| #include "aos/events/logging/logger.h" |
| |
| #include <fcntl.h> |
| #include <limits.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <sys/uio.h> |
| #include <vector> |
| |
| #include "absl/strings/string_view.h" |
| #include "absl/types/span.h" |
| #include "aos/events/event_loop.h" |
| #include "aos/events/logging/logger_generated.h" |
| #include "aos/flatbuffer_merge.h" |
| #include "aos/network/team_number.h" |
| #include "aos/time/time.h" |
| #include "flatbuffers/flatbuffers.h" |
| |
| DEFINE_int32(flush_size, 1000000, |
| "Number of outstanding bytes to allow before flushing to disk."); |
| |
| namespace aos { |
| namespace logger { |
| |
| namespace chrono = std::chrono; |
| |
| DetachedBufferWriter::DetachedBufferWriter(absl::string_view filename) |
| : fd_(open(std::string(filename).c_str(), |
| O_RDWR | O_CLOEXEC | O_CREAT | O_EXCL, 0774)) { |
| PCHECK(fd_ != -1) << ": Failed to open " << filename; |
| } |
| |
| DetachedBufferWriter::~DetachedBufferWriter() { |
| Flush(); |
| PLOG_IF(ERROR, close(fd_) == -1) << " Failed to close logfile"; |
| } |
| |
| void DetachedBufferWriter::QueueSizedFlatbuffer( |
| flatbuffers::FlatBufferBuilder *fbb) { |
| QueueSizedFlatbuffer(fbb->Release()); |
| } |
| |
| void DetachedBufferWriter::QueueSizedFlatbuffer( |
| flatbuffers::DetachedBuffer &&buffer) { |
| queued_size_ += buffer.size(); |
| queue_.emplace_back(std::move(buffer)); |
| |
| // Flush if we are at the max number of iovs per writev, or have written |
| // enough data. Otherwise writev will fail with an invalid argument. |
| if (queued_size_ > static_cast<size_t>(FLAGS_flush_size) || |
| queue_.size() == IOV_MAX) { |
| Flush(); |
| } |
| } |
| |
| void DetachedBufferWriter::Flush() { |
| if (queue_.size() == 0u) { |
| return; |
| } |
| iovec_.clear(); |
| iovec_.reserve(queue_.size()); |
| size_t counted_size = 0; |
| for (size_t i = 0; i < queue_.size(); ++i) { |
| struct iovec n; |
| n.iov_base = queue_[i].data(); |
| n.iov_len = queue_[i].size(); |
| counted_size += n.iov_len; |
| iovec_.emplace_back(std::move(n)); |
| } |
| CHECK_EQ(counted_size, queued_size_); |
| const ssize_t written = writev(fd_, iovec_.data(), iovec_.size()); |
| |
| PCHECK(written == static_cast<ssize_t>(queued_size_)) |
| << ": Wrote " << written << " expected " << queued_size_; |
| |
| queued_size_ = 0; |
| queue_.clear(); |
| // TODO(austin): Handle partial writes in some way other than crashing... |
| } |
| |
| Logger::Logger(DetachedBufferWriter *writer, EventLoop *event_loop, |
| std::chrono::milliseconds polling_period) |
| : event_loop_(event_loop), |
| writer_(writer), |
| timer_handler_(event_loop_->AddTimer([this]() { DoLogData(); })), |
| polling_period_(polling_period) { |
| for (const Channel *channel : *event_loop_->configuration()->channels()) { |
| FetcherStruct fs; |
| fs.fetcher = event_loop->MakeRawFetcher(channel); |
| fs.written = false; |
| fetchers_.emplace_back(std::move(fs)); |
| } |
| |
| // When things start, we want to log the header, then the most recent messages |
| // available on each fetcher to capture the previous state, then start |
| // polling. |
| event_loop_->OnRun([this, polling_period]() { |
| // Grab data from each channel right before we declare the log file started |
| // so we can capture the latest message on each channel. This lets us have |
| // non periodic messages with configuration that now get logged. |
| for (FetcherStruct &f : fetchers_) { |
| f.written = !f.fetcher->Fetch(); |
| } |
| |
| // We need to pick a point in time to declare the log file "started". This |
| // starts here. It needs to be after everything is fetched so that the |
| // fetchers are all pointed at the most recent message before the start |
| // time. |
| const monotonic_clock::time_point monotonic_now = |
| event_loop_->monotonic_now(); |
| const realtime_clock::time_point realtime_now = event_loop_->realtime_now(); |
| last_synchronized_time_ = monotonic_now; |
| |
| { |
| // Now write the header with this timestamp in it. |
| flatbuffers::FlatBufferBuilder fbb; |
| fbb.ForceDefaults(1); |
| |
| flatbuffers::Offset<aos::Configuration> configuration_offset = |
| CopyFlatBuffer(event_loop_->configuration(), &fbb); |
| |
| flatbuffers::Offset<flatbuffers::String> string_offset = |
| fbb.CreateString(network::GetHostname()); |
| |
| aos::logger::LogFileHeader::Builder log_file_header_builder(fbb); |
| |
| log_file_header_builder.add_name(string_offset); |
| |
| log_file_header_builder.add_configuration(configuration_offset); |
| // The worst case theoretical out of order is the polling period times 2. |
| // One message could get logged right after the boundary, but be for right |
| // before the next boundary. And the reverse could happen for another |
| // message. Report back 3x to be extra safe, and because the cost isn't |
| // huge on the read side. |
| log_file_header_builder.add_max_out_of_order_duration( |
| std::chrono::duration_cast<std::chrono::nanoseconds>(3 * |
| polling_period) |
| .count()); |
| |
| log_file_header_builder.add_monotonic_start_time( |
| std::chrono::duration_cast<std::chrono::nanoseconds>( |
| monotonic_now.time_since_epoch()) |
| .count()); |
| log_file_header_builder.add_realtime_start_time( |
| std::chrono::duration_cast<std::chrono::nanoseconds>( |
| realtime_now.time_since_epoch()) |
| .count()); |
| |
| fbb.FinishSizePrefixed(log_file_header_builder.Finish()); |
| writer_->QueueSizedFlatbuffer(&fbb); |
| } |
| |
| timer_handler_->Setup(event_loop_->monotonic_now() + polling_period, |
| polling_period); |
| }); |
| } |
| |
| flatbuffers::Offset<MessageHeader> PackMessage( |
| flatbuffers::FlatBufferBuilder *fbb, const Context &context, |
| int channel_index) { |
| flatbuffers::Offset<flatbuffers::Vector<uint8_t>> data_offset = |
| fbb->CreateVector(static_cast<uint8_t *>(context.data), context.size); |
| |
| MessageHeader::Builder message_header_builder(*fbb); |
| message_header_builder.add_channel_index(channel_index); |
| message_header_builder.add_monotonic_sent_time( |
| context.monotonic_event_time.time_since_epoch().count()); |
| message_header_builder.add_realtime_sent_time( |
| context.realtime_event_time.time_since_epoch().count()); |
| |
| message_header_builder.add_queue_index(context.queue_index); |
| |
| message_header_builder.add_data(data_offset); |
| return message_header_builder.Finish(); |
| } |
| |
| void Logger::DoLogData() { |
| // We want to guarentee that messages aren't out of order by more than |
| // max_out_of_order_duration. To do this, we need sync points. Every write |
| // cycle should be a sync point. |
| const monotonic_clock::time_point monotonic_now = monotonic_clock::now(); |
| |
| do { |
| // Move the sync point up by at most polling_period. This forces one sync |
| // per iteration, even if it is small. |
| last_synchronized_time_ = |
| std::min(last_synchronized_time_ + polling_period_, monotonic_now); |
| size_t channel_index = 0; |
| // Write each channel to disk, one at a time. |
| for (FetcherStruct &f : fetchers_) { |
| while (true) { |
| if (f.fetcher.get() == nullptr) { |
| if (!f.fetcher->FetchNext()) { |
| VLOG(1) << "No new data on " |
| << FlatbufferToJson(f.fetcher->channel()); |
| break; |
| } else { |
| f.written = false; |
| } |
| } |
| |
| if (f.written) { |
| if (!f.fetcher->FetchNext()) { |
| VLOG(1) << "No new data on " |
| << FlatbufferToJson(f.fetcher->channel()); |
| break; |
| } else { |
| f.written = false; |
| } |
| } |
| |
| CHECK(!f.written); |
| |
| // TODO(james): Write tests to exercise this logic. |
| if (f.fetcher->context().monotonic_event_time < |
| last_synchronized_time_) { |
| // Write! |
| flatbuffers::FlatBufferBuilder fbb(f.fetcher->context().size + |
| max_header_size_); |
| fbb.ForceDefaults(1); |
| |
| fbb.FinishSizePrefixed( |
| PackMessage(&fbb, f.fetcher->context(), channel_index)); |
| |
| VLOG(1) << "Writing data for channel " |
| << FlatbufferToJson(f.fetcher->channel()); |
| |
| max_header_size_ = std::max( |
| max_header_size_, fbb.GetSize() - f.fetcher->context().size); |
| writer_->QueueSizedFlatbuffer(&fbb); |
| |
| f.written = true; |
| } else { |
| break; |
| } |
| } |
| |
| ++channel_index; |
| } |
| |
| CHECK_EQ(channel_index, fetchers_.size()); |
| |
| // If we missed cycles, we could be pretty far behind. Spin until we are |
| // caught up. |
| } while (last_synchronized_time_ + polling_period_ < monotonic_now); |
| |
| writer_->Flush(); |
| } |
| |
| LogReader::LogReader(absl::string_view filename) |
| : fd_(open(std::string(filename).c_str(), O_RDONLY | O_CLOEXEC)) { |
| PCHECK(fd_ != -1) << ": Failed to open " << filename; |
| |
| // Make sure we have enough to read the size. |
| absl::Span<const uint8_t> config_data = ReadMessage(); |
| |
| // Make sure something was read. |
| CHECK(config_data != absl::Span<const uint8_t>()); |
| |
| // And copy the config so we have it forever. |
| configuration_ = std::vector<uint8_t>(config_data.begin(), config_data.end()); |
| |
| max_out_of_order_duration_ = std::chrono::nanoseconds( |
| flatbuffers::GetSizePrefixedRoot<LogFileHeader>(configuration_.data()) |
| ->max_out_of_order_duration()); |
| |
| channels_.resize(configuration()->channels()->size()); |
| |
| QueueMessages(); |
| } |
| |
| LogReader::~LogReader() { |
| CHECK(!event_loop_unique_ptr_) << "Did you remember to call Deregister?"; |
| } |
| |
| bool LogReader::ReadBlock() { |
| if (end_of_file_) { |
| return false; |
| } |
| |
| // Appends 256k. This is enough that the read call is efficient. We don't |
| // want to spend too much time reading small chunks because the syscalls for |
| // that will be expensive. |
| constexpr size_t kReadSize = 256 * 1024; |
| |
| // Strip off any unused data at the front. |
| if (consumed_data_ != 0) { |
| data_.erase(data_.begin(), data_.begin() + consumed_data_); |
| consumed_data_ = 0; |
| } |
| |
| const size_t starting_size = data_.size(); |
| |
| // This should automatically grow the backing store. It won't shrink if we |
| // get a small chunk later. This reduces allocations when we want to append |
| // more data. |
| data_.resize(data_.size() + kReadSize); |
| |
| ssize_t count = read(fd_, &data_[starting_size], kReadSize); |
| data_.resize(starting_size + std::max(count, static_cast<ssize_t>(0))); |
| if (count == 0) { |
| end_of_file_ = true; |
| return false; |
| } |
| PCHECK(count > 0); |
| |
| return true; |
| } |
| |
| bool LogReader::MessageAvailable() { |
| // Are we big enough to read the size? |
| if (data_.size() - consumed_data_ < sizeof(flatbuffers::uoffset_t)) { |
| return false; |
| } |
| |
| // Then, are we big enough to read the full message? |
| const size_t data_size = |
| flatbuffers::GetPrefixedSize(data_.data() + consumed_data_) + |
| sizeof(flatbuffers::uoffset_t); |
| if (data_.size() < consumed_data_ + data_size) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| absl::Span<const uint8_t> LogReader::ReadMessage() { |
| // Make sure we have enough for the size. |
| if (data_.size() - consumed_data_ < sizeof(flatbuffers::uoffset_t)) { |
| if (!ReadBlock()) { |
| return absl::Span<const uint8_t>(); |
| } |
| } |
| |
| // Now make sure we have enough for the message. |
| const size_t data_size = |
| flatbuffers::GetPrefixedSize(data_.data() + consumed_data_) + |
| sizeof(flatbuffers::uoffset_t); |
| while (data_.size() < consumed_data_ + data_size) { |
| if (!ReadBlock()) { |
| return absl::Span<const uint8_t>(); |
| } |
| } |
| |
| // And return it, consuming the data. |
| const uint8_t *data_ptr = data_.data() + consumed_data_; |
| |
| consumed_data_ += data_size; |
| |
| return absl::Span<const uint8_t>(data_ptr, data_size); |
| } |
| |
| void LogReader::QueueMessages() { |
| while (true) { |
| // Don't queue if we have enough data already. |
| // When a log file starts, there should be a message from each channel. |
| // Those messages might be very old. Make sure to read a chunk past the |
| // starting time. |
| if (channel_heap_.size() > 0 && |
| newest_timestamp_ > |
| std::max(oldest_message().first, monotonic_start_time()) + |
| max_out_of_order_duration_) { |
| break; |
| } |
| |
| absl::Span<const uint8_t> msg_data = ReadMessage(); |
| if (msg_data == absl::Span<const uint8_t>()) { |
| break; |
| } |
| |
| FlatbufferVector<MessageHeader> msg(std::vector<uint8_t>( |
| msg_data.begin() + sizeof(flatbuffers::uoffset_t), msg_data.end())); |
| |
| EmplaceDataBack(std::move(msg)); |
| } |
| |
| queue_data_time_ = newest_timestamp_ - max_out_of_order_duration_; |
| } |
| |
| const Configuration *LogReader::configuration() { |
| return flatbuffers::GetSizePrefixedRoot<LogFileHeader>(configuration_.data()) |
| ->configuration(); |
| } |
| |
| monotonic_clock::time_point LogReader::monotonic_start_time() { |
| return monotonic_clock::time_point(std::chrono::nanoseconds( |
| flatbuffers::GetSizePrefixedRoot<LogFileHeader>(configuration_.data()) |
| ->monotonic_start_time())); |
| } |
| |
| realtime_clock::time_point LogReader::realtime_start_time() { |
| return realtime_clock::time_point(std::chrono::nanoseconds( |
| flatbuffers::GetSizePrefixedRoot<LogFileHeader>(configuration_.data()) |
| ->realtime_start_time())); |
| } |
| |
| void LogReader::Register(SimulatedEventLoopFactory *event_loop_factory) { |
| event_loop_unique_ptr_ = event_loop_factory->MakeEventLoop("log_reader"); |
| event_loop_factory_ = event_loop_factory; |
| // We don't run timing reports when trying to print out logged data, because |
| // otherwise we would end up printing out the timing reports themselves... |
| // This is only really relevant when we are replaying into a simulation. |
| event_loop_unique_ptr_->SkipTimingReport(); |
| |
| Register(event_loop_unique_ptr_.get()); |
| event_loop_factory_->RunFor(monotonic_start_time() - |
| event_loop_factory_->monotonic_now()); |
| } |
| |
| void LogReader::Register(EventLoop *event_loop) { |
| event_loop_ = event_loop; |
| |
| // Otherwise we replay the timing report and try to resend it... |
| event_loop_->SkipTimingReport(); |
| |
| for (size_t i = 0; i < channels_.size(); ++i) { |
| CHECK_EQ(configuration()->channels()->Get(i)->name(), |
| event_loop_->configuration()->channels()->Get(i)->name()); |
| CHECK_EQ(configuration()->channels()->Get(i)->type(), |
| event_loop_->configuration()->channels()->Get(i)->type()); |
| |
| channels_[i].raw_sender = event_loop_->MakeRawSender( |
| event_loop_->configuration()->channels()->Get(i)); |
| } |
| |
| timer_handler_ = event_loop_->AddTimer([this]() { |
| std::pair<monotonic_clock::time_point, int> oldest_channel_index = |
| PopOldestChannel(); |
| const monotonic_clock::time_point monotonic_now = |
| event_loop_->context().monotonic_event_time; |
| CHECK(monotonic_now == oldest_channel_index.first) |
| << ": Now " << monotonic_now.time_since_epoch().count() |
| << " trying to send " |
| << oldest_channel_index.first.time_since_epoch().count(); |
| |
| struct LogReader::ChannelData &channel = |
| channels_[oldest_channel_index.second]; |
| |
| FlatbufferVector<MessageHeader> front = std::move(channel.front()); |
| |
| CHECK(front.message().data() != nullptr); |
| |
| if (oldest_channel_index.first > monotonic_start_time()) { |
| // If we have access to the factory, use it to fix the realtime time. |
| if (event_loop_factory_ != nullptr) { |
| event_loop_factory_->SetRealtimeOffset( |
| monotonic_clock::time_point( |
| chrono::nanoseconds(front.message().monotonic_sent_time())), |
| realtime_clock::time_point( |
| chrono::nanoseconds(front.message().realtime_sent_time()))); |
| } |
| |
| channel.raw_sender->Send(front.message().data()->Data(), |
| front.message().data()->size()); |
| } else { |
| LOG(WARNING) << "Not sending data from before the start of the log file. " |
| << oldest_channel_index.first.time_since_epoch().count() |
| << " start " |
| << monotonic_start_time().time_since_epoch().count() << " " |
| << FlatbufferToJson(front); |
| } |
| channel.data.pop_front(); |
| |
| // Re-push it and update the oldest timestamp. |
| if (channel.data.size() != 0) { |
| const monotonic_clock::time_point timestamp = monotonic_clock::time_point( |
| chrono::nanoseconds(channel.front().message().monotonic_sent_time())); |
| PushChannelHeap(timestamp, oldest_channel_index.second); |
| channel.oldest_timestamp = timestamp; |
| } else { |
| channel.oldest_timestamp = monotonic_clock::min_time; |
| } |
| |
| if (monotonic_now > queue_data_time_) { |
| QueueMessages(); |
| } |
| |
| if (channel_heap_.size() != 0) { |
| timer_handler_->Setup(oldest_message().first); |
| } |
| }); |
| |
| if (channel_heap_.size() > 0u) { |
| event_loop_->OnRun( |
| [this]() { timer_handler_->Setup(oldest_message().first); }); |
| } |
| } |
| |
| void LogReader::Deregister() { |
| for (size_t i = 0; i < channels_.size(); ++i) { |
| channels_[i].raw_sender.reset(); |
| } |
| |
| event_loop_factory_ = nullptr; |
| event_loop_unique_ptr_.reset(); |
| event_loop_ = nullptr; |
| } |
| |
| void LogReader::EmplaceDataBack(FlatbufferVector<MessageHeader> &&new_data) { |
| const monotonic_clock::time_point timestamp = monotonic_clock::time_point( |
| chrono::nanoseconds(new_data.message().monotonic_sent_time())); |
| const size_t channel_index = new_data.message().channel_index(); |
| CHECK_LT(channel_index, channels_.size()); |
| newest_timestamp_ = std::max(newest_timestamp_, timestamp); |
| if (channels_[channel_index].data.size() == 0) { |
| channels_[channel_index].oldest_timestamp = timestamp; |
| PushChannelHeap(timestamp, channel_index); |
| } |
| channels_[channel_index].data.emplace_back(std::move(new_data)); |
| } |
| |
| namespace { |
| |
| bool ChannelHeapCompare( |
| const std::pair<monotonic_clock::time_point, int> first, |
| const std::pair<monotonic_clock::time_point, int> second) { |
| if (first.first > second.first) { |
| return true; |
| } else if (first.first == second.first) { |
| return first.second > second.second; |
| } else { |
| return false; |
| } |
| } |
| |
| } // namespace |
| |
| void LogReader::PushChannelHeap(monotonic_clock::time_point timestamp, |
| int channel_index) { |
| channel_heap_.push_back(std::make_pair(timestamp, channel_index)); |
| |
| // The default sort puts the newest message first. Use a custom comparator to |
| // put the oldest message first. |
| std::push_heap(channel_heap_.begin(), channel_heap_.end(), |
| ChannelHeapCompare); |
| } |
| |
| std::pair<monotonic_clock::time_point, int> LogReader::PopOldestChannel() { |
| std::pair<monotonic_clock::time_point, int> result = channel_heap_.front(); |
| std::pop_heap(channel_heap_.begin(), channel_heap_.end(), |
| &ChannelHeapCompare); |
| channel_heap_.pop_back(); |
| return result; |
| } |
| |
| } // namespace logger |
| } // namespace aos |