blob: 52c1928d960dec96b0cac0572136ec1dd71ed636 [file] [log] [blame]
#!/usr/bin/python
import control_loop
import controls
import polytope
import polydrivetrain
import numpy
import math
import sys
import matplotlib
from matplotlib import pylab
class Arm(control_loop.ControlLoop):
def __init__(self, name="Arm", mass=None):
super(Arm, self).__init__(name)
# Stall Torque in N m
self.stall_torque = 0.476
# Stall Current in Amps
self.stall_current = 80.730
# Free Speed in RPM
self.free_speed = 13906.0
# Free Current in Amps
self.free_current = 5.820
# Mass of the arm
if mass is None:
self.mass = 13.0
else:
self.mass = mass
# Resistance of the motor
self.R = 12.0 / self.stall_current
# Motor velocity constant
self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
(12.0 - self.R * self.free_current))
# Torque constant
self.Kt = self.stall_torque / self.stall_current
# Gear ratio
self.G = (44.0 / 12.0) * (54.0 / 14.0) * (54.0 / 14.0) * (44.0 / 20.0) * (72.0 / 16.0)
# Fridge arm length
self.r = 32 * 0.0254
# Control loop time step
self.dt = 0.005
# Arm moment of inertia
self.J = self.r * self.mass
# Arm left/right spring constant (N*m / radian)
self.spring = 100.0
# State is [average position, average velocity,
# position difference/2, velocity difference/2]
# Position difference is 1 - 2
# Input is [Voltage 1, Voltage 2]
self.C1 = self.spring / (self.J * 0.5)
self.C2 = self.Kt * self.G / (self.J * 0.5 * self.R)
self.C3 = self.G * self.G * self.Kt / (self.R * self.J * 0.5 * self.Kv)
self.A_continuous = numpy.matrix(
[[0, 1, 0, 0],
[0, -self.C3, 0, 0],
[0, 0, 0, 1],
[0, 0, -self.C1 * 2.0, -self.C3]])
print 'Full speed is', self.C2 / self.C3 * 12.0
print 'Stall arm difference is', 12.0 * self.C2 / self.C1
print 'Stall arm difference first principles is', self.stall_torque * self.G / self.spring
print '5 degrees of arm error is', self.spring / self.r * (math.pi * 5.0 / 180.0)
# Start with the unmodified input
self.B_continuous = numpy.matrix(
[[0, 0],
[self.C2 / 2.0, self.C2 / 2.0],
[0, 0],
[self.C2 / 2.0, -self.C2 / 2.0]])
self.C = numpy.matrix([[1, 0, 1, 0],
[1, 0, -1, 0]])
self.D = numpy.matrix([[0, 0],
[0, 0]])
self.A, self.B = self.ContinuousToDiscrete(
self.A_continuous, self.B_continuous, self.dt)
controlability = controls.ctrb(self.A, self.B)
print 'Rank of augmented controlability matrix.', numpy.linalg.matrix_rank(
controlability)
q_pos = 0.02
q_vel = 0.300
q_pos_diff = 0.005
q_vel_diff = 0.13
self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0],
[0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0],
[0.0, 0.0, (1.0 / (q_pos_diff ** 2.0)), 0.0],
[0.0, 0.0, 0.0, (1.0 / (q_vel_diff ** 2.0))]])
self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
[0.0, 1.0 / (12.0 ** 2.0)]])
self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
print 'Controller'
print self.K
print 'Controller Poles'
print numpy.linalg.eig(self.A - self.B * self.K)[0]
self.rpl = 0.20
self.ipl = 0.05
self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
self.rpl + 1j * self.ipl,
self.rpl - 1j * self.ipl,
self.rpl - 1j * self.ipl])
# The box formed by U_min and U_max must encompass all possible values,
# or else Austin's code gets angry.
self.U_max = numpy.matrix([[12.0], [12.0]])
self.U_min = numpy.matrix([[-12.0], [-12.0]])
print 'Observer (Converted to a KF)', numpy.linalg.inv(self.A) * self.L
self.InitializeState()
class IntegralArm(Arm):
def __init__(self, name="IntegralArm", mass=None):
super(IntegralArm, self).__init__(name=name, mass=mass)
self.A_continuous_unaugmented = self.A_continuous
self.A_continuous = numpy.matrix(numpy.zeros((5, 5)))
self.A_continuous[0:4, 0:4] = self.A_continuous_unaugmented
self.A_continuous[1, 4] = self.C2
# Start with the unmodified input
self.B_continuous_unaugmented = self.B_continuous
self.B_continuous = numpy.matrix(numpy.zeros((5, 2)))
self.B_continuous[0:4, 0:2] = self.B_continuous_unaugmented
self.C_unaugmented = self.C
self.C = numpy.matrix(numpy.zeros((2, 5)))
self.C[0:2, 0:4] = self.C_unaugmented
self.A, self.B = self.ContinuousToDiscrete(
self.A_continuous, self.B_continuous, self.dt)
print 'A cont', self.A_continuous
print 'B cont', self.B_continuous
print 'A discrete', self.A
q_pos = 0.08
q_vel = 0.40
q_pos_diff = 0.08
q_vel_diff = 0.40
q_voltage = 6.0
self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0],
[0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0],
[0.0, 0.0, (q_pos_diff ** 2.0), 0.0, 0.0],
[0.0, 0.0, 0.0, (q_vel_diff ** 2.0), 0.0],
[0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0)]])
r_volts = 0.05
self.R = numpy.matrix([[(r_volts ** 2.0), 0.0],
[0.0, (r_volts ** 2.0)]])
self.KalmanGain, self.Q_steady = controls.kalman(
A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
self.U_max = numpy.matrix([[12.0], [12.0]])
self.U_min = numpy.matrix([[-12.0], [-12.0]])
self.K_unaugmented = self.K
self.K = numpy.matrix(numpy.zeros((2, 5)))
self.K[0:2, 0:4] = self.K_unaugmented
self.K[0, 4] = 1
self.K[1, 4] = 1
print 'Kal', self.KalmanGain
self.L = self.A * self.KalmanGain
self.InitializeState()
def CapU(U):
if U[0, 0] - U[1, 0] > 24:
return numpy.matrix([[12], [-12]])
elif U[0, 0] - U[1, 0] < -24:
return numpy.matrix([[-12], [12]])
else:
max_u = max(U[0, 0], U[1, 0])
min_u = min(U[0, 0], U[1, 0])
if max_u > 12:
return U - (max_u - 12)
if min_u < -12:
return U - (min_u + 12)
return U
def run_test(arm, initial_X, goal, max_separation_error=0.01,
show_graph=True, iterations=200, controller_arm=None,
observer_arm=None):
"""Runs the arm plant with an initial condition and goal.
The tests themselves are not terribly sophisticated; I just test for
whether the goal has been reached and whether the separation goes
outside of the initial and goal values by more than max_separation_error.
Prints out something for a failure of either condition and returns
False if tests fail.
Args:
arm: arm object to use.
initial_X: starting state.
goal: goal state.
show_graph: Whether or not to display a graph showing the changing
states and voltages.
iterations: Number of timesteps to run the model for.
controller_arm: arm object to get K from, or None if we should
use arm.
observer_arm: arm object to use for the observer, or None if we should
use the actual state.
"""
arm.X = initial_X
if controller_arm is None:
controller_arm = arm
if observer_arm is not None:
observer_arm.X_hat = initial_X + 0.01
observer_arm.X_hat = initial_X
# Various lists for graphing things.
t = []
x_avg = []
x_sep = []
x_hat_avg = []
x_hat_sep = []
v_avg = []
v_sep = []
u_left = []
u_right = []
sep_plot_gain = 100.0
for i in xrange(iterations):
X_hat = arm.X
if observer_arm is not None:
X_hat = observer_arm.X_hat
x_hat_avg.append(observer_arm.X_hat[0, 0])
x_hat_sep.append(observer_arm.X_hat[2, 0] * sep_plot_gain)
U = controller_arm.K * (goal - X_hat)
U = CapU(U)
x_avg.append(arm.X[0, 0])
v_avg.append(arm.X[1, 0])
x_sep.append(arm.X[2, 0] * sep_plot_gain)
v_sep.append(arm.X[3, 0])
if observer_arm is not None:
observer_arm.PredictObserver(U)
arm.Update(U)
if observer_arm is not None:
observer_arm.Y = arm.Y
observer_arm.CorrectObserver(U)
t.append(i * arm.dt)
u_left.append(U[0, 0])
u_right.append(U[1, 0])
print numpy.linalg.inv(arm.A)
print "delta time is ", arm.dt
print "Velocity at t=0 is ", x_avg[0], v_avg[0], x_sep[0], v_sep[0]
print "Velocity at t=1+dt is ", x_avg[1], v_avg[1], x_sep[1], v_sep[1]
if show_graph:
pylab.subplot(2, 1, 1)
pylab.plot(t, x_avg, label='x avg')
pylab.plot(t, x_sep, label='x sep')
if observer_arm is not None:
pylab.plot(t, x_hat_avg, label='x_hat avg')
pylab.plot(t, x_hat_sep, label='x_hat sep')
pylab.legend()
pylab.subplot(2, 1, 2)
pylab.plot(t, u_left, label='u left')
pylab.plot(t, u_right, label='u right')
pylab.legend()
pylab.show()
def run_integral_test(arm, initial_X, goal, observer_arm, disturbance,
max_separation_error=0.01, show_graph=True,
iterations=400):
"""Runs the integral control arm plant with an initial condition and goal.
The tests themselves are not terribly sophisticated; I just test for
whether the goal has been reached and whether the separation goes
outside of the initial and goal values by more than max_separation_error.
Prints out something for a failure of either condition and returns
False if tests fail.
Args:
arm: arm object to use.
initial_X: starting state.
goal: goal state.
observer_arm: arm object to use for the observer.
show_graph: Whether or not to display a graph showing the changing
states and voltages.
iterations: Number of timesteps to run the model for.
disturbance: Voltage missmatch between controller and model.
"""
arm.X = initial_X
# Various lists for graphing things.
t = []
x_avg = []
x_sep = []
x_hat_avg = []
x_hat_sep = []
v_avg = []
v_sep = []
u_left = []
u_right = []
u_error = []
sep_plot_gain = 100.0
unaugmented_goal = goal
goal = numpy.matrix(numpy.zeros((5, 1)))
goal[0:4, 0] = unaugmented_goal
for i in xrange(iterations):
X_hat = observer_arm.X_hat[0:4]
x_hat_avg.append(observer_arm.X_hat[0, 0])
x_hat_sep.append(observer_arm.X_hat[2, 0] * sep_plot_gain)
U = observer_arm.K * (goal - observer_arm.X_hat)
u_error.append(observer_arm.X_hat[4,0])
U = CapU(U)
x_avg.append(arm.X[0, 0])
v_avg.append(arm.X[1, 0])
x_sep.append(arm.X[2, 0] * sep_plot_gain)
v_sep.append(arm.X[3, 0])
observer_arm.PredictObserver(U)
arm.Update(U + disturbance)
observer_arm.Y = arm.Y
observer_arm.CorrectObserver(U)
t.append(i * arm.dt)
u_left.append(U[0, 0])
u_right.append(U[1, 0])
print 'End is', observer_arm.X_hat[4, 0]
if show_graph:
pylab.subplot(2, 1, 1)
pylab.plot(t, x_avg, label='x avg')
pylab.plot(t, x_sep, label='x sep')
if observer_arm is not None:
pylab.plot(t, x_hat_avg, label='x_hat avg')
pylab.plot(t, x_hat_sep, label='x_hat sep')
pylab.legend()
pylab.subplot(2, 1, 2)
pylab.plot(t, u_left, label='u left')
pylab.plot(t, u_right, label='u right')
pylab.plot(t, u_error, label='u error')
pylab.legend()
pylab.show()
def main(argv):
loaded_mass = 25
#loaded_mass = 0
arm = Arm(mass=13 + loaded_mass)
#arm_controller = Arm(mass=13 + 15)
#observer_arm = Arm(mass=13 + 15)
#observer_arm = None
integral_arm = IntegralArm(mass=13 + loaded_mass)
integral_arm.X_hat[0, 0] += 0.02
integral_arm.X_hat[2, 0] += 0.02
integral_arm.X_hat[4] = 0
# Test moving the arm with constant separation.
initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
R = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
run_integral_test(arm, initial_X, R, integral_arm, disturbance=2)
# Write the generated constants out to a file.
if len(argv) != 5:
print "Expected .h file name and .cc file name for the arm and augmented arm."
else:
arm = Arm("Arm", mass=13)
loop_writer = control_loop.ControlLoopWriter("Arm", [arm])
if argv[1][-3:] == '.cc':
loop_writer.Write(argv[2], argv[1])
else:
loop_writer.Write(argv[1], argv[2])
integral_arm = IntegralArm("IntegralArm", mass=13)
loop_writer = control_loop.ControlLoopWriter("IntegralArm", [integral_arm])
if argv[3][-3:] == '.cc':
loop_writer.Write(argv[4], argv[3])
else:
loop_writer.Write(argv[3], argv[4])
if __name__ == '__main__':
sys.exit(main(sys.argv))