blob: 37d35e6ae82ed059170a5b8fcf5941c6172ecbd7 [file] [log] [blame]
#include "y2020/vision/camera_reader.h"
#include <math.h>
#include "absl/flags/flag.h"
#include <opencv2/calib3d.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/imgproc.hpp>
#include "aos/events/event_loop.h"
#include "aos/flatbuffer_merge.h"
#include "aos/network/team_number.h"
#include "frc971/vision/v4l2_reader.h"
#include "frc971/vision/vision_generated.h"
#include "y2020/vision/sift/sift971.h"
#include "y2020/vision/sift/sift_generated.h"
#include "y2020/vision/sift/sift_training_generated.h"
#include "y2020/vision/tools/python_code/sift_training_data.h"
ABSL_FLAG(bool, skip_sift, false,
"If true don't run any feature extraction. Just forward images.");
ABSL_FLAG(bool, ransac_pose, false,
"If true, do pose estimate with RANSAC; else, use ITERATIVE mode.");
ABSL_FLAG(bool, use_prev_pose, true,
"If true, use previous pose estimate as seed for next estimate.");
namespace frc971::vision {
const sift::CameraCalibration *CameraReader::FindCameraCalibration() const {
const std::string_view node_name = event_loop_->node()->name()->string_view();
const int team_number = aos::network::GetTeamNumber();
for (const sift::CameraCalibration *candidate :
*training_data_->camera_calibrations()) {
if (candidate->node_name()->string_view() != node_name) {
continue;
}
if (candidate->team_number() != team_number) {
continue;
}
return candidate;
}
LOG(FATAL) << ": Failed to find camera calibration for " << node_name
<< " on " << team_number;
}
void CameraReader::CopyTrainingFeatures() {
int training_image_index = 0;
for (const sift::TrainingImage *training_image : *training_data_->images()) {
cv::Mat features(training_image->features()->size(), 128, CV_32F);
for (size_t i = 0; i < training_image->features()->size(); ++i) {
const sift::Feature *feature_table = training_image->features()->Get(i);
// We don't need this information right now, but make sure it's here to
// avoid crashes that only occur when specific features are matched.
CHECK(feature_table->has_field_location());
const flatbuffers::Vector<uint8_t> *const descriptor =
feature_table->descriptor();
CHECK_EQ(descriptor->size(), 128u) << ": Unsupported feature size";
const auto in_mat = cv::Mat(
1, descriptor->size(), CV_8U,
const_cast<void *>(static_cast<const void *>(descriptor->data())));
const auto out_mat = features(cv::Range(i, i + 1), cv::Range(0, 128));
in_mat.convertTo(out_mat, CV_32F);
}
matchers_[training_image_index].add(features);
++training_image_index;
}
}
void CameraReader::SendImageMatchResult(
const CameraImage &image, const std::vector<cv::KeyPoint> &keypoints,
const cv::Mat &descriptors,
const std::vector<std::vector<cv::DMatch>> &matches,
const std::vector<cv::Mat> &camera_target_list,
const std::vector<cv::Mat> &field_camera_list,
const std::vector<cv::Point2f> &target_point_vector,
const std::vector<float> &target_radius_vector,
const std::vector<int> &training_image_indices,
const std::vector<int> &homography_feature_counts,
aos::Sender<sift::ImageMatchResult> *result_sender, bool send_details) {
auto builder = result_sender->MakeBuilder();
const auto camera_calibration_offset =
aos::RecursiveCopyFlatBuffer(camera_calibration_, builder.fbb());
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<sift::Feature>>>
features_offset;
flatbuffers::Offset<
flatbuffers::Vector<flatbuffers::Offset<sift::ImageMatch>>>
image_matches_offset;
if (send_details) {
features_offset = PackFeatures(builder.fbb(), keypoints, descriptors);
image_matches_offset = PackImageMatches(builder.fbb(), matches);
}
std::vector<flatbuffers::Offset<sift::CameraPose>> camera_poses;
CHECK_EQ(camera_target_list.size(), field_camera_list.size());
for (size_t i = 0; i < camera_target_list.size(); ++i) {
cv::Mat camera_target = camera_target_list[i];
CHECK(camera_target.isContinuous());
const auto data_offset = builder.fbb()->CreateVector<float>(
reinterpret_cast<float *>(camera_target.data), camera_target.total());
const flatbuffers::Offset<sift::TransformationMatrix> transform_offset =
sift::CreateTransformationMatrix(*builder.fbb(), data_offset);
cv::Mat field_camera = field_camera_list[i];
CHECK(field_camera.isContinuous());
const auto fc_data_offset = builder.fbb()->CreateVector<float>(
reinterpret_cast<float *>(field_camera.data), field_camera.total());
const flatbuffers::Offset<sift::TransformationMatrix> fc_transform_offset =
sift::CreateTransformationMatrix(*builder.fbb(), fc_data_offset);
const flatbuffers::Offset<sift::TransformationMatrix>
field_to_target_offset = aos::RecursiveCopyFlatBuffer(
FieldToTarget(training_image_indices[i]), builder.fbb());
sift::CameraPose::Builder pose_builder(*builder.fbb());
pose_builder.add_camera_to_target(transform_offset);
pose_builder.add_field_to_camera(fc_transform_offset);
pose_builder.add_field_to_target(field_to_target_offset);
pose_builder.add_query_target_point_x(target_point_vector[i].x);
pose_builder.add_query_target_point_y(target_point_vector[i].y);
pose_builder.add_query_target_point_radius(target_radius_vector[i]);
pose_builder.add_homography_feature_count(homography_feature_counts[i]);
pose_builder.add_training_image_index(training_image_indices[i]);
camera_poses.emplace_back(pose_builder.Finish());
}
const auto camera_poses_offset = builder.fbb()->CreateVector(camera_poses);
sift::ImageMatchResult::Builder result_builder(*builder.fbb());
result_builder.add_camera_poses(camera_poses_offset);
if (send_details) {
result_builder.add_image_matches(image_matches_offset);
result_builder.add_features(features_offset);
}
result_builder.add_image_monotonic_timestamp_ns(
image.monotonic_timestamp_ns());
result_builder.add_camera_calibration(camera_calibration_offset);
result_builder.add_send_failures(result_failure_counter_.failures());
// TODO<Jim>: Need to add target point computed from matches and
// mapped by homography
result_failure_counter_.Count(builder.Send(result_builder.Finish()));
}
void CameraReader::ProcessImage(const CameraImage &image) {
// First, we need to extract the brightness information. This can't really be
// fused into the beginning of the SIFT algorithm because the algorithm needs
// to look at the base image directly. It also only takes 2ms on our images.
// This is converting from YUYV to a grayscale image.
cv::Mat image_mat(image.rows(), image.cols(), CV_8U);
CHECK(image_mat.isContinuous());
const int number_pixels = image.rows() * image.cols();
for (int i = 0; i < number_pixels; ++i) {
reinterpret_cast<uint8_t *>(image_mat.data)[i] =
image.data()->data()[i * 2];
}
// Next, grab the features from the image.
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
if (!absl::GetFlag(FLAGS_skip_sift)) {
sift_->detectAndCompute(image_mat, cv::noArray(), keypoints, descriptors);
}
struct PerImageMatches {
std::vector<std::vector<cv::DMatch>> matches;
std::vector<cv::Point3f> training_points_3d;
std::vector<cv::Point2f> query_points;
std::vector<cv::Point2f> training_points;
cv::Mat homography;
};
std::vector<PerImageMatches> per_image_matches(number_training_images());
for (int image_idx = 0; image_idx < number_training_images(); ++image_idx) {
// Then, match those features against our training data.
std::vector<std::vector<cv::DMatch>> matches;
if (!absl::GetFlag(FLAGS_skip_sift)) {
matchers_[image_idx].knnMatch(/* queryDescriptors */ descriptors, matches,
/* k */ 2);
}
// Pull out the good matches which we want for each image.
// Discard the bad matches per Lowe's ratio test.
// (Lowe originally proposed 0.7 ratio, but 0.75 was later proposed as a
// better option. We'll go with the more conservative (fewer, better
// matches) for now).
for (const std::vector<cv::DMatch> &match : matches) {
CHECK_EQ(2u, match.size());
CHECK_LE(match[0].distance, match[1].distance);
CHECK_EQ(match[0].imgIdx, 0);
CHECK_EQ(match[1].imgIdx, 0);
CHECK_EQ(match[0].queryIdx, match[1].queryIdx);
if (!(match[0].distance < 0.7 * match[1].distance)) {
continue;
}
const int training_image = image_idx;
CHECK_LT(training_image, static_cast<int>(per_image_matches.size()));
PerImageMatches *const per_image = &per_image_matches[training_image];
per_image->matches.push_back(match);
per_image->matches.back()[0].imgIdx = image_idx;
per_image->matches.back()[1].imgIdx = image_idx;
per_image->training_points.push_back(
Training2dPoint(training_image, match[0].trainIdx));
per_image->training_points_3d.push_back(
Training3dPoint(training_image, match[0].trainIdx));
const cv::KeyPoint &keypoint = keypoints[match[0].queryIdx];
per_image->query_points.push_back(keypoint.pt);
}
}
// The minimum number of matches in a training image for us to use it.
static constexpr int kMinimumMatchCount = 10;
std::vector<cv::Mat> camera_target_list;
std::vector<cv::Mat> field_camera_list;
// Rebuild the matches and store them here
std::vector<std::vector<cv::DMatch>> all_good_matches;
// Build list of target point and radius for each good match
std::vector<cv::Point2f> target_point_vector;
std::vector<float> target_radius_vector;
std::vector<int> training_image_indices;
std::vector<int> homography_feature_counts;
// Iterate through matches for each training image
for (size_t i = 0; i < per_image_matches.size(); ++i) {
const PerImageMatches &per_image = per_image_matches[i];
VLOG(2) << "Number of matches to start for training image: " << i
<< " is: " << per_image.matches.size() << "\n";
// If we don't have enough matches to start, skip this set of matches
if (per_image.matches.size() < kMinimumMatchCount) {
continue;
}
// Use homography to determine which matches make sense physically
cv::Mat mask;
cv::Mat homography =
cv::findHomography(per_image.training_points, per_image.query_points,
cv::FM_RANSAC, 3.0, mask);
const int homography_feature_count = cv::countNonZero(mask);
// If mask doesn't have enough leftover matches, skip these matches
if (homography_feature_count < kMinimumMatchCount) {
continue;
}
homography_feature_counts.push_back(homography_feature_count);
VLOG(2) << "Number of matches after homography for training image: " << i
<< " is " << cv::countNonZero(mask) << "\n";
// Fill our match info for each good match based on homography result
PerImageMatches per_image_good_match;
CHECK_EQ(per_image.training_points.size(),
(unsigned long)mask.size().height);
for (size_t j = 0; j < per_image.matches.size(); j++) {
// Skip if we masked out by homography
if (mask.at<uchar>(0, j) != 1) {
continue;
}
// Add this to our collection of all matches that passed our criteria
all_good_matches.push_back(per_image.matches[j]);
// Fill out the data for matches per image that made it past
// homography check, for later use
per_image_good_match.matches.push_back(per_image.matches[j]);
per_image_good_match.training_points.push_back(
per_image.training_points[j]);
per_image_good_match.training_points_3d.push_back(
per_image.training_points_3d[j]);
per_image_good_match.query_points.push_back(per_image.query_points[j]);
}
// Returns from opencv are doubles (CV_64F), which don't play well
// with our floats
homography.convertTo(homography, CV_32F);
per_image_good_match.homography = homography.clone();
CHECK_GT(per_image_good_match.matches.size(), 0u);
// Collect training target location, so we can map it to matched image
cv::Point2f target_point;
float target_radius;
TargetLocation(i, target_point, target_radius);
// Store target_point in vector for use by perspectiveTransform
std::vector<cv::Point2f> src_target_pt;
src_target_pt.push_back(target_point);
std::vector<cv::Point2f> query_target_pt;
cv::perspectiveTransform(src_target_pt, query_target_pt, homography);
float query_target_radius =
target_radius *
abs(homography.at<float>(0, 0) + homography.at<float>(1, 1)) / 2.;
CHECK_EQ(query_target_pt.size(), 1u);
target_point_vector.push_back(query_target_pt[0]);
target_radius_vector.push_back(query_target_radius);
// Pose transformations (rotations and translations) for various
// coordinate frames. R_X_Y_vec is the Rodrigues (angle-axis)
// representation of the 3x3 rotation R_X_Y from frame X to frame Y
// Tranform from camera to target frame
cv::Mat R_camera_target_vec, R_camera_target, T_camera_target;
// Tranform from camera to field origin (global) reference frame
cv::Mat R_camera_field_vec, R_camera_field, T_camera_field;
// Inverse of camera to field-- defines location of camera in
// global (field) reference frame
cv::Mat R_field_camera_vec, R_field_camera, T_field_camera;
// Using the previous pose helps to stabilize the estimate, since
// it's sometimes bouncing between two possible poses. Putting it
// near the previous pose helps it converge to the previous pose
// estimate (assuming it's valid).
if (absl::GetFlag(FLAGS_use_prev_pose)) {
R_camera_field_vec = prev_camera_field_R_vec_list_[i].clone();
T_camera_field = prev_camera_field_T_list_[i].clone();
VLOG(2) << "Using previous match for training image " << i
<< " with T of : " << T_camera_field;
}
// Compute the pose of the camera (global origin relative to camera)
if (absl::GetFlag(FLAGS_ransac_pose)) {
// RANSAC computation is designed to be more robust to outliers.
// But, we found it bounces around a lot, even with identical points
cv::solvePnPRansac(per_image_good_match.training_points_3d,
per_image_good_match.query_points, CameraIntrinsics(),
CameraDistCoeffs(), R_camera_field_vec, T_camera_field,
absl::GetFlag(FLAGS_use_prev_pose));
} else {
// ITERATIVE mode is potentially less robust to outliers, but we
// found it to be more stable
//
cv::solvePnP(per_image_good_match.training_points_3d,
per_image_good_match.query_points, CameraIntrinsics(),
CameraDistCoeffs(), R_camera_field_vec, T_camera_field,
absl::GetFlag(FLAGS_use_prev_pose), cv::SOLVEPNP_ITERATIVE);
}
// We are occasionally seeing NaN in the prior estimate, so checking for
// this If we sit, just bail the pose estimate
if (isnan(T_camera_field.at<double>(0, 0))) {
LOG(ERROR)
<< "NAN ERROR in solving for Pose (SolvePnP). Pose returned as: T: "
<< T_camera_field << "\nR: " << R_camera_field_vec
<< "\nNumber of matches is: "
<< per_image_good_match.query_points.size();
VLOG(2) << "Resetting previous values to zero, from: R_prev: "
<< prev_camera_field_R_vec_list_[i]
<< ", T_prev: " << prev_camera_field_T_list_[i];
prev_camera_field_R_vec_list_[i] = cv::Mat::zeros(3, 1, CV_32F);
prev_camera_field_T_list_[i] = cv::Mat::zeros(3, 1, CV_32F);
continue;
}
CHECK_EQ(cv::Size(1, 3), T_camera_field.size());
// Convert to float32's (from float64) to be compatible with the rest
R_camera_field_vec.convertTo(R_camera_field_vec, CV_32F);
T_camera_field.convertTo(T_camera_field, CV_32F);
// Get matrix version of R_camera_field
cv::Rodrigues(R_camera_field_vec, R_camera_field);
CHECK_EQ(cv::Size(3, 3), R_camera_field.size());
// Compute H_field_camera = H_camera_field^-1
R_field_camera = R_camera_field.t();
T_field_camera = -R_field_camera * (T_camera_field);
// Extract the field_target transformation
const cv::Mat H_field_target(4, 4, CV_32F,
const_cast<void *>(static_cast<const void *>(
FieldToTarget(i)->data()->data())));
training_image_indices.push_back(i);
const cv::Mat R_field_target =
H_field_target(cv::Range(0, 3), cv::Range(0, 3));
const cv::Mat T_field_target =
H_field_target(cv::Range(0, 3), cv::Range(3, 4));
// Use it to get the relative pose from camera to target
R_camera_target = R_camera_field * (R_field_target);
T_camera_target = R_camera_field * (T_field_target) + T_camera_field;
// Set H_camera_target
{
CHECK_EQ(cv::Size(3, 3), R_camera_target.size());
CHECK_EQ(cv::Size(1, 3), T_camera_target.size());
cv::Mat H_camera_target = cv::Mat::zeros(4, 4, CV_32F);
R_camera_target.copyTo(H_camera_target(cv::Range(0, 3), cv::Range(0, 3)));
T_camera_target.copyTo(H_camera_target(cv::Range(0, 3), cv::Range(3, 4)));
H_camera_target.at<float>(3, 3) = 1;
CHECK(H_camera_target.isContinuous());
camera_target_list.push_back(H_camera_target.clone());
}
// Set H_field_camera
{
CHECK_EQ(cv::Size(3, 3), R_field_camera.size());
CHECK_EQ(cv::Size(1, 3), T_field_camera.size());
cv::Mat H_field_camera = cv::Mat::zeros(4, 4, CV_32F);
R_field_camera.copyTo(H_field_camera(cv::Range(0, 3), cv::Range(0, 3)));
T_field_camera.copyTo(H_field_camera(cv::Range(0, 3), cv::Range(3, 4)));
H_field_camera.at<float>(3, 3) = 1;
CHECK(H_field_camera.isContinuous());
field_camera_list.push_back(H_field_camera.clone());
}
// We also sometimes see estimates where the target is behind the camera
// or where we have very large pose estimates.
// This will generally lead to an estimate that is off the field, and also
// will mess up the
if (T_camera_target.at<float>(0, 2) < 0.0 ||
T_camera_target.at<float>(0, 2) > 100.0) {
LOG(ERROR) << "Pose returned non-physical pose with camera to target z. "
"T_camera_target = "
<< T_camera_target
<< "\nAnd T_field_camera = " << T_field_camera;
VLOG(2) << "Resetting previous values to zero, from: R_prev: "
<< prev_camera_field_R_vec_list_[i]
<< ", T_prev: " << prev_camera_field_T_list_[i];
prev_camera_field_R_vec_list_[i] = cv::Mat::zeros(3, 1, CV_32F);
prev_camera_field_T_list_[i] = cv::Mat::zeros(3, 1, CV_32F);
continue;
}
prev_camera_field_R_vec_list_[i] = R_camera_field_vec.clone();
prev_camera_field_T_list_[i] = T_camera_field.clone();
}
// Now, send our two messages-- one large, with details for remote
// debugging(features), and one smaller
SendImageMatchResult(image, keypoints, descriptors, all_good_matches,
camera_target_list, field_camera_list,
target_point_vector, target_radius_vector,
training_image_indices, homography_feature_counts,
&detailed_result_sender_, true);
SendImageMatchResult(image, keypoints, descriptors, all_good_matches,
camera_target_list, field_camera_list,
target_point_vector, target_radius_vector,
training_image_indices, homography_feature_counts,
&result_sender_, false);
}
void CameraReader::ReadImage() {
if (!reader_->ReadLatestImage()) {
if (!absl::GetFlag(FLAGS_skip_sift)) {
LOG(INFO) << "No image, sleeping";
}
read_image_timer_->Schedule(event_loop_->monotonic_now() +
std::chrono::milliseconds(10));
return;
}
ProcessImage(reader_->LatestImage());
reader_->SendLatestImage();
read_image_timer_->Schedule(event_loop_->monotonic_now());
}
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<sift::ImageMatch>>>
CameraReader::PackImageMatches(
flatbuffers::FlatBufferBuilder *fbb,
const std::vector<std::vector<cv::DMatch>> &matches) {
// First, we need to pull out all the matches for each image. Might as well
// build up the Match tables at the same time.
std::vector<std::vector<sift::Match>> per_image_matches(
number_training_images());
for (const std::vector<cv::DMatch> &image_matches : matches) {
CHECK_GT(image_matches.size(), 0u);
// We're only using the first of the two matches
const cv::DMatch &image_match = image_matches[0];
CHECK_LT(image_match.imgIdx, number_training_images());
per_image_matches[image_match.imgIdx].emplace_back();
sift::Match *const match = &per_image_matches[image_match.imgIdx].back();
match->mutate_query_feature(image_match.queryIdx);
match->mutate_train_feature(image_match.trainIdx);
match->mutate_distance(image_match.distance);
}
// Then, we need to build up each ImageMatch table.
std::vector<flatbuffers::Offset<sift::ImageMatch>> image_match_tables;
for (size_t i = 0; i < per_image_matches.size(); ++i) {
const std::vector<sift::Match> &this_image_matches = per_image_matches[i];
if (this_image_matches.empty()) {
continue;
}
const auto vector_offset = fbb->CreateVectorOfStructs(this_image_matches);
sift::ImageMatch::Builder image_builder(*fbb);
image_builder.add_train_image(i);
image_builder.add_matches(vector_offset);
image_match_tables.emplace_back(image_builder.Finish());
}
return fbb->CreateVector(image_match_tables);
}
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<sift::Feature>>>
CameraReader::PackFeatures(flatbuffers::FlatBufferBuilder *fbb,
const std::vector<cv::KeyPoint> &keypoints,
const cv::Mat &descriptors) {
const int number_features = keypoints.size();
CHECK_EQ(descriptors.rows, number_features);
if (number_features != 0) {
CHECK_EQ(descriptors.cols, 128);
}
std::vector<flatbuffers::Offset<sift::Feature>> features_vector(
number_features);
for (int i = 0; i < number_features; ++i) {
const auto submat =
descriptors(cv::Range(i, i + 1), cv::Range(0, descriptors.cols));
CHECK(submat.isContinuous());
flatbuffers::Offset<flatbuffers::Vector<uint8_t>> descriptor_offset;
{
uint8_t *data;
descriptor_offset = fbb->CreateUninitializedVector(128, &data);
submat.convertTo(
cv::Mat(1, descriptors.cols, CV_8U, static_cast<void *>(data)),
CV_8U);
}
sift::Feature::Builder feature_builder(*fbb);
feature_builder.add_descriptor(descriptor_offset);
feature_builder.add_x(keypoints[i].pt.x);
feature_builder.add_y(keypoints[i].pt.y);
feature_builder.add_size(keypoints[i].size);
feature_builder.add_angle(keypoints[i].angle);
feature_builder.add_response(keypoints[i].response);
feature_builder.add_octave(keypoints[i].octave);
CHECK_EQ(-1, keypoints[i].class_id)
<< ": Not sure what to do with a class id";
features_vector[i] = feature_builder.Finish();
}
return fbb->CreateVector(features_vector);
}
} // namespace frc971::vision