"jane\", \"mary\" ], " |
| "testarrayofsortedstruct: [ { id: 1, distance: 10 }, " |
| "{ id: 2, distance: 20 }, { id: 3, distance: 30 }, " |
| "{ id: 4, distance: 40 } ], " |
| "flex: [ 210, 4, 5, 2 ], " |
| "test5: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], " |
| "vector_of_enums: [ Blue, Green ] " |
| "}"); |
| |
| Test test(16, 32); |
| Vec3 vec(1,2,3, 1.5, Color_Red, test); |
| flatbuffers::FlatBufferBuilder vec_builder; |
| vec_builder.Finish(vec_builder.CreateStruct(vec)); |
| auto vec_buffer = vec_builder.Release(); |
| auto vec_str = flatbuffers::FlatBufferToString(vec_buffer.data(), |
| Vec3::MiniReflectTypeTable()); |
| TEST_EQ_STR( |
| vec_str.c_str(), |
| "{ x: 1.0, y: 2.0, z: 3.0, test1: 1.5, test2: Red, test3: { a: 16, b: 32 } }"); |
| } |
| |
| // Parse a .proto schema, output as .fbs |
| void ParseProtoTest() { |
| // load the .proto and the golden file from disk |
| std::string protofile; |
| std::string goldenfile; |
| std::string goldenunionfile; |
| TEST_EQ( |
| flatbuffers::LoadFile((test_data_path + "prototest/test.proto").c_str(), |
| false, &protofile), |
| true); |
| TEST_EQ( |
| flatbuffers::LoadFile((test_data_path + "prototest/test.golden").c_str(), |
| false, &goldenfile), |
| true); |
| TEST_EQ( |
| flatbuffers::LoadFile((test_data_path + |
| "prototest/test_union.golden").c_str(), |
| false, &goldenunionfile), |
| true); |
| |
| flatbuffers::IDLOptions opts; |
| opts.include_dependence_headers = false; |
| opts.proto_mode = true; |
| |
| // Parse proto. |
| flatbuffers::Parser parser(opts); |
| auto protopath = test_data_path + "prototest/"; |
| const char *include_directories[] = { protopath.c_str(), nullptr }; |
| TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true); |
| |
| // Generate fbs. |
| auto fbs = flatbuffers::GenerateFBS(parser, "test"); |
| |
| // Ensure generated file is parsable. |
| flatbuffers::Parser parser2; |
| TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true); |
| TEST_EQ_STR(fbs.c_str(), goldenfile.c_str()); |
| |
| // Parse proto with --oneof-union option. |
| opts.proto_oneof_union = true; |
| flatbuffers::Parser parser3(opts); |
| TEST_EQ(parser3.Parse(protofile.c_str(), include_directories), true); |
| |
| // Generate fbs. |
| auto fbs_union = flatbuffers::GenerateFBS(parser3, "test"); |
| |
| // Ensure generated file is parsable. |
| flatbuffers::Parser parser4; |
| TEST_EQ(parser4.Parse(fbs_union.c_str(), nullptr), true); |
| TEST_EQ_STR(fbs_union.c_str(), goldenunionfile.c_str()); |
| } |
| |
| template<typename T> |
| void CompareTableFieldValue(flatbuffers::Table *table, |
| flatbuffers::voffset_t voffset, T val) { |
| T read = table->GetField(voffset, static_cast<T>(0)); |
| TEST_EQ(read, val); |
| } |
| |
| // Low level stress/fuzz test: serialize/deserialize a variety of |
| // different kinds of data in different combinations |
| void FuzzTest1() { |
| // Values we're testing against: chosen to ensure no bits get chopped |
| // off anywhere, and also be different from eachother. |
| const uint8_t bool_val = true; |
| const int8_t char_val = -127; // 0x81 |
| const uint8_t uchar_val = 0xFF; |
| const int16_t short_val = -32222; // 0x8222; |
| const uint16_t ushort_val = 0xFEEE; |
| const int32_t int_val = 0x83333333; |
| const uint32_t uint_val = 0xFDDDDDDD; |
| const int64_t long_val = 0x8444444444444444LL; |
| const uint64_t ulong_val = 0xFCCCCCCCCCCCCCCCULL; |
| const float float_val = 3.14159f; |
| const double double_val = 3.14159265359; |
| |
| const int test_values_max = 11; |
| const flatbuffers::voffset_t fields_per_object = 4; |
| const int num_fuzz_objects = 10000; // The higher, the more thorough :) |
| |
| flatbuffers::FlatBufferBuilder builder; |
| |
| lcg_reset(); // Keep it deterministic. |
| |
| flatbuffers::uoffset_t objects[num_fuzz_objects]; |
| |
| // Generate num_fuzz_objects random objects each consisting of |
| // fields_per_object fields, each of a random type. |
| for (int i = 0; i < num_fuzz_objects; i++) { |
| auto start = builder.StartTable(); |
| for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) { |
| int choice = lcg_rand() % test_values_max; |
| auto off = flatbuffers::FieldIndexToOffset(f); |
| switch (choice) { |
| case 0: builder.AddElement<uint8_t>(off, bool_val, 0); break; |
| case 1: builder.AddElement<int8_t>(off, char_val, 0); break; |
| case 2: builder.AddElement<uint8_t>(off, uchar_val, 0); break; |
| case 3: builder.AddElement<int16_t>(off, short_val, 0); break; |
| case 4: builder.AddElement<uint16_t>(off, ushort_val, 0); break; |
| case 5: builder.AddElement<int32_t>(off, int_val, 0); break; |
| case 6: builder.AddElement<uint32_t>(off, uint_val, 0); break; |
| case 7: builder.AddElement<int64_t>(off, long_val, 0); break; |
| case 8: builder.AddElement<uint64_t>(off, ulong_val, 0); break; |
| case 9: builder.AddElement<float>(off, float_val, 0); break; |
| case 10: builder.AddElement<double>(off, double_val, 0); break; |
| } |
| } |
| objects[i] = builder.EndTable(start); |
| } |
| builder.PreAlign<flatbuffers::largest_scalar_t>(0); // Align whole buffer. |
| |
| lcg_reset(); // Reset. |
| |
| uint8_t *eob = builder.GetCurrentBufferPointer() + builder.GetSize(); |
| |
| // Test that all objects we generated are readable and return the |
| // expected values. We generate random objects in the same order |
| // so this is deterministic. |
| for (int i = 0; i < num_fuzz_objects; i++) { |
| auto table = reinterpret_cast<flatbuffers::Table *>(eob - objects[i]); |
| for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) { |
| int choice = lcg_rand() % test_values_max; |
| flatbuffers::voffset_t off = flatbuffers::FieldIndexToOffset(f); |
| switch (choice) { |
| case 0: CompareTableFieldValue(table, off, bool_val); break; |
| case 1: CompareTableFieldValue(table, off, char_val); break; |
| case 2: CompareTableFieldValue(table, off, uchar_val); break; |
| case 3: CompareTableFieldValue(table, off, short_val); break; |
| case 4: CompareTableFieldValue(table, off, ushort_val); break; |
| case 5: CompareTableFieldValue(table, off, int_val); break; |
| case 6: CompareTableFieldValue(table, off, uint_val); break; |
| case 7: CompareTableFieldValue(table, off, long_val); break; |
| case 8: CompareTableFieldValue(table, off, ulong_val); break; |
| case 9: CompareTableFieldValue(table, off, float_val); break; |
| case 10: CompareTableFieldValue(table, off, double_val); break; |
| } |
| } |
| } |
| } |
| |
| // High level stress/fuzz test: generate a big schema and |
| // matching json data in random combinations, then parse both, |
| // generate json back from the binary, and compare with the original. |
| void FuzzTest2() { |
| lcg_reset(); // Keep it deterministic. |
| |
| const int num_definitions = 30; |
| const int num_struct_definitions = 5; // Subset of num_definitions. |
| const int fields_per_definition = 15; |
| const int instances_per_definition = 5; |
| const int deprecation_rate = 10; // 1 in deprecation_rate fields will |
| // be deprecated. |
| |
| std::string schema = "namespace test;\n\n"; |
| |
| struct RndDef { |
| std::string instances[instances_per_definition]; |
| |
| // Since we're generating schema and corresponding data in tandem, |
| // this convenience function adds strings to both at once. |
| static void Add(RndDef (&definitions_l)[num_definitions], |
| std::string &schema_l, const int instances_per_definition_l, |
| const char *schema_add, const char *instance_add, |
| int definition) { |
| schema_l += schema_add; |
| for (int i = 0; i < instances_per_definition_l; i++) |
| definitions_l[definition].instances[i] += instance_add; |
| } |
| }; |
| |
| // clang-format off |
| #define AddToSchemaAndInstances(schema_add, instance_add) \ |
| RndDef::Add(definitions, schema, instances_per_definition, \ |
| schema_add, instance_add, definition) |
| |
| #define Dummy() \ |
| RndDef::Add(definitions, schema, instances_per_definition, \ |
| "byte", "1", definition) |
| // clang-format on |
| |
| RndDef definitions[num_definitions]; |
| |
| // We are going to generate num_definitions, the first |
| // num_struct_definitions will be structs, the rest tables. For each |
| // generate random fields, some of which may be struct/table types |
| // referring to previously generated structs/tables. |
| // Simultanenously, we generate instances_per_definition JSON data |
| // definitions, which will have identical structure to the schema |
| // being generated. We generate multiple instances such that when creating |
| // hierarchy, we get some variety by picking one randomly. |
| for (int definition = 0; definition < num_definitions; definition++) { |
| std::string definition_name = "D" + flatbuffers::NumToString(definition); |
| |
| bool is_struct = definition < num_struct_definitions; |
| |
| AddToSchemaAndInstances( |
| ((is_struct ? "struct " : "table ") + definition_name + " {\n").c_str(), |
| "{\n"); |
| |
| for (int field = 0; field < fields_per_definition; field++) { |
| const bool is_last_field = field == fields_per_definition - 1; |
| |
| // Deprecate 1 in deprecation_rate fields. Only table fields can be |
| // deprecated. |
| // Don't deprecate the last field to avoid dangling commas in JSON. |
| const bool deprecated = |
| !is_struct && !is_last_field && (lcg_rand() % deprecation_rate == 0); |
| |
| std::string field_name = "f" + flatbuffers::NumToString(field); |
| AddToSchemaAndInstances((" " + field_name + ":").c_str(), |
| deprecated ? "" : (field_name + ": ").c_str()); |
| // Pick random type: |
| auto base_type = static_cast<flatbuffers::BaseType>( |
| lcg_rand() % (flatbuffers::BASE_TYPE_UNION + 1)); |
| switch (base_type) { |
| case flatbuffers::BASE_TYPE_STRING: |
| if (is_struct) { |
| Dummy(); // No strings in structs. |
| } else { |
| AddToSchemaAndInstances("string", deprecated ? "" : "\"hi\""); |
| } |
| break; |
| case flatbuffers::BASE_TYPE_VECTOR: |
| if (is_struct) { |
| Dummy(); // No vectors in structs. |
| } else { |
| AddToSchemaAndInstances("[ubyte]", |
| deprecated ? "" : "[\n0,\n1,\n255\n]"); |
| } |
| break; |
| case flatbuffers::BASE_TYPE_NONE: |
| case flatbuffers::BASE_TYPE_UTYPE: |
| case flatbuffers::BASE_TYPE_STRUCT: |
| case flatbuffers::BASE_TYPE_UNION: |
| if (definition) { |
| // Pick a random previous definition and random data instance of |
| // that definition. |
| int defref = lcg_rand() % definition; |
| int instance = lcg_rand() % instances_per_definition; |
| AddToSchemaAndInstances( |
| ("D" + flatbuffers::NumToString(defref)).c_str(), |
| deprecated ? "" |
| : definitions[defref].instances[instance].c_str()); |
| } else { |
| // If this is the first definition, we have no definition we can |
| // refer to. |
| Dummy(); |
| } |
| break; |
| case flatbuffers::BASE_TYPE_BOOL: |
| AddToSchemaAndInstances( |
| "bool", deprecated ? "" : (lcg_rand() % 2 ? "true" : "false")); |
| break; |
| case flatbuffers::BASE_TYPE_ARRAY: |
| if (!is_struct) { |
| AddToSchemaAndInstances( |
| "ubyte", |
| deprecated ? "" : "255"); // No fixed-length arrays in tables. |
| } else { |
| AddToSchemaAndInstances("[int:3]", deprecated ? "" : "[\n,\n,\n]"); |
| } |
| break; |
| default: |
| // All the scalar types. |
| schema += flatbuffers::kTypeNames[base_type]; |
| |
| if (!deprecated) { |
| // We want each instance to use its own random value. |
| for (int inst = 0; inst < instances_per_definition; inst++) |
| definitions[definition].instances[inst] += |
| flatbuffers::IsFloat(base_type) |
| ? flatbuffers::NumToString<double>(lcg_rand() % 128) |
| .c_str() |
| : flatbuffers::NumToString<int>(lcg_rand() % 128).c_str(); |
| } |
| } |
| AddToSchemaAndInstances(deprecated ? "(deprecated);\n" : ";\n", |
| deprecated ? "" : is_last_field ? "\n" : ",\n"); |
| } |
| AddToSchemaAndInstances("}\n\n", "}"); |
| } |
| |
| schema += "root_type D" + flatbuffers::NumToString(num_definitions - 1); |
| schema += ";\n"; |
| |
| flatbuffers::Parser parser; |
| |
| // Will not compare against the original if we don't write defaults |
| parser.builder_.ForceDefaults(true); |
| |
| // Parse the schema, parse the generated data, then generate text back |
| // from the binary and compare against the original. |
| TEST_EQ(parser.Parse(schema.c_str()), true); |
| |
| const std::string &json = |
| definitions[num_definitions - 1].instances[0] + "\n"; |
| |
| TEST_EQ(parser.Parse(json.c_str()), true); |
| |
| std::string jsongen; |
| parser.opts.indent_step = 0; |
| auto result = |
| GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); |
| TEST_EQ(result, true); |
| |
| if (jsongen != json) { |
| // These strings are larger than a megabyte, so we show the bytes around |
| // the first bytes that are different rather than the whole string. |
| size_t len = std::min(json.length(), jsongen.length()); |
| for (size_t i = 0; i < len; i++) { |
| if (json[i] != jsongen[i]) { |
| i -= std::min(static_cast<size_t>(10), i); // show some context; |
| size_t end = std::min(len, i + 20); |
| for (; i < end; i++) |
| TEST_OUTPUT_LINE("at %d: found \"%c\", expected \"%c\"\n", |
| static_cast<int>(i), jsongen[i], json[i]); |
| break; |
| } |
| } |
| TEST_NOTNULL(NULL); |
| } |
| |
| // clang-format off |
| #ifdef FLATBUFFERS_TEST_VERBOSE |
| TEST_OUTPUT_LINE("%dk schema tested with %dk of json\n", |
| static_cast<int>(schema.length() / 1024), |
| static_cast<int>(json.length() / 1024)); |
| #endif |
| // clang-format on |
| } |
| |
| // Test that parser errors are actually generated. |
| void TestError_(const char *src, const char *error_substr, bool strict_json, |
| const char *file, int line, const char *func) { |
| flatbuffers::IDLOptions opts; |
| opts.strict_json = strict_json; |
| flatbuffers::Parser parser(opts); |
| if (parser.Parse(src)) { |
| TestFail("true", "false", |
| ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line, |
| func); |
| } else if (!strstr(parser.error_.c_str(), error_substr)) { |
| TestFail(parser.error_.c_str(), error_substr, |
| ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line, |
| func); |
| } |
| } |
| |
| void TestError_(const char *src, const char *error_substr, const char *file, |
| int line, const char *func) { |
| TestError_(src, error_substr, false, file, line, func); |
| } |
| |
| #ifdef _WIN32 |
| # define TestError(src, ...) \ |
| TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__) |
| #else |
| # define TestError(src, ...) \ |
| TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__) |
| #endif |
| |
| // Test that parsing errors occur as we'd expect. |
| // Also useful for coverage, making sure these paths are run. |
| void ErrorTest() { |
| // In order they appear in idl_parser.cpp |
| TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit"); |
| TestError("\"\0", "illegal"); |
| TestError("\"\\q", "escape code"); |
| TestError("table ///", "documentation"); |
| TestError("@", "illegal"); |
| TestError("table 1", "expecting"); |
| TestError("table X { Y:[[int]]; }", "nested vector"); |
| TestError("table X { Y:1; }", "illegal type"); |
| TestError("table X { Y:int; Y:int; }", "field already"); |
| TestError("table Y {} table X { Y:int; }", "same as table"); |
| TestError("struct X { Y:string; }", "only scalar"); |
| TestError("table X { Y:string = \"\"; }", "default values"); |
| TestError("struct X { a:uint = 42; }", "default values"); |
| TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum"); |
| TestError("struct X { Y:int (deprecated); }", "deprecate"); |
| TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }", |
| "missing type field"); |
| TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {", |
| "type id"); |
| TestError("table X { Y:int; } root_type X; { Z:", "unknown field"); |
| TestError("table X { Y:int; } root_type X; { Y:", "string constant", true); |
| TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant", |
| true); |
| TestError( |
| "struct X { Y:int; Z:int; } table W { V:X; } root_type W; " |
| "{ V:{ Y:1 } }", |
| "wrong number"); |
| TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }", |
| "unknown enum value"); |
| TestError("table X { Y:byte; } root_type X; { Y:; }", "starting"); |
| TestError("enum X:byte { Y } enum X {", "enum already"); |
| TestError("enum X:float {}", "underlying"); |
| TestError("enum X:byte { Y, Y }", "value already"); |
| TestError("enum X:byte { Y=2, Z=1 }", "ascending"); |
| TestError("table X { Y:int; } table X {", "datatype already"); |
| TestError("struct X (force_align: 7) { Y:int; }", "force_align"); |
| TestError("struct X {}", "size 0"); |
| TestError("{}", "no root"); |
| TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file"); |
| TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }", |
| "end of file"); |
| TestError("root_type X;", "unknown root"); |
| TestError("struct X { Y:int; } root_type X;", "a table"); |
| TestError("union X { Y }", "referenced"); |
| TestError("union Z { X } struct X { Y:int; }", "only tables"); |
| TestError("table X { Y:[int]; YLength:int; }", "clash"); |
| TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once"); |
| // float to integer conversion is forbidden |
| TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float"); |
| TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float"); |
| TestError("enum X:bool { Y = true }", "must be integral"); |
| } |
| |
| template<typename T> |
| T TestValue(const char *json, const char *type_name, |
| const char *decls = nullptr) { |
| flatbuffers::Parser parser; |
| parser.builder_.ForceDefaults(true); // return defaults |
| auto check_default = json ? false : true; |
| if (check_default) { parser.opts.output_default_scalars_in_json = true; } |
| // Simple schema. |
| std::string schema = std::string(decls ? decls : "") + "\n" + |
| "table X { Y:" + std::string(type_name) + |
| "; } root_type X;"; |
| auto schema_done = parser.Parse(schema.c_str()); |
| TEST_EQ_STR(parser.error_.c_str(), ""); |
| TEST_EQ(schema_done, true); |
| |
| auto done = parser.Parse(check_default ? "{}" : json); |
| TEST_EQ_STR(parser.error_.c_str(), ""); |
| TEST_EQ(done, true); |
| |
| // Check with print. |
| std::string print_back; |
| parser.opts.indent_step = -1; |
| TEST_EQ(GenerateText(parser, parser.builder_.GetBufferPointer(), &print_back), |
| true); |
| // restore value from its default |
| if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); } |
| |
| auto root = flatbuffers::GetRoot<flatbuffers::Table>( |
| parser.builder_.GetBufferPointer()); |
| return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0); |
| } |
| |
| bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; } |
| |
| // Additional parser testing not covered elsewhere. |
| void ValueTest() { |
| // Test scientific notation numbers. |
| TEST_EQ(FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"), |
| 3.14159f), |
| true); |
| // number in string |
| TEST_EQ(FloatCompare(TestValue<float>("{ Y:\"0.0314159e+2\" }", "float"), |
| 3.14159f), |
| true); |
| |
| // Test conversion functions. |
| TEST_EQ(FloatCompare(TestValue<float>("{ Y:cos(rad(180)) }", "float"), -1), |
| true); |
| |
| // int embedded to string |
| TEST_EQ(TestValue<int>("{ Y:\"-876\" }", "int=-123"), -876); |
| TEST_EQ(TestValue<int>("{ Y:\"876\" }", "int=-123"), 876); |
| |
| // Test negative hex constant. |
| TEST_EQ(TestValue<int>("{ Y:-0x8ea0 }", "int=-0x8ea0"), -36512); |
| TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512); |
| |
| // positive hex constant |
| TEST_EQ(TestValue<int>("{ Y:0x1abcdef }", "int=0x1"), 0x1abcdef); |
| // with optional '+' sign |
| TEST_EQ(TestValue<int>("{ Y:+0x1abcdef }", "int=+0x1"), 0x1abcdef); |
| // hex in string |
| TEST_EQ(TestValue<int>("{ Y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef); |
| |
| // Make sure we do unsigned 64bit correctly. |
| TEST_EQ(TestValue<uint64_t>("{ Y:12335089644688340133 }", "ulong"), |
| 12335089644688340133ULL); |
| |
| // bool in string |
| TEST_EQ(TestValue<bool>("{ Y:\"false\" }", "bool=true"), false); |
| TEST_EQ(TestValue<bool>("{ Y:\"true\" }", "bool=\"true\""), true); |
| TEST_EQ(TestValue<bool>("{ Y:'false' }", "bool=true"), false); |
| TEST_EQ(TestValue<bool>("{ Y:'true' }", "bool=\"true\""), true); |
| |
| // check comments before and after json object |
| TEST_EQ(TestValue<int>("/*before*/ { Y:1 } /*after*/", "int"), 1); |
| TEST_EQ(TestValue<int>("//before \n { Y:1 } //after", "int"), 1); |
| |
| } |
| |
| void NestedListTest() { |
| flatbuffers::Parser parser1; |
| TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }" |
| "root_type T;" |
| "{ F:[ [10,20], [30,40]] }"), |
| true); |
| } |
| |
| void EnumStringsTest() { |
| flatbuffers::Parser parser1; |
| TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }" |
| "root_type T;" |
| "{ F:[ A, B, \"C\", \"A B C\" ] }"), |
| true); |
| flatbuffers::Parser parser2; |
| TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }" |
| "root_type T;" |
| "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"), |
| true); |
| // unsigned bit_flags |
| flatbuffers::Parser parser3; |
| TEST_EQ( |
| parser3.Parse("enum E:uint16 (bit_flags) { F0, F07=7, F08, F14=14, F15 }" |
| " table T { F: E = \"F15 F08\"; }" |
| "root_type T;"), |
| true); |
| } |
| |
| void EnumNamesTest() { |
| TEST_EQ_STR("Red", EnumNameColor(Color_Red)); |
| TEST_EQ_STR("Green", EnumNameColor(Color_Green)); |
| TEST_EQ_STR("Blue", EnumNameColor(Color_Blue)); |
| // Check that Color to string don't crash while decode a mixture of Colors. |
| // 1) Example::Color enum is enum with unfixed underlying type. |
| // 2) Valid enum range: [0; 2^(ceil(log2(Color_ANY))) - 1]. |
| // Consequence: A value is out of this range will lead to UB (since C++17). |
| // For details see C++17 standard or explanation on the SO: |
| // stackoverflow.com/questions/18195312/what-happens-if-you-static-cast-invalid-value-to-enum-class |
| TEST_EQ_STR("", EnumNameColor(static_cast<Color>(0))); |
| TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY-1))); |
| TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY+1))); |
| } |
| |
| void EnumOutOfRangeTest() { |
| TestError("enum X:byte { Y = 128 }", "enum value does not fit"); |
| TestError("enum X:byte { Y = -129 }", "enum value does not fit"); |
| TestError("enum X:byte { Y = 126, Z0, Z1 }", "enum value does not fit"); |
| TestError("enum X:ubyte { Y = -1 }", "enum value does not fit"); |
| TestError("enum X:ubyte { Y = 256 }", "enum value does not fit"); |
| TestError("enum X:ubyte { Y = 255, Z }", "enum value does not fit"); |
| // Unions begin with an implicit "NONE = 0". |
| TestError("table Y{} union X { Y = -1 }", |
| "enum values must be specified in ascending order"); |
| TestError("table Y{} union X { Y = 256 }", "enum value does not fit"); |
| TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit"); |
| TestError("enum X:int { Y = -2147483649 }", "enum value does not fit"); |
| TestError("enum X:int { Y = 2147483648 }", "enum value does not fit"); |
| TestError("enum X:uint { Y = -1 }", "enum value does not fit"); |
| TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit"); |
| TestError("enum X:long { Y = 9223372036854775808 }", "does not fit"); |
| TestError("enum X:long { Y = 9223372036854775807, Z }", "enum value does not fit"); |
| TestError("enum X:ulong { Y = -1 }", "does not fit"); |
| TestError("enum X:ubyte (bit_flags) { Y=8 }", "bit flag out"); |
| TestError("enum X:byte (bit_flags) { Y=7 }", "must be unsigned"); // -128 |
| // bit_flgs out of range |
| TestError("enum X:ubyte (bit_flags) { Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8 }", "out of range"); |
| } |
| |
| void EnumValueTest() { |
| // json: "{ Y:0 }", schema: table X { Y : "E"} |
| // 0 in enum (V=0) E then Y=0 is valid. |
| TEST_EQ(TestValue<int>("{ Y:0 }", "E", "enum E:int { V }"), 0); |
| TEST_EQ(TestValue<int>("{ Y:V }", "E", "enum E:int { V }"), 0); |
| // A default value of Y is 0. |
| TEST_EQ(TestValue<int>("{ }", "E", "enum E:int { V }"), 0); |
| TEST_EQ(TestValue<int>("{ Y:5 }", "E=V", "enum E:int { V=5 }"), 5); |
| // Generate json with defaults and check. |
| TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { V=5 }"), 5); |
| // 5 in enum |
| TEST_EQ(TestValue<int>("{ Y:5 }", "E", "enum E:int { Z, V=5 }"), 5); |
| TEST_EQ(TestValue<int>("{ Y:5 }", "E=V", "enum E:int { Z, V=5 }"), 5); |
| // Generate json with defaults and check. |
| TEST_EQ(TestValue<int>(nullptr, "E", "enum E:int { Z, V=5 }"), 0); |
| TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { Z, V=5 }"), 5); |
| // u84 test |
| TEST_EQ(TestValue<uint64_t>(nullptr, "E=V", |
| "enum E:ulong { V = 13835058055282163712 }"), |
| 13835058055282163712ULL); |
| TEST_EQ(TestValue<uint64_t>(nullptr, "E=V", |
| "enum E:ulong { V = 18446744073709551615 }"), |
| 18446744073709551615ULL); |
| // Assign non-enum value to enum field. Is it right? |
| TEST_EQ(TestValue<int>("{ Y:7 }", "E", "enum E:int { V = 0 }"), 7); |
| } |
| |
| void IntegerOutOfRangeTest() { |
| TestError("table T { F:byte; } root_type T; { F:128 }", |
| "constant does not fit"); |
| TestError("table T { F:byte; } root_type T; { F:-129 }", |
| "constant does not fit"); |
| TestError("table T { F:ubyte; } root_type T; { F:256 }", |
| "constant does not fit"); |
| TestError("table T { F:ubyte; } root_type T; { F:-1 }", |
| "constant does not fit"); |
| TestError("table T { F:short; } root_type T; { F:32768 }", |
| "constant does not fit"); |
| TestError("table T { F:short; } root_type T; { F:-32769 }", |
| "constant does not fit"); |
| TestError("table T { F:ushort; } root_type T; { F:65536 }", |
| "constant does not fit"); |
| TestError("table T { F:ushort; } root_type T; { F:-1 }", |
| "constant does not fit"); |
| TestError("table T { F:int; } root_type T; { F:2147483648 }", |
| "constant does not fit"); |
| TestError("table T { F:int; } root_type T; { F:-2147483649 }", |
| "constant does not fit"); |
| TestError("table T { F:uint; } root_type T; { F:4294967296 }", |
| "constant does not fit"); |
| TestError("table T { F:uint; } root_type T; { F:-1 }", |
| "constant does not fit"); |
| // Check fixed width aliases |
| TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit"); |
| TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit"); |
| TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit"); |
| TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit"); |
| TestError("table X { Y:uint32; } root_type X; { Y: -1 }", ""); |
| TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }", |
| "does not fit"); |
| TestError("table X { Y:uint64; } root_type X; { Y: -1 }", ""); |
| TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }", |
| "does not fit"); |
| TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }", |
| "does not fit"); |
| |
| TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit"); |
| TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit"); |
| TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit"); |
| TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit"); |
| TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", ""); |
| TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }", |
| "does not fit"); |
| TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }", |
| "does not fit"); |
| TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }", |
| "does not fit"); |
| // check out-of-int64 as int8 |
| TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }", |
| "does not fit"); |
| TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }", |
| "does not fit"); |
| |
| // Check default values |
| TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}", |
| "does not fit"); |
| TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}", |
| "does not fit"); |
| TestError("table X { Y:uint64; } root_type X; { Y: -1 }", ""); |
| TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}", |
| "does not fit"); |
| TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}", |
| "does not fit"); |
| } |
| |
| void IntegerBoundaryTest() { |
| // Check numerical compatibility with non-C++ languages. |
| // By the C++ standard, std::numerical_limits<int64_t>::min() == -9223372036854775807 (-2^63+1) or less* |
| // The Flatbuffers grammar and most of the languages (C#, Java, Rust) expect |
| // that minimum values are: -128, -32768,.., -9223372036854775808. |
| // Since C++20, static_cast<int64>(0x8000000000000000ULL) is well-defined two's complement cast. |
| // Therefore -9223372036854775808 should be valid negative value. |
| TEST_EQ(flatbuffers::numeric_limits<int8_t>::min(), -128); |
| TEST_EQ(flatbuffers::numeric_limits<int8_t>::max(), 127); |
| TEST_EQ(flatbuffers::numeric_limits<int16_t>::min(), -32768); |
| TEST_EQ(flatbuffers::numeric_limits<int16_t>::max(), 32767); |
| TEST_EQ(flatbuffers::numeric_limits<int32_t>::min() + 1, -2147483647); |
| TEST_EQ(flatbuffers::numeric_limits<int32_t>::max(), 2147483647ULL); |
| TEST_EQ(flatbuffers::numeric_limits<int64_t>::min() + 1LL, |
| -9223372036854775807LL); |
| TEST_EQ(flatbuffers::numeric_limits<int64_t>::max(), 9223372036854775807ULL); |
| TEST_EQ(flatbuffers::numeric_limits<uint8_t>::max(), 255); |
| TEST_EQ(flatbuffers::numeric_limits<uint16_t>::max(), 65535); |
| TEST_EQ(flatbuffers::numeric_limits<uint32_t>::max(), 4294967295ULL); |
| TEST_EQ(flatbuffers::numeric_limits<uint64_t>::max(), |
| 18446744073709551615ULL); |
| |
| TEST_EQ(TestValue<int8_t>("{ Y:127 }", "byte"), 127); |
| TEST_EQ(TestValue<int8_t>("{ Y:-128 }", "byte"), -128); |
| TEST_EQ(TestValue<uint8_t>("{ Y:255 }", "ubyte"), 255); |
| TEST_EQ(TestValue<uint8_t>("{ Y:0 }", "ubyte"), 0); |
| TEST_EQ(TestValue<int16_t>("{ Y:32767 }", "short"), 32767); |
| TEST_EQ(TestValue<int16_t>("{ Y:-32768 }", "short"), -32768); |
| TEST_EQ(TestValue<uint16_t>("{ Y:65535 }", "ushort"), 65535); |
| TEST_EQ(TestValue<uint16_t>("{ Y:0 }", "ushort"), 0); |
| TEST_EQ(TestValue<int32_t>("{ Y:2147483647 }", "int"), 2147483647); |
| TEST_EQ(TestValue<int32_t>("{ Y:-2147483648 }", "int") + 1, -2147483647); |
| TEST_EQ(TestValue<uint32_t>("{ Y:4294967295 }", "uint"), 4294967295); |
| TEST_EQ(TestValue<uint32_t>("{ Y:0 }", "uint"), 0); |
| TEST_EQ(TestValue<int64_t>("{ Y:9223372036854775807 }", "long"), |
| 9223372036854775807LL); |
| TEST_EQ(TestValue<int64_t>("{ Y:-9223372036854775808 }", "long") + 1LL, |
| -9223372036854775807LL); |
| TEST_EQ(TestValue<uint64_t>("{ Y:18446744073709551615 }", "ulong"), |
| 18446744073709551615ULL); |
| TEST_EQ(TestValue<uint64_t>("{ Y:0 }", "ulong"), 0); |
| TEST_EQ(TestValue<uint64_t>("{ Y: 18446744073709551615 }", "uint64"), |
| 18446744073709551615ULL); |
| // check that the default works |
| TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"), |
| 18446744073709551615ULL); |
| } |
| |
| void ValidFloatTest() { |
| // check rounding to infinity |
| TEST_EQ(TestValue<float>("{ Y:+3.4029e+38 }", "float"), +infinityf); |
| TEST_EQ(TestValue<float>("{ Y:-3.4029e+38 }", "float"), -infinityf); |
| TEST_EQ(TestValue<double>("{ Y:+1.7977e+308 }", "double"), +infinityd); |
| TEST_EQ(TestValue<double>("{ Y:-1.7977e+308 }", "double"), -infinityd); |
| |
| TEST_EQ( |
| FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"), 3.14159f), |
| true); |
| // float in string |
| TEST_EQ(FloatCompare(TestValue<float>("{ Y:\" 0.0314159e+2 \" }", "float"), |
| 3.14159f), |
| true); |
| |
| TEST_EQ(TestValue<float>("{ Y:1 }", "float"), 1.0f); |
| TEST_EQ(TestValue<float>("{ Y:1.0 }", "float"), 1.0f); |
| TEST_EQ(TestValue<float>("{ Y:1. }", "float"), 1.0f); |
| TEST_EQ(TestValue<float>("{ Y:+1. }", "float"), 1.0f); |
| TEST_EQ(TestValue<float>("{ Y:-1. }", "float"), -1.0f); |
| TEST_EQ(TestValue<float>("{ Y:1.e0 }", "float"), 1.0f); |
| TEST_EQ(TestValue<float>("{ Y:1.e+0 }", "float"), 1.0f); |
| TEST_EQ(TestValue<float>("{ Y:1.e-0 }", "float"), 1.0f); |
| TEST_EQ(TestValue<float>("{ Y:0.125 }", "float"), 0.125f); |
| TEST_EQ(TestValue<float>("{ Y:.125 }", "float"), 0.125f); |
| TEST_EQ(TestValue<float>("{ Y:-.125 }", "float"), -0.125f); |
| TEST_EQ(TestValue<float>("{ Y:+.125 }", "float"), +0.125f); |
| TEST_EQ(TestValue<float>("{ Y:5 }", "float"), 5.0f); |
| TEST_EQ(TestValue<float>("{ Y:\"5\" }", "float"), 5.0f); |
| |
| #if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0) |
| // Old MSVC versions may have problem with this check. |
| // https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/ |
| TEST_EQ(TestValue<double>("{ Y:6.9294956446009195e15 }", "double"), |
| 6929495644600920.0); |
| // check nan's |
| TEST_EQ(std::isnan(TestValue<double>("{ Y:nan }", "double")), true); |
| TEST_EQ(std::isnan(TestValue<float>("{ Y:nan }", "float")), true); |
| TEST_EQ(std::isnan(TestValue<float>("{ Y:\"nan\" }", "float")), true); |
| TEST_EQ(std::isnan(TestValue<float>("{ Y:+nan }", "float")), true); |
| TEST_EQ(std::isnan(TestValue<float>("{ Y:-nan }", "float")), true); |
| TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true); |
| TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true); |
| // check inf |
| TEST_EQ(TestValue<float>("{ Y:inf }", "float"), infinityf); |
| TEST_EQ(TestValue<float>("{ Y:\"inf\" }", "float"), infinityf); |
| TEST_EQ(TestValue<float>("{ Y:+inf }", "float"), infinityf); |
| TEST_EQ(TestValue<float>("{ Y:-inf }", "float"), -infinityf); |
| TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinityf); |
| TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinityf); |
| TestValue<double>( |
| "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, " |
| "3.0e2] }", |
| "[double]"); |
| TestValue<float>( |
| "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, " |
| "3.0e2] }", |
| "[float]"); |
| |
| // Test binary format of float point. |
| // https://en.cppreference.com/w/cpp/language/floating_literal |
| // 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 = |
| TEST_EQ(TestValue<double>("{ Y:0x12.34p-1 }", "double"), 9.1015625); |
| // hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0 |
| TEST_EQ(TestValue<float>("{ Y:-0x0.2p0 }", "float"), -0.125f); |
| TEST_EQ(TestValue<float>("{ Y:-0x.2p1 }", "float"), -0.25f); |
| TEST_EQ(TestValue<float>("{ Y:0x1.2p3 }", "float"), 9.0f); |
| TEST_EQ(TestValue<float>("{ Y:0x10.1p0 }", "float"), 16.0625f); |
| TEST_EQ(TestValue<double>("{ Y:0x1.2p3 }", "double"), 9.0); |
| TEST_EQ(TestValue<double>("{ Y:0x10.1p0 }", "double"), 16.0625); |
| TEST_EQ(TestValue<double>("{ Y:0xC.68p+2 }", "double"), 49.625); |
| TestValue<double>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]"); |
| TestValue<float>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]"); |
| |
| #else // FLATBUFFERS_HAS_NEW_STRTOD |
| TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped"); |
| #endif // !FLATBUFFERS_HAS_NEW_STRTOD |
| } |
| |
| void InvalidFloatTest() { |
| auto invalid_msg = "invalid number"; |
| auto comma_msg = "expecting: ,"; |
| TestError("table T { F:float; } root_type T; { F:1,0 }", ""); |
| TestError("table T { F:float; } root_type T; { F:. }", ""); |
| TestError("table T { F:float; } root_type T; { F:- }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:.e }", ""); |
| TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg); |
| // exponent pP is mandatory for hex-float |
| TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg); |
| // eE not exponent in hex-float! |
| TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg); |
| TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg); |
| TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg); |
| // floats in string |
| TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg); |
| // disable escapes for "number-in-string" |
| TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid"); |
| TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid"); |
| TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid"); |
| TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid"); |
| TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid"); |
| TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg); |
| // null is not a number constant! |
| TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg); |
| TestError("table T { F:float; } root_type T; { F:null }", invalid_msg); |
| } |
| |
| void GenerateTableTextTest() { |
| std::string schemafile; |
| std::string jsonfile; |
| bool ok = |
| flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(), |
| false, &schemafile) && |
| flatbuffers::LoadFile((test_data_path + "monsterdata_test.json").c_str(), |
| false, &jsonfile); |
| TEST_EQ(ok, true); |
| auto include_test_path = |
| flatbuffers::ConCatPathFileName(test_data_path, "include_test"); |
| const char *include_directories[] = {test_data_path.c_str(), |
| include_test_path.c_str(), nullptr}; |
| flatbuffers::IDLOptions opt; |
| opt.indent_step = -1; |
| flatbuffers::Parser parser(opt); |
| ok = parser.Parse(schemafile.c_str(), include_directories) && |
| parser.Parse(jsonfile.c_str(), include_directories); |
| TEST_EQ(ok, true); |
| // Test root table |
| const Monster *monster = GetMonster(parser.builder_.GetBufferPointer()); |
| std::string jsongen; |
| auto result = GenerateTextFromTable(parser, monster, "MyGame.Example.Monster", |
| &jsongen); |
| TEST_EQ(result, true); |
| // Test sub table |
| const Vec3 *pos = monster->pos(); |
| jsongen.clear(); |
| result = GenerateTextFromTable(parser, pos, "MyGame.Example.Vec3", &jsongen); |
| TEST_EQ(result, true); |
| TEST_EQ_STR( |
| jsongen.c_str(), |
| "{x: 1.0,y: 2.0,z: 3.0,test1: 3.0,test2: \"Green\",test3: {a: 5,b: 6}}"); |
| const Test &test3 = pos->test3(); |
| jsongen.clear(); |
| result = |
| GenerateTextFromTable(parser, &test3, "MyGame.Example.Test", &jsongen); |
| TEST_EQ(result, true); |
| TEST_EQ_STR(jsongen.c_str(), "{a: 5,b: 6}"); |
| const Test *test4 = monster->test4()->Get(0); |
| jsongen.clear(); |
| result = |
| GenerateTextFromTable(parser, test4, "MyGame.Example.Test", &jsongen); |
| TEST_EQ(result, true); |
| TEST_EQ_STR(jsongen.c_str(), "{a: 10,b: 20}"); |
| } |
| |
| template<typename T> |
| void NumericUtilsTestInteger(const char *lower, const char *upper) { |
| T x; |
| TEST_EQ(flatbuffers::StringToNumber("1q", &x), false); |
| TEST_EQ(x, 0); |
| TEST_EQ(flatbuffers::StringToNumber(upper, &x), false); |
| TEST_EQ(x, flatbuffers::numeric_limits<T>::max()); |
| TEST_EQ(flatbuffers::StringToNumber(lower, &x), false); |
| auto expval = flatbuffers::is_unsigned<T>::value |
| ? flatbuffers::numeric_limits<T>::max() |
| : flatbuffers::numeric_limits<T>::lowest(); |
| TEST_EQ(x, expval); |
| } |
| |
| template<typename T> |
| void NumericUtilsTestFloat(const char *lower, const char *upper) { |
| T f; |
| TEST_EQ(flatbuffers::StringToNumber("", &f), false); |
| TEST_EQ(flatbuffers::StringToNumber("1q", &f), false); |
| TEST_EQ(f, 0); |
| TEST_EQ(flatbuffers::StringToNumber(upper, &f), true); |
| TEST_EQ(f, +flatbuffers::numeric_limits<T>::infinity()); |
| TEST_EQ(flatbuffers::StringToNumber(lower, &f), true); |
| TEST_EQ(f, -flatbuffers::numeric_limits<T>::infinity()); |
| } |
| |
| void NumericUtilsTest() { |
| NumericUtilsTestInteger<uint64_t>("-1", "18446744073709551616"); |
| NumericUtilsTestInteger<uint8_t>("-1", "256"); |
| NumericUtilsTestInteger<int64_t>("-9223372036854775809", |
| "9223372036854775808"); |
| NumericUtilsTestInteger<int8_t>("-129", "128"); |
| NumericUtilsTestFloat<float>("-3.4029e+38", "+3.4029e+38"); |
| NumericUtilsTestFloat<float>("-1.7977e+308", "+1.7977e+308"); |
| } |
| |
| void IsAsciiUtilsTest() { |
| char c = -128; |
| for (int cnt = 0; cnt < 256; cnt++) { |
| auto alpha = (('a' <= c) && (c <= 'z')) || (('A' <= c) && (c <= 'Z')); |
| auto dec = (('0' <= c) && (c <= '9')); |
| auto hex = (('a' <= c) && (c <= 'f')) || (('A' <= c) && (c <= 'F')); |
| TEST_EQ(flatbuffers::is_alpha(c), alpha); |
| TEST_EQ(flatbuffers::is_alnum(c), alpha || dec); |
| TEST_EQ(flatbuffers::is_digit(c), dec); |
| TEST_EQ(flatbuffers::is_xdigit(c), dec || hex); |
| c += 1; |
| } |
| } |
| |
| void UnicodeTest() { |
| flatbuffers::Parser parser; |
| // Without setting allow_non_utf8 = true, we treat \x sequences as byte |
| // sequences which are then validated as UTF-8. |
| TEST_EQ(parser.Parse("table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" |
| "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8" |
| "3D\\uDE0E\" }"), |
| true); |
| std::string jsongen; |
| parser.opts.indent_step = -1; |
| auto result = |
| GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); |
| TEST_EQ(result, true); |
| TEST_EQ_STR(jsongen.c_str(), |
| "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" |
| "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}"); |
| } |
| |
| void UnicodeTestAllowNonUTF8() { |
| flatbuffers::Parser parser; |
| parser.opts.allow_non_utf8 = true; |
| TEST_EQ( |
| parser.Parse( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" |
| "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"), |
| true); |
| std::string jsongen; |
| parser.opts.indent_step = -1; |
| auto result = |
| GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); |
| TEST_EQ(result, true); |
| TEST_EQ_STR( |
| jsongen.c_str(), |
| "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" |
| "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}"); |
| } |
| |
| void UnicodeTestGenerateTextFailsOnNonUTF8() { |
| flatbuffers::Parser parser; |
| // Allow non-UTF-8 initially to model what happens when we load a binary |
| // flatbuffer from disk which contains non-UTF-8 strings. |
| parser.opts.allow_non_utf8 = true; |
| TEST_EQ( |
| parser.Parse( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" |
| "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"), |
| true); |
| std::string jsongen; |
| parser.opts.indent_step = -1; |
| // Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates |
| // failure. |
| parser.opts.allow_non_utf8 = false; |
| auto result = |
| GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); |
| TEST_EQ(result, false); |
| } |
| |
| void UnicodeSurrogatesTest() { |
| flatbuffers::Parser parser; |
| |
| TEST_EQ(parser.Parse("table T { F:string (id: 0); }" |
| "root_type T;" |
| "{ F:\"\\uD83D\\uDCA9\"}"), |
| true); |
| auto root = flatbuffers::GetRoot<flatbuffers::Table>( |
| parser.builder_.GetBufferPointer()); |
| auto string = root->GetPointer<flatbuffers::String *>( |
| flatbuffers::FieldIndexToOffset(0)); |
| TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9"); |
| } |
| |
| void UnicodeInvalidSurrogatesTest() { |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\\uD800\"}", |
| "unpaired high surrogate"); |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\\uD800abcd\"}", |
| "unpaired high surrogate"); |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\\uD800\\n\"}", |
| "unpaired high surrogate"); |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\\uD800\\uD800\"}", |
| "multiple high surrogates"); |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\\uDC00\"}", |
| "unpaired low surrogate"); |
| } |
| |
| void InvalidUTF8Test() { |
| // "1 byte" pattern, under min length of 2 bytes |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\x80\"}", |
| "illegal UTF-8 sequence"); |
| // 2 byte pattern, string too short |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xDF\"}", |
| "illegal UTF-8 sequence"); |
| // 3 byte pattern, string too short |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xEF\xBF\"}", |
| "illegal UTF-8 sequence"); |
| // 4 byte pattern, string too short |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xF7\xBF\xBF\"}", |
| "illegal UTF-8 sequence"); |
| // "5 byte" pattern, string too short |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xFB\xBF\xBF\xBF\"}", |
| "illegal UTF-8 sequence"); |
| // "6 byte" pattern, string too short |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}", |
| "illegal UTF-8 sequence"); |
| // "7 byte" pattern, string too short |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}", |
| "illegal UTF-8 sequence"); |
| // "5 byte" pattern, over max length of 4 bytes |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}", |
| "illegal UTF-8 sequence"); |
| // "6 byte" pattern, over max length of 4 bytes |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}", |
| "illegal UTF-8 sequence"); |
| // "7 byte" pattern, over max length of 4 bytes |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}", |
| "illegal UTF-8 sequence"); |
| |
| // Three invalid encodings for U+000A (\n, aka NEWLINE) |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xC0\x8A\"}", |
| "illegal UTF-8 sequence"); |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xE0\x80\x8A\"}", |
| "illegal UTF-8 sequence"); |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xF0\x80\x80\x8A\"}", |
| "illegal UTF-8 sequence"); |
| |
| // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL) |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xE0\x81\xA9\"}", |
| "illegal UTF-8 sequence"); |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xF0\x80\x81\xA9\"}", |
| "illegal UTF-8 sequence"); |
| |
| // Invalid encoding for U+20AC (EURO SYMBOL) |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| "{ F:\"\xF0\x82\x82\xAC\"}", |
| "illegal UTF-8 sequence"); |
| |
| // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in |
| // UTF-8 |
| TestError( |
| "table T { F:string; }" |
| "root_type T;" |
| // U+10400 "encoded" as U+D801 U+DC00 |
| "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}", |
| "illegal UTF-8 sequence"); |
| |
| // Check independence of identifier from locale. |
| std::string locale_ident; |
| locale_ident += "table T { F"; |
| locale_ident += static_cast<char>(-32); // unsigned 0xE0 |
| locale_ident += " :string; }"; |
| locale_ident += "root_type T;"; |
| locale_ident += "{}"; |
| TestError(locale_ident.c_str(), ""); |
| } |
| |
| void UnknownFieldsTest() { |
| flatbuffers::IDLOptions opts; |
| opts.skip_unexpected_fields_in_json = true; |
| flatbuffers::Parser parser(opts); |
| |
| TEST_EQ(parser.Parse("table T { str:string; i:int;}" |
| "root_type T;" |
| "{ str:\"test\"," |
| "unknown_string:\"test\"," |
| "\"unknown_string\":\"test\"," |
| "unknown_int:10," |
| "unknown_float:1.0," |
| "unknown_array: [ 1, 2, 3, 4]," |
| "unknown_object: { i: 10 }," |
| "\"unknown_object\": { \"i\": 10 }," |
| "i:10}"), |
| true); |
| |
| std::string jsongen; |
| parser.opts.indent_step = -1; |
| auto result = |
| GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); |
| TEST_EQ(result, true); |
| TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}"); |
| } |
| |
| void ParseUnionTest() { |
| // Unions must be parseable with the type field following the object. |
| flatbuffers::Parser parser; |
| TEST_EQ(parser.Parse("table T { A:int; }" |
| "union U { T }" |
| "table V { X:U; }" |
| "root_type V;" |
| "{ X:{ A:1 }, X_type: T }"), |
| true); |
| // Unions must be parsable with prefixed namespace. |
| flatbuffers::Parser parser2; |
| TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }" |
| "table B { e:U; } root_type B;" |
| "{ e_type: N_A, e: {} }"), |
| true); |
| } |
| |
| void InvalidNestedFlatbufferTest() { |
| // First, load and parse FlatBuffer schema (.fbs) |
| std::string schemafile; |
| TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(), |
| false, &schemafile), |
| true); |
| auto include_test_path = |
| flatbuffers::ConCatPathFileName(test_data_path, "include_test"); |
| const char *include_directories[] = { test_data_path.c_str(), |
| include_test_path.c_str(), nullptr }; |
| flatbuffers::Parser parser1; |
| TEST_EQ(parser1.Parse(schemafile.c_str(), include_directories), true); |
| |
| // "color" inside nested flatbuffer contains invalid enum value |
| TEST_EQ(parser1.Parse("{ name: \"Bender\", testnestedflatbuffer: { name: " |
| "\"Leela\", color: \"nonexistent\"}}"), |
| false); |
| // Check that Parser is destroyed correctly after parsing invalid json |
| } |
| |
| void UnionVectorTest() { |
| // load FlatBuffer fbs schema and json. |
| std::string schemafile, jsonfile; |
| TEST_EQ(flatbuffers::LoadFile( |
| (test_data_path + "union_vector/union_vector.fbs").c_str(), |
| false, &schemafile), |
| true); |
| TEST_EQ(flatbuffers::LoadFile( |
| (test_data_path + "union_vector/union_vector.json").c_str(), |
| false, &jsonfile), |
| true); |
| |
| // parse schema. |
| flatbuffers::IDLOptions idl_opts; |
| idl_opts.lang_to_generate |= flatbuffers::IDLOptions::kBinary; |
| flatbuffers::Parser parser(idl_opts); |
| TEST_EQ(parser.Parse(schemafile.c_str()), true); |
| |
| flatbuffers::FlatBufferBuilder fbb; |
| |
| // union types. |
| std::vector<uint8_t> types; |
| types.push_back(static_cast<uint8_t>(Character_Belle)); |
| types.push_back(static_cast<uint8_t>(Character_MuLan)); |
| types.push_back(static_cast<uint8_t>(Character_BookFan)); |
| types.push_back(static_cast<uint8_t>(Character_Other)); |
| types.push_back(static_cast<uint8_t>(Character_Unused)); |
| |
| // union values. |
| std::vector<flatbuffers::Offset<void>> characters; |
| characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/7)).Union()); |
| characters.push_back(CreateAttacker(fbb, /*sword_attack_damage=*/5).Union()); |
| characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/2)).Union()); |
| characters.push_back(fbb.CreateString("Other").Union()); |
| characters.push_back(fbb.CreateString("Unused").Union()); |
| |
| // create Movie. |
| const auto movie_offset = |
| CreateMovie(fbb, Character_Rapunzel, |
| fbb.CreateStruct(Rapunzel(/*hair_length=*/6)).Union(), |
| fbb.CreateVector(types), fbb.CreateVector(characters)); |
| FinishMovieBuffer(fbb, movie_offset); |
| auto buf = fbb.GetBufferPointer(); |
| |
| flatbuffers::Verifier verifier(buf, fbb.GetSize()); |
| TEST_EQ(VerifyMovieBuffer(verifier), true); |
| |
| auto flat_movie = GetMovie(buf); |
| |
| auto TestMovie = [](const Movie *movie) { |
| TEST_EQ(movie->main_character_type() == Character_Rapunzel, true); |
| |
| auto cts = movie->characters_type(); |
| TEST_EQ(movie->characters_type()->size(), 5); |
| TEST_EQ(cts->GetEnum<Character>(0) == Character_Belle, true); |
| TEST_EQ(cts->GetEnum<Character>(1) == Character_MuLan, true); |
| TEST_EQ(cts->GetEnum<Character>(2) == Character_BookFan, true); |
| TEST_EQ(cts->GetEnum<Character>(3) == Character_Other, true); |
| TEST_EQ(cts->GetEnum<Character>(4) == Character_Unused, true); |
| |
| auto rapunzel = movie->main_character_as_Rapunzel(); |
| TEST_NOTNULL(rapunzel); |
| TEST_EQ(rapunzel->hair_length(), 6); |
| |
| auto cs = movie->characters(); |
| TEST_EQ(cs->size(), 5); |
| auto belle = cs->GetAs<BookReader>(0); |
| TEST_EQ(belle->books_read(), 7); |
| auto mu_lan = cs->GetAs<Attacker>(1); |
| TEST_EQ(mu_lan->sword_attack_damage(), 5); |
| auto book_fan = cs->GetAs<BookReader>(2); |
| TEST_EQ(book_fan->books_read(), 2); |
| auto other = cs->GetAsString(3); |
| TEST_EQ_STR(other->c_str(), "Other"); |
| auto unused = cs->GetAsString(4); |
| TEST_EQ_STR(unused->c_str(), "Unused"); |
| }; |
| |
| TestMovie(flat_movie); |
| |
| // Also test the JSON we loaded above. |
| TEST_EQ(parser.Parse(jsonfile.c_str()), true); |
| auto jbuf = parser.builder_.GetBufferPointer(); |
| flatbuffers::Verifier jverifier(jbuf, parser.builder_.GetSize()); |
| TEST_EQ(VerifyMovieBuffer(jverifier), true); |
| TestMovie(GetMovie(jbuf)); |
| |
| auto movie_object = flat_movie->UnPack(); |
| TEST_EQ(movie_object->main_character.AsRapunzel()->hair_length(), 6); |
| TEST_EQ(movie_object->characters[0].AsBelle()->books_read(), 7); |
| TEST_EQ(movie_object->characters[1].AsMuLan()->sword_attack_damage, 5); |
| TEST_EQ(movie_object->characters[2].AsBookFan()->books_read(), 2); |
| TEST_EQ_STR(movie_object->characters[3].AsOther()->c_str(), "Other"); |
| TEST_EQ_STR(movie_object->characters[4].AsUnused()->c_str(), "Unused"); |
| |
| fbb.Clear(); |
| fbb.Finish(Movie::Pack(fbb, movie_object)); |
| |
| delete movie_object; |
| |
| auto repacked_movie = GetMovie(fbb.GetBufferPointer()); |
| |
| TestMovie(repacked_movie); |
| |
| auto s = |
| flatbuffers::FlatBufferToString(fbb.GetBufferPointer(), MovieTypeTable()); |
| TEST_EQ_STR( |
| s.c_str(), |
| "{ main_character_type: Rapunzel, main_character: { hair_length: 6 }, " |
| "characters_type: [ Belle, MuLan, BookFan, Other, Unused ], " |
| "characters: [ { books_read: 7 }, { sword_attack_damage: 5 }, " |
| "{ books_read: 2 }, \"Other\", \"Unused\" ] }"); |
| |
| |
| flatbuffers::ToStringVisitor visitor("\n", true, " "); |
| IterateFlatBuffer(fbb.GetBufferPointer(), MovieTypeTable(), &visitor); |
| TEST_EQ_STR( |
| visitor.s.c_str(), |
| "{\n" |
| " \"main_character_type\": \"Rapunzel\",\n" |
| " \"main_character\": {\n" |
| " \"hair_length\": 6\n" |
| " },\n" |
| " \"characters_type\": [\n" |
| " \"Belle\",\n" |
| " \"MuLan\",\n" |
| " \"BookFan\",\n" |
| " \"Other\",\n" |
| " \"Unused\"\n" |
| " ],\n" |
| " \"characters\": [\n" |
| " {\n" |
| " \"books_read\": 7\n" |
| " },\n" |
| " {\n" |
| " \"sword_attack_damage\": 5\n" |
| " },\n" |
| " {\n" |
| " \"books_read\": 2\n" |
| " },\n" |
| " \"Other\",\n" |
| " \"Unused\"\n" |
| " ]\n" |
| "}"); |
| |
| flatbuffers::Parser parser2(idl_opts); |
| TEST_EQ(parser2.Parse("struct Bool { b:bool; }" |
| "union Any { Bool }" |
| "table Root { a:Any; }" |
| "root_type Root;"), true); |
| TEST_EQ(parser2.Parse("{a_type:Bool,a:{b:true}}"), true); |
| } |
| |
| void ConformTest() { |
| flatbuffers::Parser parser; |
| TEST_EQ(parser.Parse("table T { A:int; } enum E:byte { A }"), true); |
| |
| auto test_conform = [](flatbuffers::Parser &parser1, const char *test, |
| const char *expected_err) { |
| flatbuffers::Parser parser2; |
| TEST_EQ(parser2.Parse(test), true); |
| auto err = parser2.ConformTo(parser1); |
| TEST_NOTNULL(strstr(err.c_str(), expected_err)); |
| }; |
| |
| test_conform(parser, "table T { A:byte; }", "types differ for field"); |
| test_conform(parser, "table T { B:int; A:int; }", "offsets differ for field"); |
| test_conform(parser, "table T { A:int = 1; }", "defaults differ for field"); |
| test_conform(parser, "table T { B:float; }", |
| "field renamed to different type"); |
| test_conform(parser, "enum E:byte { B, A }", "values differ for enum"); |
| } |
| |
| void ParseProtoBufAsciiTest() { |
| // We can put the parser in a mode where it will accept JSON that looks more |
| // like Protobuf ASCII, for users that have data in that format. |
| // This uses no "" for field names (which we already support by default, |
| // omits `,`, `:` before `{` and a couple of other features. |
| flatbuffers::Parser parser; |
| parser.opts.protobuf_ascii_alike = true; |
| TEST_EQ( |
| parser.Parse("table S { B:int; } table T { A:[int]; C:S; } root_type T;"), |
| true); |
| TEST_EQ(parser.Parse("{ A [1 2] C { B:2 }}"), true); |
| // Similarly, in text output, it should omit these. |
| std::string text; |
| auto ok = flatbuffers::GenerateText( |
| parser, parser.builder_.GetBufferPointer(), &text); |
| TEST_EQ(ok, true); |
| TEST_EQ_STR(text.c_str(), |
| "{\n A [\n 1\n 2\n ]\n C {\n B: 2\n }\n}\n"); |
| } |
| |
| void FlexBuffersTest() { |
| flexbuffers::Builder slb(512, |
| flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS); |
| |
| // Write the equivalent of: |
| // { vec: [ -100, "Fred", 4.0, false ], bar: [ 1, 2, 3 ], bar3: [ 1, 2, 3 ], |
| // foo: 100, bool: true, mymap: { foo: "Fred" } } |
| // clang-format off |
| #ifndef FLATBUFFERS_CPP98_STL |
| // It's possible to do this without std::function support as well. |
| slb.Map([&]() { |
| slb.Vector("vec", [&]() { |
| slb += -100; // Equivalent to slb.Add(-100) or slb.Int(-100); |
| slb += "Fred"; |
| slb.IndirectFloat(4.0f); |
| uint8_t blob[] = { 77 }; |
| slb.Blob(blob, 1); |
| slb += false; |
| }); |
| int ints[] = { 1, 2, 3 }; |
| slb.Vector("bar", ints, 3); |
| slb.FixedTypedVector("bar3", ints, 3); |
| bool bools[] = {true, false, true, false}; |
| slb.Vector("bools", bools, 4); |
| slb.Bool("bool", true); |
| slb.Double("foo", 100); |
| slb.Map("mymap", [&]() { |
| slb.String("foo", "Fred"); // Testing key and string reuse. |
| }); |
| }); |
| slb.Finish(); |
| #else |
| // It's possible to do this without std::function support as well. |
| slb.Map([](flexbuffers::Builder& slb2) { |
| slb2.Vector("vec", [](flexbuffers::Builder& slb3) { |
| slb3 += -100; // Equivalent to slb.Add(-100) or slb.Int(-100); |
| slb3 += "Fred"; |
| slb3.IndirectFloat(4.0f); |
| uint8_t blob[] = { 77 }; |
| slb3.Blob(blob, 1); |
| slb3 += false; |
| }, slb2); |
| int ints[] = { 1, 2, 3 }; |
| slb2.Vector("bar", ints, 3); |
| slb2.FixedTypedVector("bar3", ints, 3); |
| slb2.Bool("bool", true); |
| slb2.Double("foo", 100); |
| slb2.Map("mymap", [](flexbuffers::Builder& slb3) { |
| slb3.String("foo", "Fred"); // Testing key and string reuse. |
| }, slb2); |
| }, slb); |
| slb.Finish(); |
| #endif // FLATBUFFERS_CPP98_STL |
| |
| #ifdef FLATBUFFERS_TEST_VERBOSE |
| for (size_t i = 0; i < slb.GetBuffer().size(); i++) |
| printf("%d ", flatbuffers::vector_data(slb.GetBuffer())[i]); |
| printf("\n"); |
| #endif |
| // clang-format on |
| |
| auto map = flexbuffers::GetRoot(slb.GetBuffer()).AsMap(); |
| TEST_EQ(map.size(), 7); |
| auto vec = map["vec"].AsVector(); |
| TEST_EQ(vec.size(), 5); |
| TEST_EQ(vec[0].AsInt64(), -100); |
| TEST_EQ_STR(vec[1].AsString().c_str(), "Fred"); |
| TEST_EQ(vec[1].AsInt64(), 0); // Number parsing failed. |
| TEST_EQ(vec[2].AsDouble(), 4.0); |
| TEST_EQ(vec[2].AsString().IsTheEmptyString(), true); // Wrong Type. |
| TEST_EQ_STR(vec[2].AsString().c_str(), ""); // This still works though. |
| TEST_EQ_STR(vec[2].ToString().c_str(), "4.0"); // Or have it converted. |
| |
| // Few tests for templated version of As. |
| TEST_EQ(vec[0].As<int64_t>(), -100); |
| TEST_EQ_STR(vec[1].As<std::string>().c_str(), "Fred"); |
| TEST_EQ(vec[1].As<int64_t>(), 0); // Number parsing failed. |
| TEST_EQ(vec[2].As<double>(), 4.0); |
| |
| // Test that the blob can be accessed. |
| TEST_EQ(vec[3].IsBlob(), true); |
| auto blob = vec[3].AsBlob(); |
| TEST_EQ(blob.size(), 1); |
| TEST_EQ(blob.data()[0], 77); |
| TEST_EQ(vec[4].IsBool(), true); // Check if type is a bool |
| TEST_EQ(vec[4].AsBool(), false); // Check if value is false |
| auto tvec = map["bar"].AsTypedVector(); |
| TEST_EQ(tvec.size(), 3); |
| TEST_EQ(tvec[2].AsInt8(), 3); |
| auto tvec3 = map["bar3"].AsFixedTypedVector(); |
| TEST_EQ(tvec3.size(), 3); |
| TEST_EQ(tvec3[2].AsInt8(), 3); |
| TEST_EQ(map["bool"].AsBool(), true); |
| auto tvecb = map["bools"].AsTypedVector(); |
| TEST_EQ(tvecb.ElementType(), flexbuffers::FBT_BOOL); |
| TEST_EQ(map["foo"].AsUInt8(), 100); |
| TEST_EQ(map["unknown"].IsNull(), true); |
| auto mymap = map["mymap"].AsMap(); |
| // These should be equal by pointer equality, since key and value are shared. |
| TEST_EQ(mymap.Keys()[0].AsKey(), map.Keys()[4].AsKey()); |
| TEST_EQ(mymap.Values()[0].AsString().c_str(), vec[1].AsString().c_str()); |
| // We can mutate values in the buffer. |
| TEST_EQ(vec[0].MutateInt(-99), true); |
| TEST_EQ(vec[0].AsInt64(), -99); |
| TEST_EQ(vec[1].MutateString("John"), true); // Size must match. |
| TEST_EQ_STR(vec[1].AsString().c_str(), "John"); |
| TEST_EQ(vec[1].MutateString("Alfred"), false); // Too long. |
| TEST_EQ(vec[2].MutateFloat(2.0f), true); |
| TEST_EQ(vec[2].AsFloat(), 2.0f); |
| TEST_EQ(vec[2].MutateFloat(3.14159), false); // Double does not fit in float. |
| TEST_EQ(vec[4].AsBool(), false); // Is false before change |
| TEST_EQ(vec[4].MutateBool(true), true); // Can change a bool |
| TEST_EQ(vec[4].AsBool(), true); // Changed bool is now true |
| |
| // Parse from JSON: |
| flatbuffers::Parser parser; |
| slb.Clear(); |
| auto jsontest = "{ a: [ 123, 456.0 ], b: \"hello\", c: true, d: false }"; |
| TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb), true); |
| auto jroot = flexbuffers::GetRoot(slb.GetBuffer()); |
| auto jmap = jroot.AsMap(); |
| auto jvec = jmap["a"].AsVector(); |
| TEST_EQ(jvec[0].AsInt64(), 123); |
| TEST_EQ(jvec[1].AsDouble(), 456.0); |
| TEST_EQ_STR(jmap["b"].AsString().c_str(), "hello"); |
| TEST_EQ(jmap["c"].IsBool(), true); // Parsed correctly to a bool |
| TEST_EQ(jmap["c"].AsBool(), true); // Parsed correctly to true |
| TEST_EQ(jmap["d"].IsBool(), true); // Parsed correctly to a bool |
| TEST_EQ(jmap["d"].AsBool(), false); // Parsed correctly to false |
| // And from FlexBuffer back to JSON: |
| auto jsonback = jroot.ToString(); |
| TEST_EQ_STR(jsontest, jsonback.c_str()); |
| } |
| |
| void TypeAliasesTest() { |
| flatbuffers::FlatBufferBuilder builder; |
| |
| builder.Finish(CreateTypeAliases( |
| builder, flatbuffers::numeric_limits<int8_t>::min(), |
| flatbuffers::numeric_limits<uint8_t>::max(), |
| flatbuffers::numeric_limits<int16_t>::min(), |
| flatbuffers::numeric_limits<uint16_t>::max(), |
| flatbuffers::numeric_limits<int32_t>::min(), |
| flatbuffers::numeric_limits<uint32_t>::max(), |
| flatbuffers::numeric_limits<int64_t>::min(), |
| flatbuffers::numeric_limits<uint64_t>::max(), 2.3f, 2.3)); |
| |
| auto p = builder.GetBufferPointer(); |
| auto ta = flatbuffers::GetRoot<TypeAliases>(p); |
| |
| TEST_EQ(ta->i8(), flatbuffers::numeric_limits<int8_t>::min()); |
| TEST_EQ(ta->u8(), flatbuffers::numeric_limits<uint8_t>::max()); |
| TEST_EQ(ta->i16(), flatbuffers::numeric_limits<int16_t>::min()); |
| TEST_EQ(ta->u16(), flatbuffers::numeric_limits<uint16_t>::max()); |
| TEST_EQ(ta->i32(), flatbuffers::numeric_limits<int32_t>::min()); |
| TEST_EQ(ta->u32(), flatbuffers::numeric_limits<uint32_t>::max()); |
| TEST_EQ(ta->i64(), flatbuffers::numeric_limits<int64_t>::min()); |
| TEST_EQ(ta->u64(), flatbuffers::numeric_limits<uint64_t>::max()); |
| TEST_EQ(ta->f32(), 2.3f); |
| TEST_EQ(ta->f64(), 2.3); |
| using namespace flatbuffers; // is_same |
| static_assert(is_same<decltype(ta->i8()), int8_t>::value, "invalid type"); |
| static_assert(is_same<decltype(ta->i16()), int16_t>::value, "invalid type"); |
| static_assert(is_same<decltype(ta->i32()), int32_t>::value, "invalid type"); |
| static_assert(is_same<decltype(ta->i64()), int64_t>::value, "invalid type"); |
| static_assert(is_same<decltype(ta->u8()), uint8_t>::value, "invalid type"); |
| static_assert(is_same<decltype(ta->u16()), uint16_t>::value, "invalid type"); |
| static_assert(is_same<decltype(ta->u32()), uint32_t>::value, "invalid type"); |
| static_assert(is_same<decltype(ta->u64()), uint64_t>::value, "invalid type"); |
| static_assert(is_same<decltype(ta->f32()), float>::value, "invalid type"); |
| static_assert(is_same<decltype(ta->f64()), double>::value, "invalid type"); |
| } |
| |
| void EndianSwapTest() { |
| TEST_EQ(flatbuffers::EndianSwap(static_cast<int16_t>(0x1234)), 0x3412); |
| TEST_EQ(flatbuffers::EndianSwap(static_cast<int32_t>(0x12345678)), |
| 0x78563412); |
| TEST_EQ(flatbuffers::EndianSwap(static_cast<int64_t>(0x1234567890ABCDEF)), |
| 0xEFCDAB9078563412); |
| TEST_EQ(flatbuffers::EndianSwap(flatbuffers::EndianSwap(3.14f)), 3.14f); |
| } |
| |
| void UninitializedVectorTest() { |
| flatbuffers::FlatBufferBuilder builder; |
| |
| Test *buf = nullptr; |
| auto vector_offset = builder.CreateUninitializedVectorOfStructs<Test>(2, &buf); |
| TEST_NOTNULL(buf); |
| buf[0] = Test(10, 20); |
| buf[1] = Test(30, 40); |
| |
| auto required_name = builder.CreateString("myMonster"); |
| auto monster_builder = MonsterBuilder(builder); |
| monster_builder.add_name(required_name); // required field mandated for monster. |
| monster_builder.add_test4(vector_offset); |
| builder.Finish(monster_builder.Finish()); |
| |
| auto p = builder.GetBufferPointer(); |
| auto uvt = flatbuffers::GetRoot<Monster>(p); |
| TEST_NOTNULL(uvt); |
| auto vec = uvt->test4(); |
| TEST_NOTNULL(vec); |
| auto test_0 = vec->Get(0); |
| auto test_1 = vec->Get(1); |
| TEST_EQ(test_0->a(), 10); |
| TEST_EQ(test_0->b(), 20); |
| TEST_EQ(test_1->a(), 30); |
| TEST_EQ(test_1->b(), 40); |
| } |
| |
| void EqualOperatorTest() { |
| MonsterT a; |
| MonsterT b; |
| TEST_EQ(b == a, true); |
| TEST_EQ(b != a, false); |
| |
| b.mana = 33; |
| TEST_EQ(b == a, false); |
| TEST_EQ(b != a, true); |
| b.mana = 150; |
| TEST_EQ(b == a, true); |
| TEST_EQ(b != a, false); |
| |
| b.inventory.push_back(3); |
| TEST_EQ(b == a, false); |
| TEST_EQ(b != a, true); |
| b.inventory.clear(); |
| TEST_EQ(b == a, true); |
| TEST_EQ(b != a, false); |
| |
| b.test.type = Any_Monster; |
| TEST_EQ(b == a, false); |
| TEST_EQ(b != a, true); |
| } |
| |
| // For testing any binaries, e.g. from fuzzing. |
| void LoadVerifyBinaryTest() { |
| std::string binary; |
| if (flatbuffers::LoadFile((test_data_path + |
| "fuzzer/your-filename-here").c_str(), |
| true, &binary)) { |
| flatbuffers::Verifier verifier( |
| reinterpret_cast<const uint8_t *>(binary.data()), binary.size()); |
| TEST_EQ(VerifyMonsterBuffer(verifier), true); |
| } |
| } |
| |
| void CreateSharedStringTest() { |
| flatbuffers::FlatBufferBuilder builder; |
| const auto one1 = builder.CreateSharedString("one"); |
| const auto two = builder.CreateSharedString("two"); |
| const auto one2 = builder.CreateSharedString("one"); |
| TEST_EQ(one1.o, one2.o); |
| const auto onetwo = builder.CreateSharedString("onetwo"); |
| TEST_EQ(onetwo.o != one1.o, true); |
| TEST_EQ(onetwo.o != two.o, true); |
| |
| // Support for embedded nulls |
| const char chars_b[] = {'a', '\0', 'b'}; |
| const char chars_c[] = {'a', '\0', 'c'}; |
| const auto null_b1 = builder.CreateSharedString(chars_b, sizeof(chars_b)); |
| const auto null_c = builder.CreateSharedString(chars_c, sizeof(chars_c)); |
| const auto null_b2 = builder.CreateSharedString(chars_b, sizeof(chars_b)); |
| TEST_EQ(null_b1.o != null_c.o, true); // Issue#5058 repro |
| TEST_EQ(null_b1.o, null_b2.o); |
| |
| // Put the strings into an array for round trip verification. |
| const flatbuffers::Offset<flatbuffers::String> array[7] = { one1, two, one2, onetwo, null_b1, null_c, null_b2 }; |
| const auto vector_offset = builder.CreateVector(array, flatbuffers::uoffset_t(7)); |
| MonsterBuilder monster_builder(builder); |
| monster_builder.add_name(two); |
| monster_builder.add_testarrayofstring(vector_offset); |
| builder.Finish(monster_builder.Finish()); |
| |
| // Read the Monster back. |
| const auto *monster = flatbuffers::GetRoot<Monster>(builder.GetBufferPointer()); |
| TEST_EQ_STR(monster->name()->c_str(), "two"); |
| const auto *testarrayofstring = monster->testarrayofstring(); |
| TEST_EQ(testarrayofstring->size(), flatbuffers::uoffset_t(7)); |
| const auto &a = *testarrayofstring; |
| TEST_EQ_STR(a[0]->c_str(), "one"); |
| TEST_EQ_STR(a[1]->c_str(), "two"); |
| TEST_EQ_STR(a[2]->c_str(), "one"); |
| TEST_EQ_STR(a[3]->c_str(), "onetwo"); |
| TEST_EQ(a[4]->str(), (std::string(chars_b, sizeof(chars_b)))); |
| TEST_EQ(a[5]->str(), (std::string(chars_c, sizeof(chars_c)))); |
| TEST_EQ(a[6]->str(), (std::string(chars_b, sizeof(chars_b)))); |
| |
| // Make sure String::operator< works, too, since it is related to StringOffsetCompare. |
| TEST_EQ((*a[0]) < (*a[1]), true); |
| TEST_EQ((*a[1]) < (*a[0]), false); |
| TEST_EQ((*a[1]) < (*a[2]), false); |
| TEST_EQ((*a[2]) < (*a[1]), true); |
| TEST_EQ((*a[4]) < (*a[3]), true); |
| TEST_EQ((*a[5]) < (*a[4]), false); |
| TEST_EQ((*a[5]) < (*a[4]), false); |
| TEST_EQ((*a[6]) < (*a[5]), true); |
| } |
| |
| void FixedLengthArrayTest() { |
| // VS10 does not support typed enums, exclude from tests |
| #if !defined(_MSC_VER) || _MSC_VER >= 1700 |
| // Generate an ArrayTable containing one ArrayStruct. |
| flatbuffers::FlatBufferBuilder fbb; |
| MyGame::Example::NestedStruct nStruct0(MyGame::Example::TestEnum::B); |
| TEST_NOTNULL(nStruct0.mutable_a()); |
| nStruct0.mutable_a()->Mutate(0, 1); |
| nStruct0.mutable_a()->Mutate(1, 2); |
| TEST_NOTNULL(nStruct0.mutable_c()); |
| nStruct0.mutable_c()->Mutate(0, MyGame::Example::TestEnum::C); |
| nStruct0.mutable_c()->Mutate(1, MyGame::Example::TestEnum::A); |
| MyGame::Example::NestedStruct nStruct1(MyGame::Example::TestEnum::C); |
| TEST_NOTNULL(nStruct1.mutable_a()); |
| nStruct1.mutable_a()->Mutate(0, 3); |
| nStruct1.mutable_a()->Mutate(1, 4); |
| TEST_NOTNULL(nStruct1.mutable_c()); |
| nStruct1.mutable_c()->Mutate(0, MyGame::Example::TestEnum::C); |
| nStruct1.mutable_c()->Mutate(1, MyGame::Example::TestEnum::A); |
| MyGame::Example::ArrayStruct aStruct(2, 12); |
| TEST_NOTNULL(aStruct.b()); |
| TEST_NOTNULL(aStruct.mutable_b()); |
| TEST_NOTNULL(aStruct.mutable_d()); |
| for (int i = 0; i < aStruct.b()->size(); i++) |
| aStruct.mutable_b()->Mutate(i, i + 1); |
| aStruct.mutable_d()->Mutate(0, nStruct0); |
| aStruct.mutable_d()->Mutate(1, nStruct1); |
| auto aTable = MyGame::Example::CreateArrayTable(fbb, &aStruct); |
| fbb.Finish(aTable); |
| |
| // Verify correctness of the ArrayTable. |
| flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize()); |
| MyGame::Example::VerifyArrayTableBuffer(verifier); |
| auto p = MyGame::Example::GetMutableArrayTable(fbb.GetBufferPointer()); |
| auto mArStruct = p->mutable_a(); |
| TEST_NOTNULL(mArStruct); |
| TEST_NOTNULL(mArStruct->b()); |
| TEST_NOTNULL(mArStruct->d()); |
| TEST_NOTNULL(mArStruct->mutable_b()); |
| TEST_NOTNULL(mArStruct->mutable_d()); |
| mArStruct->mutable_b()->Mutate(14, -14); |
| TEST_EQ(mArStruct->a(), 2); |
| TEST_EQ(mArStruct->b()->size(), 15); |
| TEST_EQ(mArStruct->b()->Get(aStruct.b()->size() - 1), -14); |
| TEST_EQ(mArStruct->c(), 12); |
| TEST_NOTNULL(mArStruct->d()->Get(0).a()); |
| TEST_EQ(mArStruct->d()->Get(0).a()->Get(0), 1); |
| TEST_EQ(mArStruct->d()->Get(0).a()->Get(1), 2); |
| TEST_NOTNULL(mArStruct->d()->Get(1).a()); |
| TEST_EQ(mArStruct->d()->Get(1).a()->Get(0), 3); |
| TEST_EQ(mArStruct->d()->Get(1).a()->Get(1), 4); |
| TEST_NOTNULL(mArStruct->mutable_d()->GetMutablePointer(1)); |
| TEST_NOTNULL(mArStruct->mutable_d()->GetMutablePointer(1)->mutable_a()); |
| mArStruct->mutable_d()->GetMutablePointer(1)->mutable_a()->Mutate(1, 5); |
| TEST_EQ(mArStruct->d()->Get(1).a()->Get(1), 5); |
| TEST_EQ(mArStruct->d()->Get(0).b() == MyGame::Example::TestEnum::B, true); |
| TEST_NOTNULL(mArStruct->d()->Get(0).c()); |
| TEST_EQ(mArStruct->d()->Get(0).c()->Get(0) == MyGame::Example::TestEnum::C, |
| true); |
| TEST_EQ(mArStruct->d()->Get(0).c()->Get(1) == MyGame::Example::TestEnum::A, |
| true); |
| TEST_EQ(mArStruct->d()->Get(1).b() == MyGame::Example::TestEnum::C, true); |
| TEST_NOTNULL(mArStruct->d()->Get(1).c()); |
| TEST_EQ(mArStruct->d()->Get(1).c()->Get(0) == MyGame::Example::TestEnum::C, |
| true); |
| TEST_EQ(mArStruct->d()->Get(1).c()->Get(1) == MyGame::Example::TestEnum::A, |
| true); |
| for (int i = 0; i < mArStruct->b()->size() - 1; i++) |
| TEST_EQ(mArStruct->b()->Get(i), i + 1); |
| #endif |
| } |
| |
| void NativeTypeTest() { |
| const int N = 3; |
| |
| Geometry::ApplicationDataT src_data; |
| src_data.vectors.reserve(N); |
| |
| for (int i = 0; i < N; ++i) { |
| src_data.vectors.push_back (Native::Vector3D(10 * i + 0.1f, 10 * i + 0.2f, 10 * i + 0.3f)); |
| } |
| |
| flatbuffers::FlatBufferBuilder fbb; |
| fbb.Finish(Geometry::ApplicationData::Pack(fbb, &src_data)); |
| |
| auto dstDataT = Geometry::UnPackApplicationData(fbb.GetBufferPointer()); |
| |
| for (int i = 0; i < N; ++i) { |
| Native::Vector3D& v = dstDataT->vectors[i]; |
| TEST_EQ(v.x, 10 * i + 0.1f); |
| TEST_EQ(v.y, 10 * i + 0.2f); |
| TEST_EQ(v.z, 10 * i + 0.3f); |
| } |
| } |
| |
| void FixedLengthArrayJsonTest(bool binary) { |
| // VS10 does not support typed enums, exclude from tests |
| #if !defined(_MSC_VER) || _MSC_VER >= 1700 |
| // load FlatBuffer schema (.fbs) and JSON from disk |
| std::string schemafile; |
| std::string jsonfile; |
| TEST_EQ( |
| flatbuffers::LoadFile( |
| (test_data_path + "arrays_test." + (binary ? "bfbs" : "fbs")).c_str(), |
| binary, &schemafile), |
| true); |
| TEST_EQ(flatbuffers::LoadFile((test_data_path + "arrays_test.golden").c_str(), |
| false, &jsonfile), |
| true); |
| |
| // parse schema first, so we can use it to parse the data after |
| flatbuffers::Parser parserOrg, parserGen; |
| if (binary) { |
| flatbuffers::Verifier verifier( |
| reinterpret_cast<const uint8_t *>(schemafile.c_str()), |
| schemafile.size()); |
| TEST_EQ(reflection::VerifySchemaBuffer(verifier), true); |
| TEST_EQ(parserOrg.Deserialize((const uint8_t *)schemafile.c_str(), |
| schemafile.size()), |
| true); |
| TEST_EQ(parserGen.Deserialize((const uint8_t *)schemafile.c_str(), |
| schemafile.size()), |
| true); |
| } else { |
| TEST_EQ(parserOrg.Parse(schemafile.c_str()), true); |
| TEST_EQ(parserGen.Parse(schemafile.c_str()), true); |
| } |
| TEST_EQ(parserOrg.Parse(jsonfile.c_str()), true); |
| |
| // First, verify it, just in case: |
| flatbuffers::Verifier verifierOrg(parserOrg.builder_.GetBufferPointer(), |
| parserOrg.builder_.GetSize()); |
| TEST_EQ(VerifyArrayTableBuffer(verifierOrg), true); |
| |
| // Export to JSON |
| std::string jsonGen; |
| TEST_EQ( |
| GenerateText(parserOrg, parserOrg.builder_.GetBufferPointer(), &jsonGen), |
| true); |
| |
| // Import from JSON |
| TEST_EQ(parserGen.Parse(jsonGen.c_str()), true); |
| |
| // Verify buffer from generated JSON |
| flatbuffers::Verifier verifierGen(parserGen.builder_.GetBufferPointer(), |
| parserGen.builder_.GetSize()); |
| TEST_EQ(VerifyArrayTableBuffer(verifierGen), true); |
| |
| // Compare generated buffer to original |
| TEST_EQ(parserOrg.builder_.GetSize(), parserGen.builder_.GetSize()); |
| TEST_EQ(std::memcmp(parserOrg.builder_.GetBufferPointer(), |
| parserGen.builder_.GetBufferPointer(), |
| parserOrg.builder_.GetSize()), |
| 0); |
| #else |
| (void)binary; |
| #endif |
| } |
| |
| int FlatBufferTests() { |
| // clang-format off |
| |
| // Run our various test suites: |
| |
| std::string rawbuf; |
| auto flatbuf1 = CreateFlatBufferTest(rawbuf); |
| #if !defined(FLATBUFFERS_CPP98_STL) |
| auto flatbuf = std::move(flatbuf1); // Test move assignment. |
| #else |
| auto &flatbuf = flatbuf1; |
| #endif // !defined(FLATBUFFERS_CPP98_STL) |
| |
| TriviallyCopyableTest(); |
| |
| AccessFlatBufferTest(reinterpret_cast<const uint8_t *>(rawbuf.c_str()), |
| rawbuf.length()); |
| AccessFlatBufferTest(flatbuf.data(), flatbuf.size()); |
| |
| MutateFlatBuffersTest(flatbuf.data(), flatbuf.size()); |
| |
| ObjectFlatBuffersTest(flatbuf.data()); |
| |
| MiniReflectFlatBuffersTest(flatbuf.data()); |
| |
| SizePrefixedTest(); |
| |
| #ifndef FLATBUFFERS_NO_FILE_TESTS |
| #ifdef FLATBUFFERS_TEST_PATH_PREFIX |
| test_data_path = FLATBUFFERS_STRING(FLATBUFFERS_TEST_PATH_PREFIX) + |
| test_data_path; |
| #endif |
| ParseAndGenerateTextTest(false); |
| ParseAndGenerateTextTest(true); |
| FixedLengthArrayJsonTest(false); |
| FixedLengthArrayJsonTest(true); |
| ReflectionTest(flatbuf.data(), flatbuf.size()); |
| ParseProtoTest(); |
| UnionVectorTest(); |
| LoadVerifyBinaryTest(); |
| GenerateTableTextTest(); |
| #endif |
| // clang-format on |
| |
| FuzzTest1(); |
| FuzzTest2(); |
| |
| ErrorTest(); |
| ValueTest(); |
| EnumValueTest(); |
| EnumStringsTest(); |
| EnumNamesTest(); |
| EnumOutOfRangeTest(); |
| IntegerOutOfRangeTest(); |
| IntegerBoundaryTest(); |
| UnicodeTest(); |
| UnicodeTestAllowNonUTF8(); |
| UnicodeTestGenerateTextFailsOnNonUTF8(); |
| UnicodeSurrogatesTest(); |
| UnicodeInvalidSurrogatesTest(); |
| InvalidUTF8Test(); |
| UnknownFieldsTest(); |
| ParseUnionTest(); |
| InvalidNestedFlatbufferTest(); |
| ConformTest(); |
| ParseProtoBufAsciiTest(); |
| TypeAliasesTest(); |
| EndianSwapTest(); |
| CreateSharedStringTest(); |
| JsonDefaultTest(); |
| JsonEnumsTest(); |
| FlexBuffersTest(); |
| UninitializedVectorTest(); |
| EqualOperatorTest(); |
| NumericUtilsTest(); |
| IsAsciiUtilsTest(); |
| ValidFloatTest(); |
| InvalidFloatTest(); |
| TestMonsterExtraFloats(); |
| FixedLengthArrayTest(); |
| NativeTypeTest(); |
| return 0; |
| } |
| |
| int main(int /*argc*/, const char * /*argv*/ []) { |
| InitTestEngine(); |
| |
| std::string req_locale; |
| if (flatbuffers::ReadEnvironmentVariable("FLATBUFFERS_TEST_LOCALE", |
| &req_locale)) { |
| TEST_OUTPUT_LINE("The environment variable FLATBUFFERS_TEST_LOCALE=%s", |
| req_locale.c_str()); |
| req_locale = flatbuffers::RemoveStringQuotes(req_locale); |
| std::string the_locale; |
| TEST_ASSERT_FUNC( |
| flatbuffers::SetGlobalTestLocale(req_locale.c_str(), &the_locale)); |
| TEST_OUTPUT_LINE("The global C-locale changed: %s", the_locale.c_str()); |
| } |
| |
| FlatBufferTests(); |
| FlatBufferBuilderTest(); |
| |
| if (!testing_fails) { |
| TEST_OUTPUT_LINE("ALL TESTS PASSED"); |
| } else { |
| TEST_OUTPUT_LINE("%d FAILED TESTS", testing_fails); |
| } |
| return CloseTestEngine(); |
| } |