blob: fbfeafb27387f5c950cbf1e2a3ab20fac806fa21 [file] [log] [blame]
#include "bot3/control_loops/shooter/shooter.h"
#include "aos/common/control_loop/control_loops.q.h"
#include "aos/common/logging/logging.h"
#include "bot3/control_loops/shooter/shooter_motor_plant.h"
namespace bot3 {
namespace control_loops {
ShooterMotor::ShooterMotor(control_loops::ShooterLoop *my_shooter)
: aos::control_loops::ControlLoop<control_loops::ShooterLoop>(my_shooter),
loop_(new StateFeedbackLoop<2, 1, 1>(MakeShooterLoop())),
history_position_(0),
position_goal_(0.0),
last_position_(0.0),
last_velocity_goal_(0) {
memset(history_, 0, sizeof(history_));
}
/*static*/ const double ShooterMotor::dt = 0.01;
void ShooterMotor::RunIteration(
const control_loops::ShooterLoop::Goal *goal,
const control_loops::ShooterLoop::Position *position,
::aos::control_loops::Output *output,
control_loops::ShooterLoop::Status *status) {
double velocity_goal = goal->velocity;
const double current_position =
(position == NULL ? loop_->X_hat(0, 0) : position->position);
double output_voltage = 0.0;
/* if (index_loop.status.FetchLatest() || index_loop.status.get()) {
if (index_loop.status->is_shooting) {
if (velocity_goal != last_velocity_goal_ &&
velocity_goal < 130) {
velocity_goal = last_velocity_goal_;
}
}
} else {
LOG(WARNING, "assuming index isn't shooting\n");
}*/
last_velocity_goal_ = velocity_goal;
// Track the current position if the velocity goal is small.
if (velocity_goal <= 1.0) {
position_goal_ = current_position;
}
loop_->Y << current_position;
// Add the position to the history.
history_[history_position_] = current_position;
history_position_ = (history_position_ + 1) % kHistoryLength;
// Prevents integral windup by limiting the position error such that the
// error can't produce much more than full power.
const double kVelocityWeightScalar = 0.35;
const double max_reference =
(loop_->U_max(0, 0) - kVelocityWeightScalar *
(velocity_goal - loop_->X_hat(1, 0)) * loop_->K(0, 1))
/ loop_->K(0, 0) + loop_->X_hat(0, 0);
const double min_reference =
(loop_->U_min(0, 0) - kVelocityWeightScalar *
(velocity_goal - loop_->X_hat(1, 0)) * loop_->K(0, 1))
/ loop_->K(0, 0) + loop_->X_hat(0, 0);
position_goal_ = ::std::max(::std::min(position_goal_, max_reference),
min_reference);
loop_->R << position_goal_, velocity_goal;
position_goal_ += velocity_goal * dt;
loop_->Update(position, output == NULL);
// Kill power at low velocity goals.
if (velocity_goal < 1.0) {
loop_->U[0] = 0.0;
} else {
output_voltage = loop_->U[0];
}
LOG(DEBUG,
"PWM: %f, raw_pos: %f rotations: %f "
"junk velocity: %f, xhat[0]: %f xhat[1]: %f, R[0]: %f R[1]: %f\n",
output_voltage, current_position,
current_position / (2 * M_PI),
(current_position - last_position_) / dt,
loop_->X_hat[0], loop_->X_hat[1], loop_->R[0], loop_->R[1]);
// Calculates the velocity over the last kHistoryLength * .01 seconds
// by taking the difference between the current and next history positions.
int old_history_position = ((history_position_ == 0) ?
kHistoryLength : history_position_) - 1;
average_velocity_ = (history_[old_history_position] -
history_[history_position_]) * 100.0 / (double)(kHistoryLength - 1);
status->average_velocity = average_velocity_;
// Determine if the velocity is close enough to the goal to be ready.
if (std::abs(velocity_goal - average_velocity_) < 10.0 &&
velocity_goal != 0.0) {
LOG(DEBUG, "Steady: ");
status->ready = true;
} else {
LOG(DEBUG, "Not ready: ");
status->ready = false;
}
LOG(DEBUG, "avg = %f goal = %f\n", average_velocity_, velocity_goal);
last_position_ = current_position;
if (output) {
output->voltage = output_voltage;
}
}
} // namespace control_loops
} // namespace bot3