blob: 8585514e66d70e8a86b31bc81e293e3e34a2107f [file] [log] [blame]
#ifndef y2020_CONSTANTS_H_
#define y2020_CONSTANTS_H_
#include <array>
#include <cmath>
#include <cstdint>
#include "frc971/constants.h"
#include "frc971/control_loops/static_zeroing_single_dof_profiled_subsystem.h"
#include "frc971/shooter_interpolation/interpolation.h"
#include "y2020/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
#include "y2020/control_loops/superstructure/accelerator/accelerator_plant.h"
#include "y2020/control_loops/superstructure/control_panel/control_panel_plant.h"
#include "y2020/control_loops/superstructure/finisher/finisher_plant.h"
#include "y2020/control_loops/superstructure/hood/hood_plant.h"
#include "y2020/control_loops/superstructure/intake/intake_plant.h"
#include "y2020/control_loops/superstructure/turret/turret_plant.h"
using ::frc971::shooter_interpolation::InterpolationTable;
namespace y2020 {
namespace constants {
struct Values {
static const uint16_t kCodingRobotTeamNumber = 7971;
static const int kZeroingSampleSize = 200;
static constexpr double kDrivetrainCyclesPerRevolution() { return 512.0; }
static constexpr double kDrivetrainEncoderCountsPerRevolution() {
return kDrivetrainCyclesPerRevolution() * 4;
}
static constexpr double kDrivetrainEncoderRatio() { return 1.0; }
static constexpr double kMaxDrivetrainEncoderPulsesPerSecond() {
return control_loops::drivetrain::kFreeSpeed / (2.0 * M_PI) *
control_loops::drivetrain::kHighGearRatio /
constants::Values::kDrivetrainEncoderRatio() *
kDrivetrainEncoderCountsPerRevolution();
}
// Hood
static constexpr double kHoodEncoderCountsPerRevolution() { return 4096.0; }
static constexpr double kHoodEncoderRatio() {
// TODO: This math is not quite right
// 10.211 in of travel gets you 1 radian on the output
const double radians_per_in_travel = 1.0 / 10.211;
// one turn on the leadscrew gets you 0.5 in travel
const double in_travel_per_radian = 0.5 / (2.0 * M_PI);
// units reduce; radians on the encoder * this number = radians on the hood
return in_travel_per_radian * radians_per_in_travel;
}
static constexpr double kHoodSingleTurnEncoderRatio() { return 8.0 / 72.0; }
static constexpr double kMaxHoodEncoderPulsesPerSecond() {
return control_loops::superstructure::hood::kFreeSpeed / (2.0 * M_PI) *
control_loops::superstructure::hood::kOutputRatio /
kHoodEncoderRatio() * kHoodEncoderCountsPerRevolution();
}
static constexpr ::frc971::constants::Range kHoodRange() {
return ::frc971::constants::Range{
-0.01, // Back Hard
0.65, // Front Hard
0.00, // Back Soft
0.63 // Front Soft
};
}
::frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystemParams<
::frc971::zeroing::AbsoluteAndAbsoluteEncoderZeroingEstimator>
hood;
// Intake
static constexpr double kIntakeEncoderCountsPerRevolution() { return 4096.0; }
static constexpr double kIntakeEncoderRatio() { return (16.0 / 32.0); }
static constexpr double kMaxIntakeEncoderPulsesPerSecond() {
return control_loops::superstructure::intake::kFreeSpeed / (2.0 * M_PI) *
control_loops::superstructure::intake::kOutputRatio /
kIntakeEncoderRatio() * kIntakeEncoderCountsPerRevolution();
}
static constexpr ::frc971::constants::Range kIntakeRange() {
return ::frc971::constants::Range{
-1.05, // Back Hard
1.44, // Front Hard
-0.89, // Back Soft
1.26 // Front Soft
};
}
static constexpr double kIntakeZero() { return -57 * M_PI / 180.0; }
::frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystemParams<
::frc971::zeroing::AbsoluteEncoderZeroingEstimator>
intake;
static constexpr double kIntakeRollerSupplyCurrentLimit() { return 30.0; }
static constexpr double kIntakeRollerStatorCurrentLimit() { return 40.0; }
static constexpr double kFeederSupplyCurrentLimit() { return 40.0; }
static constexpr double kFeederStatorCurrentLimit() { return 50.0; }
// Turret
static constexpr double kTurretEncoderCountsPerRevolution() { return 4096.0; }
static constexpr double kTurretEncoderRatio() {
return (26.0 / 150.0) * (130.0 / 26.0);
}
static constexpr double kMaxTurretEncoderPulsesPerSecond() {
return control_loops::superstructure::turret::kFreeSpeed / (2.0 * M_PI) *
control_loops::superstructure::turret::kOutputRatio /
kTurretEncoderRatio() * kTurretEncoderCountsPerRevolution();
}
static constexpr double kTurretPotRatio() { return (26.0 / 150.0); }
static constexpr ::frc971::constants::Range kTurretRange() {
return ::frc971::constants::Range{
-4.6, // Back Hard
4.85, // Front Hard
-4.3, // Back Soft
4.7123 // Front Soft
};
}
struct PotAndAbsEncoderConstants {
::frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystemParams<
::frc971::zeroing::PotAndAbsoluteEncoderZeroingEstimator>
subsystem_params;
double potentiometer_offset;
};
PotAndAbsEncoderConstants turret;
// Control Panel
// Mag encoder
static constexpr double kControlPanelEncoderCountsPerRevolution() {
return 4096.0;
}
// Ratio is encoder to output
static constexpr double kControlPanelEncoderRatio() { return (56.0 / 28.0); }
static constexpr double kMaxControlPanelEncoderPulsesPerSecond() {
return control_loops::superstructure::control_panel::kFreeSpeed /
(2.0 * M_PI) *
control_loops::superstructure::control_panel::kOutputRatio /
kControlPanelEncoderRatio() *
kControlPanelEncoderCountsPerRevolution();
}
// Shooter
static constexpr double kFinisherEncoderCountsPerRevolution() {
return 2048.0;
}
static constexpr double kFinisherEncoderRatio() { return 36.0 / 40.0; }
static constexpr double kMaxFinisherEncoderPulsesPerSecond() {
return control_loops::superstructure::finisher::kFreeSpeed / (2.0 * M_PI) *
control_loops::superstructure::finisher::kOutputRatio /
kFinisherEncoderRatio() * kFinisherEncoderCountsPerRevolution();
}
static constexpr double kAcceleratorEncoderCountsPerRevolution() {
return 2048.0;
}
static constexpr double kAcceleratorEncoderRatio() {
return (1.2 * 1.2 * 1.2) * (30.0 / 40.0);
}
static constexpr double kMaxAcceleratorEncoderPulsesPerSecond() {
return control_loops::superstructure::accelerator::kFreeSpeed /
(2.0 * M_PI) *
control_loops::superstructure::accelerator::kOutputRatio /
kAcceleratorEncoderRatio() *
kAcceleratorEncoderCountsPerRevolution();
}
// Climber
static constexpr double kClimberSupplyCurrentLimit() { return 60.0; }
struct ShotParams {
// Measured in radians
double hood_angle;
// Muzzle velocity (m/s) of the ball as it is shot out of the shooter.
double velocity_ball;
static ShotParams BlendY(double coefficient, ShotParams a1, ShotParams a2) {
using ::frc971::shooter_interpolation::Blend;
return ShotParams{Blend(coefficient, a1.hood_angle, a2.hood_angle),
Blend(coefficient, a1.velocity_ball, a2.velocity_ball)};
}
};
struct FlywheelShotParams {
// Angular velocity in radians per second of the slowest (lowest) wheel in
// the kicker. Positive is shooting the ball.
double velocity_accelerator;
// Angular velocity in radians per seconds of the flywheel. Positive is
// shooting.
double velocity_finisher;
static FlywheelShotParams BlendY(double coefficient, FlywheelShotParams a1,
FlywheelShotParams a2) {
using ::frc971::shooter_interpolation::Blend;
return FlywheelShotParams{
Blend(coefficient, a1.velocity_accelerator, a2.velocity_accelerator),
Blend(coefficient, a1.velocity_finisher, a2.velocity_finisher)};
}
};
// { distance_to_target, { hood_angle, velocity_ball }}
InterpolationTable<ShotParams> shot_interpolation_table;
// { velocity_ball, { velocity_accelerator, velocity_finisher }}
InterpolationTable<FlywheelShotParams> flywheel_shot_interpolation_table;
};
// Creates (once) a Values instance for ::aos::network::GetTeamNumber(). Should
// be called before realtime because this allocates memory.
void InitValues();
// Returns a reference to the Values instance for
// ::aos::network::GetTeamNumber(). Values must be initialized through
// InitValues() before calling this.
const Values &GetValues();
} // namespace constants
} // namespace y2020
#endif // y2020_CONSTANTS_H_