blob: d6bd85fca2fd78f37f8a6896f9b1d9bd1452007e [file] [log] [blame]
import controls
import numpy
import os
class Constant(object):
def __init__ (self, name, formatt, value):
self.name = name
self.formatt = formatt
self.value = value
self.formatToType = {}
self.formatToType['%f'] = "double"
self.formatToType['%d'] = "int"
def __str__ (self):
return str("\nstatic constexpr %s %s = "+ self.formatt +";\n") % \
(self.formatToType[self.formatt], self.name, self.value)
class ControlLoopWriter(object):
def __init__(self, gain_schedule_name, loops, namespaces=None, write_constants=False):
"""Constructs a control loop writer.
Args:
gain_schedule_name: string, Name of the overall controller.
loops: array[ControlLoop], a list of control loops to gain schedule
in order.
namespaces: array[string], a list of names of namespaces to nest in
order. If None, the default will be used.
"""
self._gain_schedule_name = gain_schedule_name
self._loops = loops
if namespaces:
self._namespaces = namespaces
else:
self._namespaces = ['frc971', 'control_loops']
self._namespace_start = '\n'.join(
['namespace %s {' % name for name in self._namespaces])
self._namespace_end = '\n'.join(
['} // namespace %s' % name for name in reversed(self._namespaces)])
self._constant_list = []
def AddConstant(self, constant):
"""Adds a constant to write.
Args:
constant: Constant, the constant to add to the header.
"""
self._constant_list.append(constant)
def _TopDirectory(self):
return self._namespaces[0]
def _HeaderGuard(self, header_file):
return ('_'.join([namespace.upper() for namespace in self._namespaces]) + '_' +
os.path.basename(header_file).upper()
.replace('.', '_').replace('/', '_') + '_')
def Write(self, header_file, cc_file):
"""Writes the loops to the specified files."""
self.WriteHeader(header_file)
self.WriteCC(os.path.basename(header_file), cc_file)
def _GenericType(self, typename):
"""Returns a loop template using typename for the type."""
num_states = self._loops[0].A.shape[0]
num_inputs = self._loops[0].B.shape[1]
num_outputs = self._loops[0].C.shape[0]
return '%s<%d, %d, %d>' % (
typename, num_states, num_inputs, num_outputs)
def _ControllerType(self):
"""Returns a template name for StateFeedbackController."""
return self._GenericType('StateFeedbackController')
def _LoopType(self):
"""Returns a template name for StateFeedbackLoop."""
return self._GenericType('StateFeedbackLoop')
def _PlantType(self):
"""Returns a template name for StateFeedbackPlant."""
return self._GenericType('StateFeedbackPlant')
def _CoeffType(self):
"""Returns a template name for StateFeedbackPlantCoefficients."""
return self._GenericType('StateFeedbackPlantCoefficients')
def WriteHeader(self, header_file, double_appendage=False, MoI_ratio=0.0):
"""Writes the header file to the file named header_file.
Set double_appendage to true in order to include a ratio of
moments of inertia constant. Currently, only used for 2014 claw."""
with open(header_file, 'w') as fd:
header_guard = self._HeaderGuard(header_file)
fd.write('#ifndef %s\n'
'#define %s\n\n' % (header_guard, header_guard))
fd.write('#include \"frc971/control_loops/state_feedback_loop.h\"\n')
fd.write('\n')
fd.write(self._namespace_start)
for const in self._constant_list:
fd.write(str(const))
fd.write('\n\n')
for loop in self._loops:
fd.write(loop.DumpPlantHeader())
fd.write('\n')
fd.write(loop.DumpControllerHeader())
fd.write('\n')
fd.write('%s Make%sPlant();\n\n' %
(self._PlantType(), self._gain_schedule_name))
fd.write('%s Make%sLoop();\n\n' %
(self._LoopType(), self._gain_schedule_name))
fd.write(self._namespace_end)
fd.write('\n\n')
fd.write("#endif // %s\n" % header_guard)
def WriteCC(self, header_file_name, cc_file):
"""Writes the cc file to the file named cc_file."""
with open(cc_file, 'w') as fd:
fd.write('#include \"%s/%s\"\n' %
(os.path.join(*self._namespaces), header_file_name))
fd.write('\n')
fd.write('#include <vector>\n')
fd.write('\n')
fd.write('#include \"frc971/control_loops/state_feedback_loop.h\"\n')
fd.write('\n')
fd.write(self._namespace_start)
fd.write('\n\n')
for loop in self._loops:
fd.write(loop.DumpPlant())
fd.write('\n')
for loop in self._loops:
fd.write(loop.DumpController())
fd.write('\n')
fd.write('%s Make%sPlant() {\n' %
(self._PlantType(), self._gain_schedule_name))
fd.write(' ::std::vector< ::std::unique_ptr<%s>> plants(%d);\n' % (
self._CoeffType(), len(self._loops)))
for index, loop in enumerate(self._loops):
fd.write(' plants[%d] = ::std::unique_ptr<%s>(new %s(%s));\n' %
(index, self._CoeffType(), self._CoeffType(),
loop.PlantFunction()))
fd.write(' return %s(&plants);\n' % self._PlantType())
fd.write('}\n\n')
fd.write('%s Make%sLoop() {\n' %
(self._LoopType(), self._gain_schedule_name))
fd.write(' ::std::vector< ::std::unique_ptr<%s>> controllers(%d);\n' % (
self._ControllerType(), len(self._loops)))
for index, loop in enumerate(self._loops):
fd.write(' controllers[%d] = ::std::unique_ptr<%s>(new %s(%s));\n' %
(index, self._ControllerType(), self._ControllerType(),
loop.ControllerFunction()))
fd.write(' return %s(&controllers);\n' % self._LoopType())
fd.write('}\n\n')
fd.write(self._namespace_end)
fd.write('\n')
class ControlLoop(object):
def __init__(self, name):
"""Constructs a control loop object.
Args:
name: string, The name of the loop to use when writing the C++ files.
"""
self._name = name
def ContinuousToDiscrete(self, A_continuous, B_continuous, dt):
"""Calculates the discrete time values for A and B.
Args:
A_continuous: numpy.matrix, The continuous time A matrix
B_continuous: numpy.matrix, The continuous time B matrix
dt: float, The time step of the control loop
Returns:
(A, B), numpy.matrix, the control matricies.
"""
return controls.c2d(A_continuous, B_continuous, dt)
def InitializeState(self):
"""Sets X, Y, and X_hat to zero defaults."""
self.X = numpy.zeros((self.A.shape[0], 1))
self.Y = self.C * self.X
self.X_hat = numpy.zeros((self.A.shape[0], 1))
def PlaceControllerPoles(self, poles):
"""Places the controller poles.
Args:
poles: array, An array of poles. Must be complex conjegates if they have
any imaginary portions.
"""
self.K = controls.dplace(self.A, self.B, poles)
def PlaceObserverPoles(self, poles):
"""Places the observer poles.
Args:
poles: array, An array of poles. Must be complex conjegates if they have
any imaginary portions.
"""
self.L = controls.dplace(self.A.T, self.C.T, poles).T
def Update(self, U):
"""Simulates one time step with the provided U."""
#U = numpy.clip(U, self.U_min, self.U_max)
self.X = self.A * self.X + self.B * U
self.Y = self.C * self.X + self.D * U
def PredictObserver(self, U):
"""Runs the predict step of the observer update."""
self.X_hat = (self.A * self.X_hat + self.B * U)
def CorrectObserver(self, U):
"""Runs the correct step of the observer update."""
self.X_hat += numpy.linalg.inv(self.A) * self.L * (
self.Y - self.C * self.X_hat - self.D * U)
def UpdateObserver(self, U):
"""Updates the observer given the provided U."""
self.X_hat = (self.A * self.X_hat + self.B * U +
self.L * (self.Y - self.C * self.X_hat - self.D * U))
def _DumpMatrix(self, matrix_name, matrix):
"""Dumps the provided matrix into a variable called matrix_name.
Args:
matrix_name: string, The variable name to save the matrix to.
matrix: The matrix to dump.
Returns:
string, The C++ commands required to populate a variable named matrix_name
with the contents of matrix.
"""
ans = [' Eigen::Matrix<double, %d, %d> %s;\n' % (
matrix.shape[0], matrix.shape[1], matrix_name)]
for x in xrange(matrix.shape[0]):
for y in xrange(matrix.shape[1]):
ans.append(' %s(%d, %d) = %s;\n' % (matrix_name, x, y, repr(matrix[x, y])))
return ''.join(ans)
def DumpPlantHeader(self):
"""Writes out a c++ header declaration which will create a Plant object.
Returns:
string, The header declaration for the function.
"""
num_states = self.A.shape[0]
num_inputs = self.B.shape[1]
num_outputs = self.C.shape[0]
return 'StateFeedbackPlantCoefficients<%d, %d, %d> Make%sPlantCoefficients();\n' % (
num_states, num_inputs, num_outputs, self._name)
def DumpPlant(self):
"""Writes out a c++ function which will create a PlantCoefficients object.
Returns:
string, The function which will create the object.
"""
num_states = self.A.shape[0]
num_inputs = self.B.shape[1]
num_outputs = self.C.shape[0]
ans = ['StateFeedbackPlantCoefficients<%d, %d, %d>'
' Make%sPlantCoefficients() {\n' % (
num_states, num_inputs, num_outputs, self._name)]
ans.append(self._DumpMatrix('A', self.A))
ans.append(self._DumpMatrix('B', self.B))
ans.append(self._DumpMatrix('C', self.C))
ans.append(self._DumpMatrix('D', self.D))
ans.append(self._DumpMatrix('U_max', self.U_max))
ans.append(self._DumpMatrix('U_min', self.U_min))
ans.append(' return StateFeedbackPlantCoefficients<%d, %d, %d>'
'(A, B, C, D, U_max, U_min);\n' % (num_states, num_inputs,
num_outputs))
ans.append('}\n')
return ''.join(ans)
def PlantFunction(self):
"""Returns the name of the plant coefficient function."""
return 'Make%sPlantCoefficients()' % self._name
def ControllerFunction(self):
"""Returns the name of the controller function."""
return 'Make%sController()' % self._name
def DumpControllerHeader(self):
"""Writes out a c++ header declaration which will create a Controller object.
Returns:
string, The header declaration for the function.
"""
num_states = self.A.shape[0]
num_inputs = self.B.shape[1]
num_outputs = self.C.shape[0]
return 'StateFeedbackController<%d, %d, %d> %s;\n' % (
num_states, num_inputs, num_outputs, self.ControllerFunction())
def DumpController(self):
"""Returns a c++ function which will create a Controller object.
Returns:
string, The function which will create the object.
"""
num_states = self.A.shape[0]
num_inputs = self.B.shape[1]
num_outputs = self.C.shape[0]
ans = ['StateFeedbackController<%d, %d, %d> %s {\n' % (
num_states, num_inputs, num_outputs, self.ControllerFunction())]
ans.append(self._DumpMatrix('L', self.L))
ans.append(self._DumpMatrix('K', self.K))
if not hasattr(self, 'Kff'):
self.Kff = numpy.matrix(numpy.zeros(self.K.shape))
ans.append(self._DumpMatrix('Kff', self.Kff))
ans.append(self._DumpMatrix('A_inv', numpy.linalg.inv(self.A)))
ans.append(' return StateFeedbackController<%d, %d, %d>'
'(L, K, Kff, A_inv, Make%sPlantCoefficients());\n' % (
num_states, num_inputs, num_outputs, self._name))
ans.append('}\n')
return ''.join(ans)