| #include "bot3/control_loops/shooter/shooter.h" |
| |
| #include "aos/common/control_loop/control_loops.q.h" |
| #include "aos/common/logging/logging.h" |
| |
| #include "bot3/control_loops/shooter/shooter_motor_plant.h" |
| |
| namespace bot3 { |
| namespace control_loops { |
| |
| ShooterMotor::ShooterMotor(control_loops::ShooterLoop *my_shooter) |
| : aos::control_loops::ControlLoop<control_loops::ShooterLoop>(my_shooter), |
| loop_(new StateFeedbackLoop<2, 1, 1>(MakeShooterLoop())), |
| history_position_(0), |
| position_goal_(0.0), |
| last_position_(0.0), |
| last_velocity_goal_(0) { |
| memset(history_, 0, sizeof(history_)); |
| } |
| |
| /*static*/ const double ShooterMotor::dt = 0.01; |
| |
| void ShooterMotor::RunIteration( |
| const control_loops::ShooterLoop::Goal *goal, |
| const control_loops::ShooterLoop::Position *position, |
| ::aos::control_loops::Output *output, |
| control_loops::ShooterLoop::Status *status) { |
| double velocity_goal = goal->velocity; |
| const double current_position = |
| (position == NULL ? loop_->X_hat(0, 0) : position->position); |
| double output_voltage = 0.0; |
| |
| /* if (index_loop.status.FetchLatest() || index_loop.status.get()) { |
| if (index_loop.status->is_shooting) { |
| if (velocity_goal != last_velocity_goal_ && |
| velocity_goal < 130) { |
| velocity_goal = last_velocity_goal_; |
| } |
| } |
| } else { |
| LOG(WARNING, "assuming index isn't shooting\n"); |
| }*/ |
| last_velocity_goal_ = velocity_goal; |
| |
| // Track the current position if the velocity goal is small. |
| if (velocity_goal <= 1.0) { |
| position_goal_ = current_position; |
| } |
| |
| loop_->Y << current_position; |
| |
| // Add the position to the history. |
| history_[history_position_] = current_position; |
| history_position_ = (history_position_ + 1) % kHistoryLength; |
| |
| // Prevents integral windup by limiting the position error such that the |
| // error can't produce much more than full power. |
| const double kVelocityWeightScalar = 0.35; |
| const double max_reference = |
| (loop_->U_max(0, 0) - kVelocityWeightScalar * |
| (velocity_goal - loop_->X_hat(1, 0)) * loop_->K(0, 1)) |
| / loop_->K(0, 0) + loop_->X_hat(0, 0); |
| const double min_reference = |
| (loop_->U_min(0, 0) - kVelocityWeightScalar * |
| (velocity_goal - loop_->X_hat(1, 0)) * loop_->K(0, 1)) |
| / loop_->K(0, 0) + loop_->X_hat(0, 0); |
| |
| position_goal_ = ::std::max(::std::min(position_goal_, max_reference), |
| min_reference); |
| loop_->R << position_goal_, velocity_goal; |
| position_goal_ += velocity_goal * dt; |
| |
| loop_->Update(position, output == NULL); |
| |
| // Kill power at low velocity goals. |
| if (velocity_goal < 1.0) { |
| loop_->U[0] = 0.0; |
| } else { |
| output_voltage = loop_->U[0]; |
| } |
| |
| LOG(DEBUG, |
| "PWM: %f, raw_pos: %f rotations: %f " |
| "junk velocity: %f, xhat[0]: %f xhat[1]: %f, R[0]: %f R[1]: %f\n", |
| output_voltage, current_position, |
| current_position / (2 * M_PI), |
| (current_position - last_position_) / dt, |
| loop_->X_hat[0], loop_->X_hat[1], loop_->R[0], loop_->R[1]); |
| |
| // Calculates the velocity over the last kHistoryLength * .01 seconds |
| // by taking the difference between the current and next history positions. |
| int old_history_position = ((history_position_ == 0) ? |
| kHistoryLength : history_position_) - 1; |
| average_velocity_ = (history_[old_history_position] - |
| history_[history_position_]) * 100.0 / (double)(kHistoryLength - 1); |
| |
| status->average_velocity = average_velocity_; |
| |
| // Determine if the velocity is close enough to the goal to be ready. |
| if (std::abs(velocity_goal - average_velocity_) < 10.0 && |
| velocity_goal != 0.0) { |
| LOG(DEBUG, "Steady: "); |
| status->ready = true; |
| } else { |
| LOG(DEBUG, "Not ready: "); |
| status->ready = false; |
| } |
| LOG(DEBUG, "avg = %f goal = %f\n", average_velocity_, velocity_goal); |
| |
| last_position_ = current_position; |
| |
| if (output) { |
| output->voltage = output_voltage; |
| } |
| } |
| |
| } // namespace control_loops |
| } // namespace bot3 |