blob: 07988240d84b1655ec7db0850bdaf5a7b86cb1aa [file] [log] [blame]
#include "y2016/control_loops/superstructure/superstructure_controls.h"
#include "aos/common/controls/control_loops.q.h"
#include "aos/common/logging/logging.h"
#include "y2016/control_loops/superstructure/integral_intake_plant.h"
#include "y2016/control_loops/superstructure/integral_arm_plant.h"
#include "y2016/constants.h"
namespace y2016 {
namespace control_loops {
namespace superstructure {
using ::frc971::PotAndIndexPosition;
using ::frc971::EstimatorState;
namespace {
double UseUnlessZero(double target_value, double default_value) {
if (target_value != 0.0) {
return target_value;
} else {
return default_value;
}
}
} // namespace
// Intake
Intake::Intake()
: loop_(new ::frc971::control_loops::SimpleCappedStateFeedbackLoop<3, 1, 1>(
::y2016::control_loops::superstructure::MakeIntegralIntakeLoop())),
estimator_(constants::GetValues().intake.zeroing),
profile_(::aos::controls::kLoopFrequency) {
Y_.setZero();
unprofiled_goal_.setZero();
offset_.setZero();
AdjustProfile(0.0, 0.0);
}
void Intake::UpdateIntakeOffset(double offset) {
const double doffset = offset - offset_(0, 0);
LOG(INFO, "Adjusting Intake offset from %f to %f\n", offset_(0, 0), offset);
loop_->mutable_X_hat()(0, 0) += doffset;
Y_(0, 0) += doffset;
loop_->mutable_R(0, 0) += doffset;
profile_.MoveGoal(doffset);
offset_(0, 0) = offset;
CapGoal("R", &loop_->mutable_R());
}
void Intake::Correct(PotAndIndexPosition position) {
estimator_.UpdateEstimate(position);
if (estimator_.error()) {
LOG(ERROR, "zeroing error with intake_estimator\n");
return;
}
if (!initialized_) {
if (estimator_.offset_ready()) {
UpdateIntakeOffset(estimator_.offset());
initialized_ = true;
}
}
if (!zeroed_ && estimator_.zeroed()) {
UpdateIntakeOffset(estimator_.offset());
zeroed_ = true;
}
Y_ << position.encoder;
Y_ += offset_;
loop_->Correct(Y_);
}
void Intake::CapGoal(const char *name, Eigen::Matrix<double, 3, 1> *goal) {
// Limit the goal to min/max allowable angles.
if ((*goal)(0, 0) > constants::Values::kIntakeRange.upper) {
LOG(WARNING, "Intake goal %s above limit, %f > %f\n", name, (*goal)(0, 0),
constants::Values::kIntakeRange.upper);
(*goal)(0, 0) = constants::Values::kIntakeRange.upper;
}
if ((*goal)(0, 0) < constants::Values::kIntakeRange.lower) {
LOG(WARNING, "Intake goal %s below limit, %f < %f\n", name, (*goal)(0, 0),
constants::Values::kIntakeRange.lower);
(*goal)(0, 0) = constants::Values::kIntakeRange.lower;
}
}
void Intake::ForceGoal(double goal) {
set_unprofiled_goal(goal);
loop_->mutable_R() = unprofiled_goal_;
loop_->mutable_next_R() = loop_->R();
profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0));
}
void Intake::set_unprofiled_goal(double unprofiled_goal) {
unprofiled_goal_(0, 0) = unprofiled_goal;
unprofiled_goal_(1, 0) = 0.0;
unprofiled_goal_(2, 0) = 0.0;
CapGoal("unprofiled R", &unprofiled_goal_);
}
void Intake::Update(bool disable) {
if (!disable) {
::Eigen::Matrix<double, 2, 1> goal_state =
profile_.Update(unprofiled_goal_(0, 0), unprofiled_goal_(1, 0));
loop_->mutable_next_R(0, 0) = goal_state(0, 0);
loop_->mutable_next_R(1, 0) = goal_state(1, 0);
loop_->mutable_next_R(2, 0) = 0.0;
CapGoal("next R", &loop_->mutable_next_R());
}
loop_->Update(disable);
if (!disable && loop_->U(0, 0) != loop_->U_uncapped(0, 0)) {
profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0));
}
}
bool Intake::CheckHardLimits() {
// Returns whether hard limits have been exceeded.
if (angle() > constants::Values::kIntakeRange.upper_hard ||
angle() < constants::Values::kIntakeRange.lower_hard) {
LOG(ERROR, "Intake at %f out of bounds [%f, %f], ESTOPing\n", angle(),
constants::Values::kIntakeRange.lower_hard, constants::Values::kIntakeRange.upper_hard);
return true;
}
return false;
}
void Intake::set_max_voltage(double voltage) {
loop_->set_max_voltages(voltage);
}
void Intake::AdjustProfile(double max_angular_velocity,
double max_angular_acceleration) {
profile_.set_maximum_velocity(UseUnlessZero(max_angular_velocity, 10.0));
profile_.set_maximum_acceleration(
UseUnlessZero(max_angular_acceleration, 10.0));
}
void Intake::Reset() {
estimator_.Reset();
initialized_ = false;
zeroed_ = false;
}
EstimatorState Intake::IntakeEstimatorState() {
EstimatorState estimator_state;
::frc971::zeroing::PopulateEstimatorState(estimator_, &estimator_state);
return estimator_state;
}
Arm::Arm()
: loop_(new ::frc971::control_loops::SimpleCappedStateFeedbackLoop<6, 2, 2>(
::y2016::control_loops::superstructure::MakeIntegralArmLoop())),
shoulder_profile_(::aos::controls::kLoopFrequency),
wrist_profile_(::aos::controls::kLoopFrequency),
shoulder_estimator_(constants::GetValues().shoulder.zeroing),
wrist_estimator_(constants::GetValues().wrist.zeroing) {
Y_.setZero();
offset_.setZero();
unprofiled_goal_.setZero();
AdjustProfile(0.0, 0.0, 0.0, 0.0);
}
void Arm::UpdateWristOffset(double offset) {
const double doffset = offset - offset_(1, 0);
LOG(INFO, "Adjusting Wrist offset from %f to %f\n", offset_(1, 0), offset);
loop_->mutable_X_hat()(2, 0) += doffset;
Y_(1, 0) += doffset;
loop_->mutable_R(2, 0) += doffset;
loop_->mutable_next_R(2, 0) += doffset;
unprofiled_goal_(2, 0) += doffset;
wrist_profile_.MoveGoal(doffset);
offset_(1, 0) = offset;
CapGoal("R", &loop_->mutable_R());
CapGoal("unprofiled R", &loop_->mutable_next_R());
}
void Arm::UpdateShoulderOffset(double offset) {
const double doffset = offset - offset_(0, 0);
LOG(INFO, "Adjusting Shoulder offset from %f to %f\n", offset_(0, 0), offset);
loop_->mutable_X_hat()(0, 0) += doffset;
loop_->mutable_X_hat()(2, 0) += doffset;
Y_(0, 0) += doffset;
loop_->mutable_R(0, 0) += doffset;
loop_->mutable_R(2, 0) += doffset;
loop_->mutable_next_R(0, 0) += doffset;
loop_->mutable_next_R(2, 0) += doffset;
unprofiled_goal_(0, 0) += doffset;
unprofiled_goal_(2, 0) += doffset;
shoulder_profile_.MoveGoal(doffset);
wrist_profile_.MoveGoal(doffset);
offset_(0, 0) = offset;
CapGoal("R", &loop_->mutable_R());
CapGoal("unprofiled R", &loop_->mutable_next_R());
}
// TODO(austin): Handle zeroing errors.
void Arm::Correct(PotAndIndexPosition position_shoulder,
PotAndIndexPosition position_wrist) {
shoulder_estimator_.UpdateEstimate(position_shoulder);
wrist_estimator_.UpdateEstimate(position_wrist);
// Handle zeroing errors
if (shoulder_estimator_.error()) {
LOG(ERROR, "zeroing error with shoulder_estimator\n");
return;
}
if (wrist_estimator_.error()) {
LOG(ERROR, "zeroing error with wrist_estimator\n");
return;
}
if (!initialized_) {
if (shoulder_estimator_.offset_ready() && wrist_estimator_.offset_ready()) {
UpdateShoulderOffset(shoulder_estimator_.offset());
UpdateWristOffset(wrist_estimator_.offset());
initialized_ = true;
}
}
if (!shoulder_zeroed_ && shoulder_estimator_.zeroed()) {
UpdateShoulderOffset(shoulder_estimator_.offset());
shoulder_zeroed_ = true;
}
if (!wrist_zeroed_ && wrist_estimator_.zeroed()) {
UpdateWristOffset(wrist_estimator_.offset());
wrist_zeroed_ = true;
}
{
Y_ << position_shoulder.encoder, position_wrist.encoder;
Y_ += offset_;
loop_->Correct(Y_);
}
}
void Arm::CapGoal(const char *name, Eigen::Matrix<double, 6, 1> *goal) {
// Limit the goals to min/max allowable angles.
if ((*goal)(0, 0) > constants::Values::kShoulderRange.upper) {
LOG(WARNING, "Shoulder goal %s above limit, %f > %f\n", name, (*goal)(0, 0),
constants::Values::kShoulderRange.upper);
(*goal)(0, 0) = constants::Values::kShoulderRange.upper;
}
if ((*goal)(0, 0) < constants::Values::kShoulderRange.lower) {
LOG(WARNING, "Shoulder goal %s below limit, %f < %f\n", name, (*goal)(0, 0),
constants::Values::kShoulderRange.lower);
(*goal)(0, 0) = constants::Values::kShoulderRange.lower;
}
const double wrist_goal_angle_ungrounded = (*goal)(2, 0) - (*goal)(0, 0);
if (wrist_goal_angle_ungrounded > constants::Values::kWristRange.upper) {
LOG(WARNING, "Wrist goal %s above limit, %f > %f\n", name,
wrist_goal_angle_ungrounded, constants::Values::kWristRange.upper);
(*goal)(2, 0) = constants::Values::kWristRange.upper + (*goal)(0, 0);
}
if (wrist_goal_angle_ungrounded < constants::Values::kWristRange.lower) {
LOG(WARNING, "Wrist goal %s below limit, %f < %f\n", name,
wrist_goal_angle_ungrounded, constants::Values::kWristRange.lower);
(*goal)(2, 0) = constants::Values::kWristRange.lower + (*goal)(0, 0);
}
}
void Arm::ForceGoal(double goal_shoulder, double goal_wrist) {
set_unprofiled_goal(goal_shoulder, goal_wrist);
loop_->mutable_R() = unprofiled_goal_;
loop_->mutable_next_R() = loop_->R();
shoulder_profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0));
wrist_profile_.MoveCurrentState(loop_->R().block<2, 1>(2, 0));
}
void Arm::set_unprofiled_goal(double unprofiled_goal_shoulder,
double unprofiled_goal_wrist) {
unprofiled_goal_ << unprofiled_goal_shoulder, 0.0, unprofiled_goal_wrist, 0.0,
0.0, 0.0;
CapGoal("unprofiled R", &unprofiled_goal_);
}
void Arm::AdjustProfile(double max_angular_velocity_shoulder,
double max_angular_acceleration_shoulder,
double max_angular_velocity_wrist,
double max_angular_acceleration_wrist) {
shoulder_profile_.set_maximum_velocity(
UseUnlessZero(max_angular_velocity_shoulder, 10.0));
shoulder_profile_.set_maximum_acceleration(
UseUnlessZero(max_angular_acceleration_shoulder, 10.0));
wrist_profile_.set_maximum_velocity(
UseUnlessZero(max_angular_velocity_wrist, 10.0));
wrist_profile_.set_maximum_acceleration(
UseUnlessZero(max_angular_acceleration_wrist, 10.0));
}
bool Arm::CheckHardLimits() {
if (shoulder_angle() > constants::Values::kShoulderRange.upper_hard ||
shoulder_angle() < constants::Values::kShoulderRange.lower_hard) {
LOG(ERROR, "Shoulder at %f out of bounds [%f, %f], ESTOPing\n",
shoulder_angle(), constants::Values::kShoulderRange.lower_hard,
constants::Values::kShoulderRange.upper_hard);
return true;
}
if (wrist_angle() - shoulder_angle() > constants::Values::kWristRange.upper_hard ||
wrist_angle() - shoulder_angle() < constants::Values::kWristRange.lower_hard) {
LOG(ERROR, "Wrist at %f out of bounds [%f, %f], ESTOPing\n",
wrist_angle() - shoulder_angle(), constants::Values::kWristRange.lower_hard,
constants::Values::kWristRange.upper_hard);
return true;
}
return false;
}
void Arm::Update(bool disable) {
if (!disable) {
// Compute next goal.
::Eigen::Matrix<double, 2, 1> goal_state_shoulder =
shoulder_profile_.Update(unprofiled_goal_(0, 0),
unprofiled_goal_(1, 0));
loop_->mutable_next_R(0, 0) = goal_state_shoulder(0, 0);
loop_->mutable_next_R(1, 0) = goal_state_shoulder(1, 0);
::Eigen::Matrix<double, 2, 1> goal_state_wrist =
wrist_profile_.Update(unprofiled_goal_(2, 0), unprofiled_goal_(3, 0));
loop_->mutable_next_R(2, 0) = goal_state_wrist(0, 0);
loop_->mutable_next_R(3, 0) = goal_state_wrist(1, 0);
loop_->mutable_next_R(4, 0) = unprofiled_goal_(4, 0);
loop_->mutable_next_R(5, 0) = unprofiled_goal_(5, 0);
CapGoal("next R", &loop_->mutable_next_R());
}
// Move loop
loop_->Update(disable);
// Shoulder saturated
if (!disable && loop_->U(0, 0) != loop_->U_uncapped(0, 0)) {
shoulder_profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0));
}
// Wrist saturated
if (!disable && loop_->U(1, 0) != loop_->U_uncapped(1, 0)) {
wrist_profile_.MoveCurrentState(loop_->R().block<2, 1>(2, 0));
}
}
void Arm::set_max_voltage(double shoulder_max_voltage,
double wrist_max_voltage) {
loop_->set_max_voltages(shoulder_max_voltage, wrist_max_voltage);
}
void Arm::Reset() {
shoulder_estimator_.Reset();
wrist_estimator_.Reset();
initialized_ = false;
shoulder_zeroed_ = false;
wrist_zeroed_ = false;
}
EstimatorState Arm::ShoulderEstimatorState() {
EstimatorState estimator_state;
::frc971::zeroing::PopulateEstimatorState(shoulder_estimator_,
&estimator_state);
return estimator_state;
}
EstimatorState Arm::WristEstimatorState() {
EstimatorState estimator_state;
::frc971::zeroing::PopulateEstimatorState(wrist_estimator_, &estimator_state);
return estimator_state;
}
} // namespace superstructure
} // namespace control_loops
} // namespace y2016